Skip to main content

Unit information: Integrated Circuit Electronics in 2022/23

Please note: It is possible that the information shown for future academic years may change due to developments in the relevant academic field. Optional unit availability varies depending on both staffing, student choice and timetabling constraints.

Unit name Integrated Circuit Electronics
Unit code EENGM6011
Credit points 10
Level of study M/7
Teaching block(s) Teaching Block 1 (weeks 1 - 12)
Unit director Professor. Morris
Open unit status Not open
Units you must take before you take this one (pre-requisite units)


Units you must take alongside this one (co-requisite units)


Units you may not take alongside this one
School/department Department of Electrical & Electronic Engineering
Faculty Faculty of Engineering

Unit Information

Over the last thirty years, integrated circuits have played a central role in the development of complex electronic systems that can be manufactured at a relatively low cost to the consumer. This unit provides an introduction to integrated circuit technologies; covering fabrication processes, device construction and operation, and circuit configurations that are well suited to integrated manufacture because they take advantage of the ready availability of well-matched components. There will be some formative coursework related to fabrication and circuit performance where feedback will be given.


Fabrication Issues Prof J.M. Rorison

  • Fabrication and issues of fabrication of bipolar transistors
  • Fabrication and issues of fabrication of CMOS FET's
  • Operation of bipolar transistors related to fabrication specification
  • Operation of CMOS FET's related to fabrication specification
  • GaAs and Si-Ge technologies for faster devices
  • Future device issues

Circuit Issues Dr K.A. Morris

  • Design of a single stage actively loaded CMOS amplifier
  • Design of a current mirror using bipolar technology
  • Design of a current mirror using CMOS technology
  • Design of a differential amplifier using bipolar technology
  • Design of a differential amplifier using CMOS technology
  • Design of operational amplifier in CMOS

Your learning on this unit

After successfully completing the unit, a student will be able to:

  1. Describe and explain the basis of operation of bipolar transistors and FET devices in terms of the physical mechanisms involved.
  2. Outline the steps involved in the fabrication of ICs and describe the physical processes used and the limitations they impose on device and circuit operation.
  3. Explain how the physical design of the bipolar and FET device impacts on device and circuit performance.
  4. Design and analyse a current mirror using bipolar and CMOS technology
  5. Design a differential amplifier using bipolar and CMOS technology
  6. Design a simple operational amplifier using CMOS technology
  7. Design a single stage CMOS actively loaded amplifier

How you will learn

Teaching will be delivered through a combination of synchronous and asynchronous sessions, including lectures, practical activities supported by drop-in sessions, problem sheets and self-directed exercises.

How you will be assessed

Exam (January, 100%)


If this unit has a Resource List, you will normally find a link to it in the Blackboard area for the unit. Sometimes there will be a separate link for each weekly topic.

If you are unable to access a list through Blackboard, you can also find it via the Resource Lists homepage. Search for the list by the unit name or code (e.g. EENGM6011).

How much time the unit requires
Each credit equates to 10 hours of total student input. For example a 20 credit unit will take you 200 hours of study to complete. Your total learning time is made up of contact time, directed learning tasks, independent learning and assessment activity.

See the Faculty workload statement relating to this unit for more information.

The Board of Examiners will consider all cases where students have failed or not completed the assessments required for credit. The Board considers each student's outcomes across all the units which contribute to each year's programme of study. If you have self-certificated your absence from an assessment, you will normally be required to complete it the next time it runs (this is usually in the next assessment period).
The Board of Examiners will take into account any extenuating circumstances and operates within the Regulations and Code of Practice for Taught Programmes.