Skip to main content

Unit information: Solid State Physics 3021 in 2021/22

Unit name Solid State Physics 3021
Unit code PHYS30021
Credit points 20
Level of study H/6
Teaching block(s) Teaching Block 1 (weeks 1 - 12)
Unit director Professor. Dugdale
Open unit status Not open

120 credit at Level I/5 in single and joint honours physics.



School/department School of Physics
Faculty Faculty of Science

Description including Unit Aims

Electrons in Crystals and Semiconductors and Magnetism.

Brief description of simple crystal structures. Diffraction from periodic structures. The reciprocal lattice for various simple crystal structures. Electrons in crystals: free and nearly free electron theory - one electron approximation. Periodic boundary conditions. Density of states. Application of Fermi-Dirac distribution. Bloch Theorem; Energy bands. Phonons. Energy gaps, Bragg reflection and Brillouin zone boundaries. Reduced, extended and periodic zone schemes. Notion of a Fermi-surface and simple construction. Semi-classical theory of electron transport. Crystal momentum and effective mass. The distinction between metals, semiconductors and insulators. Electrons and holes. Transport in a free electron metal. Electron scattering in metals and semiconductors. Transport in semiconductors. The Hall effect. Elemental and compound semiconductors. Carrier density in intrinsic semiconductors. p- and n- type doping. The p-n junction. The work function and contact potential. Metal-semiconductor junctions. Types of magnetism. Pauli susceptibility. The Stoner model. Domains and the Curie temperature. Brief mention of superconductivity and the Meissner effect.

A pre-requisite for the Level 7 PHYSM0300 The Physics of Phase Transitions, PHYSM1000 Magnetism and Superconductivity and PHYSM2100 Semiconductor Physics.


  • To understand the concept of reciprocal lattice and the behaviour of electrons in a crystalline solid including the classification of solids, their electronic properties and how to measure and calculate them.
  • To introduce the electronic structure and physical properties of a semiconductor.
  • To reveal how p-n junctions, semiconductor lasers and LEDs work.
  • To present simple qualitative models to relate the behaviour of electrons in a crystal to magnetism.

Intended Learning Outcomes

  • Recognise the importance of the reciprocal lattice and relevance to diffraction. Be able to calculate and explain band structure related properties in crystalline systems and construct simple Fermi surfaces from given electron density or electronic bands.
  • Understand how to describe the motion of an electron in a band.
  • Able to describe the electronic structure and physical properties of a semiconductor.
  • Able to distinguish between diamagnetism, paramagnetism, ferromagnetism and

antiferromagnetism, and to understand what gives rise to these phenomena in metals.

Teaching Information

The unit will be taught through a combination of

  • asynchronous online materials, including narrated presentations and worked examples
  • synchronous group problems classes, workshops, tutorials and/or office hours
  • asynchronous directed individual formative exercises and other exercises
  • guided, structured reading

Assessment Information

2 x coursework assignments (20%) and written examination (80%)


If this unit has a Resource List, you will normally find a link to it in the Blackboard area for the unit. Sometimes there will be a separate link for each weekly topic.

If you are unable to access a list through Blackboard, you can also find it via the Resource Lists homepage. Search for the list by the unit name or code (e.g. PHYS30021).

How much time the unit requires
Each credit equates to 10 hours of total student input. For example a 20 credit unit will take you 200 hours of study to complete. Your total learning time is made up of contact time, directed learning tasks, independent learning and assessment activity.

See the Faculty workload statement relating to this unit for more information.

The Board of Examiners will consider all cases where students have failed or not completed the assessments required for credit. The Board considers each student's outcomes across all the units which contribute to each year's programme of study. If you have self-certificated your absence from an assessment, you will normally be required to complete it the next time it runs (this is usually in the next assessment period).
The Board of Examiners will take into account any extenuating circumstances and operates within the Regulations and Code of Practice for Taught Programmes.