Browse/search for people

Publication - Professor Mark Thompson

    Silicon photonic processor of two-qubit entangling quantum logic


    Santagati, R, Silverstone, JW, Strain, MJ, Sorel, M, Miki, S, Yamashita, T, Fujiwara, M, Sasaki, M, Terai, H, Tanner, MG, Natarajan, CM, Hadfield, RH, O'Brien, JL & Thompson, MG, 2017, ‘Silicon photonic processor of two-qubit entangling quantum logic’. Journal of Optics, vol 19.


    Entanglement is a fundamental property of quantum mechanics, and is a primary resource in quantum information systems. Its manipulation remains a central challenge in the development of quantum technology. In this work, we demonstrate a device which can generate, manipulate, and analyse two-qubit entangled states, using miniature and mass-manufacturable silicon photonics. By combining four photon-pair sources with a reconfigurable six-mode interferometer, embedding a switchable entangling gate, we generate two-qubit entangled states, manipulate their entanglement, and analyse them, all in the same silicon chip. Using quantum state tomography, we show how our source can produce a range of entangled and separable states, and how our switchable controlled-Z gate operates on them, entangling them or making them separable depending on its configuration.

    Full details in the University publications repository