Browse/search for people

Publication - Dr Gregory Sutton

    Insect Jumping Springs

    Citation

    Sutton, G & Burrows, M, 2018, ‘Insect Jumping Springs’. Current Biology, vol 28., pp. R142-R143

    Abstract

    As anyone who has tried to catch a grasshopper or a planthopper knows, many insects can jump very rapidly. A planthopper can accelerate in less than 1 millisecond to a take-off velocity of 5 m s–1, requiring a power output (energy per given time) of tens of thousands of Watts per kilogram of muscle. To do this, jumping insects have to overcome two mechanical limitations. First, the maximum mechanical power a muscle can produce is only approximately 300 W kg–1 and furthermore, the faster a muscle contracts, the less force it can generate, exacerbating the problem. Second, a jumping animal can only accelerate while it remains in contact with the ground: in most small insects, therefore, the length of the propulsive legs determines the time available to reach a given take-off velocity. Some larger insects, like katydids, use the leverage provided by their disproportionately long legs to multiply the power produced by direct muscle contraction to propel jumps. If the legs are short, however, alternative mechanisms must be used to generate the necessary mechanical power. How do these insects do it? They jump by using springs; devices that allow energy to be stored gradually in mechanical deformations and then released abruptly.

    Full details in the University publications repository