Browse/search for people

Publication - Dr Karim Thebault

    Bouncing Unitary Cosmology I

    Mini-Superspace General Solution


    Gryb, S & Thebault, K, 2019, ‘Bouncing Unitary Cosmology I: Mini-Superspace General Solution’. Classical and Quantum Gravity, vol 36.


    We offer a new proposal for cosmic singularity resolution based upon a quantum cosmology with a unitary bounce. This proposal is illustrated via a novel quantization of a mini-superspace model in which there can be superpositions of the cosmological constant. This possibility leads to a finite, bouncing unitary cosmology. Whereas the usual Wheeler-DeWitt cosmology generically displays pathological behaviour in terms of non-finite expectation values and non-unitary dynamics, the finiteness and unitarity of our model are formally guaranteed. For classically singular models with a massless scalar field and cosmological constant, we show that well-behaved quantum observables can be constructed and generic solutions to the universal Schrödinger equation are singularity-free. Generic solutions of our model displays novel features including: (i) superpositions of values of the cosmological constant; (ii) universal effective physics due to non-trivial self-adjoint extensions of the Hamiltonian; and (iii) bound 'Efimov universe' states for negative cosmological constant. The last feature provides a new platform for quantum simulation of the early universe. A companion paper provides detailed interpretation and analysis of particular cosmological solutions that display a cosmic bounce due to quantum gravitational effects, a well-defined FLRW limit far from the bounce, and a semi-classical turnaround point in the dynamics of the scalar field which resembles an effective inflationary epoch.

    Full details in the University publications repository