Browse/search for people

Publication - Professor Steve Eichhorn

    Stress transfer and matrix-cohesive fracture mechanism in microfibrillated cellulose-gelatin nanocomposite films

    Citation

    Quero, F, Padilla, C, Campos, V, Luengo, J, Caballero, L, Melo, F, Li, Q, Eichhorn, SJ & Enrione, J, 2018, ‘Stress transfer and matrix-cohesive fracture mechanism in microfibrillated cellulose-gelatin nanocomposite films’. Carbohydrate Polymers, vol 195., pp. 89-98

    Abstract

    Microfibrillated cellulose (MFC) obtained from eucalyptus was embedded in gelatin from two sources; namely bovine and salmon gelatin. Raman spectroscopy revealed that stress is transferred more efficiently from bovine gelatin to the MFC when compared to salmon gelatin. Young's modulus, tensile strength, strain at failure and work of fracture of the nanocomposite films were improved by ∼67, 131, 43 y 243% respectively when using salmon gelatin as matrix material instead of bovine gelatin. Imaging of the tensile fracture surface of the MFC-gelatin nanocomposites revealed that crack formation occurs predominantly within bovine and salmon gelatin matrices rather than within the MFC or at the MFC/gelatin interface. This suggests that the mechanical failure mechanism in these nanocomposite materials is predominantly governed by a matrix-cohesive fracture mechanism. Both strength and flexibility are desirable properties for composite coatings made from gelatin-based materials, and so the findings of this study could assist in their utilization in the food and pharmaceutical industry.

    Full details in the University publications repository