Hosted by the Wellcome Neural Dynamics PhD Programme
This talk will discuss how mathematical modelling can be embedded within experiment protocols to study electrical behaviour in neurons and neuroendocrine cells in which delays play an important role. We discuss three examples, the first of which explores the capability of a neuron that is synaptically coupled to itself, to store and repeat patterns of precisely timed spikes, which we regard as single cell 'memories'. Drawing on analogies from semiconductor lasers, we append a delayed self-coupling term to the oft studied Morris-Lecar model of neuronal excitability and use bifurcation analysis to predict the number and type of memories the neuron can store. These results highlight the delay period as an important period parameter controlling the storage capacity of the cell. We then use the dynamic clamp protocol to introduce self-coupling to a mammalian cell and confirm the existence of the spiking patterns predicted by the model analysis. The second example covers preliminary work of investigating the origin of pulsatile secretion in corticotrophs in the pituitary gland. Such pulsatility has previously been conjectured to be strongly coupled to the delay period between secretion from the corticotrophs and feedback from the adrenal glands. Here, we combine Ca2+ imaging, mathematical modelling and dynamic perfusion to explore how delays influence behaviour of this combined system. The final example will explore how techniques combining control theory and bifurcation analysis with dynamic clamp can be used to probe single cell electrical excitability.
To join online: https://bristol-ac-uk.zoom.us/j/94138286231?pwd=MlRURE1SWjR6OTZCR1Fnak9QbGxhUT09, Passcode: 277162
If you would like to join Kyle for lunch for lunch before the talk, please contact Jake Ahern.