# Unit information: The Physics of Phase Transitions. in 2022/23

Please note: It is possible that the information shown for future academic years may change due to developments in the relevant academic field. Optional unit availability varies depending on both staffing, student choice and timetabling constraints.

Unit name The Physics of Phase Transitions. PHYSM0300 10 M/7 Teaching Block 2D (weeks 19 - 24) Dr. Machon Not open PHYS30021 Solid State Physics 302, or MATH34300 Statistical Mechanics. None. . School of Physics Faculty of Science

## Unit Information

This courses employs the fundamental concepts and mathematical techniques of equilibrium statistical mechanics, to address two simple questions: Why does matter exist in different phases? And how does it change from one phase to another?

Aims:

Matter can exist in many different phases. The aim of this course is to develop a physical and mathematical picture of phase transitions, with examples taken from condensed matter physics. Emphasis is placed on notions of order, disorder, the role of correlation functions in critical phenomena, and the unifying concept of broken symmetry.

## Your learning on this unit

Students should be able to describe the generality of phase transitions and critical phenomena, distinguishing the key concepts of universality and broken symmetry with reference to variety of different phase transitions. They should be able to discuss the relevant experimental observations.

Students should be able to perform standard calculations for simple microscopic models which exhibit phase transitions, using the tools of equilibrium statistical mechanics. Central to this is the calculation of critical exponents at a continuous phase transition using mean field theory. They should know the basis for the Landau theory of phase transitions, the concept and significance of an order-parameter, and its connection with microscopic theories.

Students should be able to explain, with reference to GinzbUrg-Landau theory and numerical simulations, how spatial correlations become long-ranged at the critical point of a fluid or magnet, and how this motivates a scale-free description of the system. They should be able to explain, in qualitative terms, the idea of the renormalization group, and able to derive critical behavior for simple physical quantities from a scaling ansatz for the free energy.

## How you will learn

The unit will be taught through a combination of

• asynchronous online materials, including narrated presentations and worked examples
• synchronous group problems classes, workshops, tutorials and/or office hours
• asynchronous directed individual formative exercises and other exercises

## How you will be assessed

Written timed, open-book examination (100%)

## Resources

If this unit has a Resource List, you will normally find a link to it in the Blackboard area for the unit. Sometimes there will be a separate link for each weekly topic.

If you are unable to access a list through Blackboard, you can also find it via the Resource Lists homepage. Search for the list by the unit name or code (e.g. PHYSM0300).

How much time the unit requires
Each credit equates to 10 hours of total student input. For example a 20 credit unit will take you 200 hours of study to complete. Your total learning time is made up of contact time, directed learning tasks, independent learning and assessment activity.