Skip to main content

Unit information: Advanced Power Electronics Design in 2022/23

Please note: It is possible that the information shown for future academic years may change due to developments in the relevant academic field. Optional unit availability varies depending on both staffing, student choice and timetabling constraints.

Unit name Advanced Power Electronics Design
Unit code EENGM0001
Credit points 10
Level of study M/7
Teaching block(s) Teaching Block 2 (weeks 13 - 24)
Unit director Professor. Yuan
Open unit status Not open
Units you must take before you take this one (pre-requisite units)

EENG37000 or EENG30013

Units you must take alongside this one (co-requisite units)


Units you may not take alongside this one
School/department Department of Electrical & Electronic Engineering
Faculty Faculty of Engineering

Unit Information

This unit introduces advanced power electronics design techniques for modern electrical power conversion systems. The course begins with the modelling of power electronics converters (e.g. dc-dc converters and three-phase converters), based on which, a general closed-loop control design method will be developed following a frequency domain analysis. Various converter topologies (for example, voltage source converters, current source converters and multi-level converters) will be analysed using advanced modelling techniques. Hardware design issues in power electronic converters will be addressed in detail. Design techniques will be investigated for both standard and advanced (for example, integrated) magnetic components. Synchronous rectification techniques, resonant gate driver circuits and emerging power semiconductor technologies such as state-of-the-art silicon carbide devices will be covered. Practical skills such as the use of simulation tools (MATLAB/Simulink) and printed circuit board (PCB) design will also be covered with examples. The unit builds on previous Yr 2 and Yr3 electromechanical energy conversion courses (EENG27000, EENG28070 and EENG37000).


  • Recent development in power electronics and power conversion systems
  • Modelling of power electronics converters
  • Control design for power electronics converters
  • Modulation strategies
  • Multilevel converters
  • Wind power generation using power electronics and machines
  • Power semiconductors: physics, characteristics and application
  • Emerging power devices
  • Advanced magnetic components design
  • Resonant gate driver
  • Synchronous rectification

Your learning on this unit

  1. Describe the importance of power electronics in applications such as renewable power generation, multi-level converters.
  2. Explain issues such as electromagnetic interference (EMI) and the impact of emerging power semiconductor devices.
  3. Explain the operation of single switch to dc-dc and three-phase converters.
  4. Using the converter average model derive the operational principles of converter topologies.
  5. Using the converter average model with frequency domain analysis derive the closed-loop design process for power converters.
  6. Explain the inner current control loop and outer voltage/speed control loop design for motor drives and grid tied converter applications.
  7. Review the characteristics of magnet components including advanced magnetic arrangements such as integrated and planar magnetic component.
  8. Apply magnetic component design rules to the analysis of advanced magnetic components.
  9. Analyse advanced circuit techniques including synchronous rectification, resonant gate driver circuit topologies.
  10. Identify the impact and potential of emerging power semiconductor technologies.
  11. Explain the operation of standard power electronics devices, e.g. diode, MOSFET, IGBT, etc.
  12. Apply software simulation methods (MATLAB/Simulink) to converter modelling and control loop design.
  13. Use PCB design skills within a power electronics converter design.

How you will learn

Teaching will be delivered through a combination of synchronous and asynchronous sessions, including lectures, practical activities supported by drop-in sessions, problem sheets and self-directed exercises.

How you will be assessed

2 pieces of coursework: 70% and 30% each of the final mark


If this unit has a Resource List, you will normally find a link to it in the Blackboard area for the unit. Sometimes there will be a separate link for each weekly topic.

If you are unable to access a list through Blackboard, you can also find it via the Resource Lists homepage. Search for the list by the unit name or code (e.g. EENGM0001).

How much time the unit requires
Each credit equates to 10 hours of total student input. For example a 20 credit unit will take you 200 hours of study to complete. Your total learning time is made up of contact time, directed learning tasks, independent learning and assessment activity.

See the Faculty workload statement relating to this unit for more information.

The Board of Examiners will consider all cases where students have failed or not completed the assessments required for credit. The Board considers each student's outcomes across all the units which contribute to each year's programme of study. If you have self-certificated your absence from an assessment, you will normally be required to complete it the next time it runs (this is usually in the next assessment period).
The Board of Examiners will take into account any extenuating circumstances and operates within the Regulations and Code of Practice for Taught Programmes.