Browse/search for people

Publication - Professor Stephen Hallett

    A directed continuum damage mechanics method for modelling composite matrix cracks


    Mukhopadhyay, S & Hallett, S, 2019, ‘A directed continuum damage mechanics method for modelling composite matrix cracks’. Composites Science and Technology, vol 176., pp. 1-8


    Matrix cracking in continuous fibre reinforced composites follows the fibre orientations, but continuum damage mechanics models are not able to properly capture this. A novel method is presented here to alleviate mesh sensitivity of the damage growth direction and represent discrete matrix cracks. In a ply-by-ply mesoscale model, matrix cracks within a ply usually rely on mesh dependent strain localisation to decide the crack growth direction. The newly proposed algorithm instead uses the ply level fibre orientation as a model input, and maintains crack advancement along this direction, based on a neighbour searching scheme. A further advantage is that it is able to represent individual cracks discretely, with a predefined minimum crack spacing. This overcomes another limitation of continuum damage models, where discrete cracks are only represented in a smeared sense. This procedure has been shown to be able to reproduce complex crack networks in multidirectional laminates, independent of the mesh pattern.

    Full details in the University publications repository