Browse/search for people

Publication - Dr Hong Chin Ng

    Investigating the use of 232Th/230Th as a dust proxy using co-located seawater and sediment samples from the low-latitude North Atlantic

    Citation

    Rowland, GH, Ng, HC, Robinson, LF, McManus, JF, Mohamed, KJ & McGee, D, 2017, ‘Investigating the use of 232Th/230Th as a dust proxy using co-located seawater and sediment samples from the low-latitude North Atlantic’. Geochimica et Cosmochimica Acta, vol 214., pp. 143-156

    Abstract

    The thorium isotope ratio 232Th/230Th can be measured in seawater and sediment samples, and has been used as a proxy to reconstruct lithogenic fluxes to the oceans for the modern day and the Pleistocene. There has not yet been a systematic study testing the proxy using the 232Th/230Th ratio in seawater and the ratio recorded in the underlying sediment. In this study we use co-located core-top sediments and seawater samples from five seamount sites spanning the tropical North Atlantic to investigate the link between seawater and sediment 232Th/230Th ratios across a range of water depths. Our results indicate that a broad correlation exists between seawater and sedimentary 232Th/230Th ratios. Both seawater and sedimentary 232Th/230Th ratios record a signal consistent with decreasing lithogenic input east to west, from Africa to South America. However, calculated 232Th fluxes for the core-top sediment samples indicate a strong dependence on depth, with up to a factor of ∼4 difference from shallow (<600 m) to deep sites (>2900 m). This depth dependence is likely caused by either a deficit of 230Th burial at depth compared to the production in the overlying water column, through addition of 232Th, or by a combination of the two. By comparing seawater and sedimentary 232Th/230Th ratios we derive an apparent fractional solubility of 232Th of 29 ± 3%, in reasonable agreement with the upper end of existing estimates.

    Full details in the University publications repository