Browse/search for people

Publication - Professor Mike Ashfold

    Striking Isotopologue-Dependent Photodissociation Dynamics of Water Molecules

    The Signature of an Accidental Resonance


    Chang, Y, Chen, Z, Zhou, J, Luo, Z, He, Z, Wu, G, Ashfold, MN, Yuan, K & Yang, X, 2019, ‘Striking Isotopologue-Dependent Photodissociation Dynamics of Water Molecules: The Signature of an Accidental Resonance’. Journal of Physical Chemistry Letters, vol 10., pp. 4209-4214


    Investigations of the photofragmentation patterns of both light and heavy water at the state-to-state level are a prerequisite for any thorough understanding of chemical processing and isotope heterogeneity in the interstellar medium. Here we reveal dynamical features of the dissociation of water molecules following excitation to the C̃(010) state using a tunable vacuum ultraviolet source in combination with the high-resolution H(D)-atom Rydberg tagging time-of-flight technique. The action spectra for forming H(D) atoms and the OH(OD) product state distributions resulting from excitation to the C̃(010) states of H2O and D2O both show striking differences, which are attributable to the effects of an isotopologue-specific accidental resonance. Such accidental-resonance-induced state mixing may contribute to the D/H isotope heterogeneity in the solar system. The present study provides an excellent example of competitive state-to-state nonadiabatic decay pathways involving at least five electronic states.

    Full details in the University publications repository