The School of Chemistry is housed in two large, purpose-designed buildings and is exceptionally well equipped. A building specially devoted to synthetic chemistry, complete with state-of-the-art laboratories and fumehoods, was opened in December 1999.

Our strong research profile is sustained by a world class equipment and instrument infrastructure offering researchers access to a wide range of analytical and visualisation techniques and associated technical expertise. Some examples of the many analytical techniques fundamental to the research carried out here are given below.

We welcome enquiries from industrialists who might wish to use these services.  Please contact our industrial services team for further information.

NMR (nuclear magnetic resonance)

The NMR Facilities in the School of Chemistry are some of the best equipped in the UK, with 12 solution-state NMR spectrometers (300-700MHz) used for research and undergraduate teaching, as well as being available for industrial use (see below for our capabilities).

Description of image

400 and 500MHz NMR spectrometers

The Bristol Chemical NMR Facility
Operates across 300-500MHz, including a 500MHz 13C-cryogenic spectrometer offering the highest sensitivity for 13C NMR in the UK. As well as using cutting-edge 1H- and 13C-based NMR methods, with capabilities including molecular structure elucidation, reaction monitoring, diffusion measurements and quantitative NMR, we can also study a diverse variety of materials through a wide range of other nuclei e.g. 11B, 19F, 31P, and transition metals.

The Bristol Biological NMR facility
Equipped with 600 MHz and 700MHz spectrometers equipped with a salt-tolerant 13C-enhanced triple resonance cryo-probe, a 1H,13C capillary flow probe and liquid handling robot and a 1.7mm microcryoprobe (the most mass-sensitive NMR spectrometer in UK academia). The facility is involved in tackling projects that impact on human health, including structural biology, supramolecular chemistry, medicinal chemistry and compound screening. The science base is both publicly and industrially funded and there is a strong drive to increase further industrial collaboration.

The Bristol NMR Metabolomics Facility
A collaboration with the Department of Social and Community Medicine, comprising 500MHz and 600MHz ultra-high throughput NMR systems including a high sensitivity liquid-nitrogen 'Prodigy' probe to maximise data quality and minimise experiment times. This Facility specialises in quantitative, high-throughput metabolic profiling of human serum/EDTA-plasma and metabolite profiling

Multinuclear NMR

As well as being the first-choice technique for characterisation of new organic compounds, the NMR facilities at Bristol are also used for studying 11B 31P 19F and a wide variety of transition metal nucleii.

Mass spectrometry

As well as providing routine mass spectral analysis, the mass spectrometry laboratory, is also home to more advanced applications development and non-routine analysis. The facility works closely with the neighbouring NERC Life Sciences Mass Spectrometry Facility.

Further details are available on the Mass spectrometry website.

Weighing molecules

The idea of using magnetic field to separate ions of different masses has been around for about a century. Recent developments allow us to do this for ever more complex molecules. The mass spectrometry facilities at Bristol enable us to look at molecular ions and frangemtation patterns for almost any species including biological samples that were, until a few years ago, impossible to study using these techniques.

X-ray crystallography

A purpose-built crystallography laboratory houses 3 single crystal diffractometers and one powder diffractometer.

All of the single crystal diffractometers are equipped with modern kappa-geometry goniometers. Two of these have conventional fixed Mo-anode X-ray tubes and are used for routine samples. The third is a very high intensity rotating Cu-anode instrument with beam focussing optics and a large format area detector. This instrument is used for studying weakly diffracting, disordered and twinned crystals with results second only to those that could be obtained at a synchrotron source. 

The laboratory also houses a high throughput powder X-ray diffractometer equipped with a linear detector, robotic sample changer and 30 silicon wafer sample holders. This allows powder diffraction data for a sub-milligram quantity of sample to be collected in minutes.

Crystal selection using optical microscopy

Crystal selection using optical microscopy

Electron and scanning probe microscopy

The Electron and Scanning Probe Microscopy Unit provides solutions for imaging and analysis at the nanoscale. The unit houses two scanning electron microscopes, two scanning probe microscopes and three transmission electron microscopes.

The electron microscopes in the main suite are all fitted with digital image capture and energy dispersive X-ray systems for analysis of elemental composition and distribution. The most recent additions are a Jeol 1400 TEM and Jeol IT300 SEM. A Gatan Cathodoluminescence detector has also been installed on our existing Field Emission Gun SEM. In 2015 a new high resolution analytical FEG-TEM will be installed.

Both modular SPM microscopes are capable of atomic resolution imaging as well as numerous other imaging and analytical modes. One Bruker Multimode system has recently been upgraded with Peakforce technology to allow conductivity and quantitative material property (including modulus, adhesion, deformation, and dissipation) mapping.

NEW Jeol IT300 SEM

NEW Jeol 1400 TEM

NEW Peakforce Multimode 8 AFM

The art of nanochemistry

The wealth of techniques provided by a well equipped Electron Microscopy lab enable us to answer that most fundamental of questions: 'what does it look like?' As well as being informative, the results are often visually stunning. Some of the images obtained have even won competitions on the grounds of artistic merit!

Microanalytical laboratory

The school is fortunate to have an in-house microanalytical laboratory which provides a service to all sections of the school, other sections of the university and also undertakes work from outside organisations and companies. The laboratory is able to analyse a wide range of samples, mainly for carbon, hydrogen and nitrogen, but also carries out analysis for sulphur and halogens. In addition, samples can be analysed for inorganic carbon (present as carbonate), ash content, and loss of weight on drying.

The laboratory is equipped with a number of microbalances, and members of the school are permitted to use them to carry out the accurate weighing of samples for use in other analytical techniques.

If you wish to use the Microanalytical Service, please download and complete this Sample Request Form (Office document, 51kB) (Word document) and bring it with your sample.

CHN Elemental Analysers

CHN Elemental Analysers

Coulomat 702 C/S Analysers

Coulomat 702 C/S Analysers