Browse/search for people

Publication - Professor Richard Wall

    Pathogens in fleas collected from cats and dogs

    Distribution and prevalence in the UK

    Citation

    Abdullah, S, Helps, C, Tasker, S, Newbury, H & Wall, R, 2019, ‘Pathogens in fleas collected from cats and dogs: Distribution and prevalence in the UK’. Parasites and Vectors, vol 12.

    Abstract

    Background: Fleas (Siphonaptera) are the most clinically important ectoparasites of dogs and cats worldwide. Rising levels of pet ownership, climate change and globalisation are increasing the importance of a detailed understanding of the endemicity and prevalence of flea-borne pathogens. This requires continued surveillance to detect change. This study reports a large-scale survey of pathogens in fleas collected from client-owned cats and dogs in the UK.

    Methods: Recruited veterinary practices were asked to follow a standardised flea inspection protocol on a randomised selection of cats and dogs brought into the practice in April and June 2018. A total of 326 practices participated and 812 cats and 662 dogs were examined. Fleas were collected, identified to species and pooled flea samples from each host were analysed for the presence of pathogens using PCR and sequence analysis.

    Results: Overall, 28.1% of cats and 14.4% of dogs were flea infested. More than 90% of the fleas on both cats and dogs were cat fleas, Ctenocephalides felis felis. Fleas of the same species from each infested host were pooled. DNA was amplified from 470 of the pooled flea samples using conventional PCR, 66 of which (14% ± 95% CI 3.14%) were positive for at least one pathogen. Fifty-three (11.3% ± 95% CI 2.85%) of the pooled flea DNA samples were positive for Bartonella spp., 35 were from cats and 4 from dogs, the remainder had no host record. Seventeen of the Bartonella spp. samples were found to be Bartonella henselae, 27 were Bartonella clarridgeiae (of two different strains), 4 samples were Bartonella alsatica and one was Bartonella grahamii; 4 samples could not be identified. Fourteen (3% ± 95% CI 1.53%) of the flea DNA samples were found to be positive for Dipylidium caninum, 10 of the D. caninum-infected samples were collected from cats and one from a dog, the other 3 positive flea samples had no host species record. Only 3 flea samples were positive for Mycoplasma haemofelis or Mycoplasma haemocanis; 2 were collected from cats and one had no host species record. Three fleas were positive for both D. caninum and Bartonella spp. One flea was positive for both Bartonella spp. and M. haemofelis or M. haemocanis.

    Conclusions: This study highlights the need for ongoing flea control, particularly given the relatively high prevalence of Bartonella spp., which is of concern for both animal welfare and human health. The study demonstrates the ongoing need to educate pet owners about the effects of both flea infestation and also the pathogen risks these fleas present.

    Full details in the University publications repository