Skip to main content

Unit information: Quantum Computation in 2022/23

Please note: you are viewing unit and programme information for a past academic year. Please see the current academic year for up to date information.

Unit name Quantum Computation
Unit code MATHM0023
Credit points 10
Level of study M/7
Teaching block(s) Teaching Block 2C (weeks 13 - 18)
Unit director Professor. Linden
Open unit status Not open
Units you must take before you take this one (pre-requisite units)

MATHM5610 Quantum Information Theory

Units you must take alongside this one (co-requisite units)

None

Units you may not take alongside this one

None

School/department School of Mathematics
Faculty Faculty of Science

Unit Information

Lecturers: Noah Linden and Romy Minko

Unit Aims

The unit will enable the student to understand and appreciate the concepts behind the model of quantum computation, key quantum algorithms and their applications, at a suitable level of mathematical rigour. It will also encompass theoretical subjects that are relevant to implementations of quantum computation. The unit will include topics that are currently the subject of active research and should provide suitably able and inclined students with the necessary background for postgraduate study in the field.

Unit Description

Quantum computers are machines that are designed to use the principles of quantum mechanics to do things that cannot be done by any standard computer based only on classical physics. This unit will introduce the emerging theory of quantum computation, which has many remarkable features compared with classical computation. The unit will cover some of the most important quantum algorithms currently known, which outperform classical algorithms for tasks ranging from factorising large integers to simulating large quantum-mechanical systems.

Relation to Other Units

This unit is a natural partner and successor to MATHM5610 Quantum Information Theory, which is its only prerequisite. It is likely to be of interest to students from Mathematics, Physics and Computer Science who have an interest in quantum information or the theory of computation.

Your learning on this unit

At the end of the unit, a successful student will be able to:

- solve computational problems posed within the quantum computing model - apply some key quantum algorithms and prove their correctness - analyse the behaviour of previously unseen quantum circuits, algorithms and protocols - develop simple new quantum algorithms

Transferrable skills:

- Problem-solving techniques. - Rigorous mathematical thinking about computation. - The ability to assimilate and synthesize complex and novel ideas from a wide variety of areas of science.

How you will learn

The unit will be taught through a combination of

  • asynchronous online materials, including lectures
  • synchronous weekly problem/example classes (in person unless circumstances prevent this)
  • synchronous weekly office hours
  • guided asynchronous independent activities such as problem sheets and/or other exercises

How you will be assessed

Formative assessment is through problem sheets discussed in problem classes. Summative assessment is through a 1.5-hour written exam (100%).

Resources

If this unit has a Resource List, you will normally find a link to it in the Blackboard area for the unit. Sometimes there will be a separate link for each weekly topic.

If you are unable to access a list through Blackboard, you can also find it via the Resource Lists homepage. Search for the list by the unit name or code (e.g. MATHM0023).

How much time the unit requires
Each credit equates to 10 hours of total student input. For example a 20 credit unit will take you 200 hours of study to complete. Your total learning time is made up of contact time, directed learning tasks, independent learning and assessment activity.

See the Faculty workload statement relating to this unit for more information.

Assessment
The Board of Examiners will consider all cases where students have failed or not completed the assessments required for credit. The Board considers each student's outcomes across all the units which contribute to each year's programme of study. If you have self-certificated your absence from an assessment, you will normally be required to complete it the next time it runs (this is usually in the next assessment period).
The Board of Examiners will take into account any extenuating circumstances and operates within the Regulations and Code of Practice for Taught Programmes.

Feedback