Skip to main content

Unit information: Particle Physics in 2021/22

Unit name Particle Physics
Unit code PHYS32012
Credit points 10
Level of study H/6
Teaching block(s) Teaching Block 1 (weeks 1 - 12)
Unit director Dr. Petridis
Open unit status Not open
Pre-requisites

120 credit points of units at level I/5 in Physics, Physics with Astrophysics, Theoretical Physics, joint honours Mathematics and Physics or Physics and Philosophy, including PHYS22040.

Co-requisites

None

School/department School of Physics
Faculty Faculty of Science

Description including Unit Aims

Description:

This unit will provide students with a comprehensive understanding of the Standard Model of Particle Physics and experimental techniques of relevance to current and proposed particle detector facilities.

Aims:

1. To introduce the study of quark and gluon physics via measurements of hadrons and high-energy jets.

2. To develop the idea and formalism of quark mixing.

3. To introduce the discrete symmetries of parity, time reversal and charge conjugation; and their violation in weak interaction processes.

4. To describe the main processes of energy loss for high-energy particles.

5. To review the facilities and techniques used in experimentation at the energy frontier; and at the frontiers of precision and intensity.

Intended Learning Outcomes

Explain the term “asymptotic freedom”, and discuss the ways in which measurements of hadron interactions can be used to study quarks and gluons.

Explain the observed spectrum of short-lived hadron states in terms of their quark composition.

Compare rates of weak interaction processes taking into account the Cabibbo-Kobayashi-Maskawa description of quark mixing.

Discuss the evidence for violation of parity in weak interactions; and the significance of measurements of charge conjugation-parity (CP) violation effects.

Explain the functions of different components of a general-purpose particle detection system for use with high-energy collisions

Describe the main processes by which high-energy, relativistic particles interact with matter, and their importance for particle detection.

Recognise the signatures of the production of high mass particles including W and Z bosons, Higgs bosons and top quarks in collider experiments.

Teaching Information

The unit will be taught through a combination of

  • asynchronous online materials, including narrated presentations and worked examples
  • synchronous group problems classes, workshops, tutorials and/or office hours
  • asynchronous directed individual formative exercises and other exercises
  • guided, structured reading

Assessment Information

Written, timed, open-book examination (80%) Coursework (20%)

Resources

If this unit has a Resource List, you will normally find a link to it in the Blackboard area for the unit. Sometimes there will be a separate link for each weekly topic.

If you are unable to access a list through Blackboard, you can also find it via the Resource Lists homepage. Search for the list by the unit name or code (e.g. PHYS32012).

How much time the unit requires
Each credit equates to 10 hours of total student input. For example a 20 credit unit will take you 200 hours of study to complete. Your total learning time is made up of contact time, directed learning tasks, independent learning and assessment activity.

See the Faculty workload statement relating to this unit for more information.

Assessment
The Board of Examiners will consider all cases where students have failed or not completed the assessments required for credit. The Board considers each student's outcomes across all the units which contribute to each year's programme of study. If you have self-certificated your absence from an assessment, you will normally be required to complete it the next time it runs (this is usually in the next assessment period).
The Board of Examiners will take into account any extenuating circumstances and operates within the Regulations and Code of Practice for Taught Programmes.

Feedback