Research Theme: Quantum & Soft Matter
Our aim is to find and understand new phenomena of quantum and classical matter. We study soft materials like liquid crystals and colloids, as well as solid matter ranging from superconductors to insulators. We are particularly interested in systems that show a large response to small perturbations. These are often found close to phase transitions and out of equilibrium.
Our research contributes insight to many emergent phenomena like superconductivity at the boarder of quantum magnetism and glass formation in colloids. Within Quantum & Soft Matter, our research specialises in the following research topic areas:
- SuperconductivityWe're studying the mechanism of unconventional superconductivity in cuprate superconductors and exploring novel high-pressure superconductors using diamond anvil cells.
- Colloidal MatterWe use real space tracking to measure particle positions in colloids and to compare with model calculations. Thus, we can understand equilibrium and out-of-equilibrium physics relevant for the whole of condensed matter.
- Quantum MagnetismWe're studying how large magnetic fields can induce a form of antiferromagnetism known as a spin density wave and how this can be used to control the resistance of a metal in a high magnetic field.
- Novel GlassesWe're working on understanding the glass transition and producing new glasses, such as pure aluminate, titanate and gallate, with high refractive indices and the ability to contain significant quantities of rare-earth ions.
- Quantum CriticalityWe're studying quantum critical points, which arise when phase transitions close to zero temperature are dominated by quantum fluctuations, and the emergence of superconductivity at these points.
- Low Dimensional Materials & DevicesWe're using dimensionality as a tuning parameter, making heterostructures of different materials and creating device structures such as transistors to explore fundamental physics.
- Electronic StructureWe use experiments and computational simulations to study the distribution of electron states in a variety of materials ranging from superconductors to low-dimensional devices.