Abstract: In this talk, I would like to share early results on our ongoing work with colleagues at IAS and VUmc Amsterdam on high-order interactions in functional brain networks. Network theory is predominantly based on pairwise relationships between nodes, which is not realistic for most complex systems. In particular, it does not accurately capture nondyadic interactions in the brain. Over the past years, I have been interested in inferring high-order interactions from brain signals and exploring their consequences for our understanding of the human brain as a high-order network.
The talk will be divided in two parts: i) methodology and ii) application. I will first introduce the methodology we developed to analyze the brain as a high-order network, in particular the multivariate signal processing pipeline that can define high-order interactions and connectivity in rs-fMRI images of brain networks (or any other time series signal) in an intuitive way. I will then present preliminary result from our current applied work, in which we searched for high-order "hubs" in a cohort of 100 individuals from the Human Connectome project as a proof of concept. In fact, even though we did not consider any prior knowledge about the functionality of specific brain regions in our analysis, we found that well-known integration and segregation patterns in the brain emerge spontaneously from the high-order hubs and can be considered emergent properties of functional brain networks. In this context, each type of high-order interdependency is compatible with distinct systems in the brain. For instance, three-point interactions seem to manifest segregation and integration principles consistent with the sensory-motor and visual systems. We believe that this opens up exciting avenues for further research.
Brief biography: I am a theoretical physicist and applied mathematician by training. In my current research, I apply methods of topology, geometry, statistical mechanics, and topological data analysis (TDA) to complex systems and neuroscience. I was trained at the Federal University of Pernambuco (Brazil), studying the topological aspects of phase transitions in classical Hamiltonian systems. Later, I spent one year as a visiting fellow at the Oxford University Wolfson Center for Mathematical Biology, researching theoretical methods for stochastic biochemical reactions. Since 2019, I work as Research Associate at the MULTINET lab of the VUmc Department of Anatomy and Neurosciences in Amsterdam, where we study brain networks under a multimodality and multilayer perspective.
- Zoom link:https://bristol-ac-uk.zoom.us/j/93417891128?pwd=Q1JwKzlvd0hzRmxWdXVQV09XTUNQUT09
- meeting no.:934 1789 1128
- password:313697