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Abstract

This thesis is a study of the natural geometric structures, arising through interference,

in fields of complex waves (scalars, vectors or tensors), where certain parameters describ-

ing the wave are singular. In scalar waves, these are phase singularities (also called wave

dislocations), which are also nodes (zeros of amplitude): in two dimensional fields they

are points, and in three dimensions, lines. The morphology of dislocation points and lines

is studied in detail, and averages of their geometrical properties (such as density, speed,

curvature and twistedness) are calculated analytically for isotropically random gaussian

ensembles (superpositions of plane waves equidistributed in direction, but with random

phases). It is also shown how dislocation lines may be knotted and linked, and a con-

struction of torus knots in monochromatic waves is studied in detail, using experimentally

realisable beams. In vector waves, the appropriate fields are described geometrically by

an ellipse at each point (the polarization ellipse). Their singularities, occurring along

lines in three dimensions, are where the ellipse is circular (C lines) and linear (L lines);

in two dimensional fields, possibly representing the transverse plane of paraxial polarized

light waves, there are C points, but still L lines. The geometry of these singularities is

considered, and analytical calculations for their densities in isotropic gaussian random

vector waves are performed. The C and L singularity structures are generalised to fields

of spinors using the Majorana sphere (vector fields have spin 1), and singularities in rank

two tensor waves (spin 2) are briefly discussed.
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Chapter 1

Introduction: What is a

singularity?

‘Our task is to find in all these factors and data, the absolute, the universally

valid, the invariant, that is hidden within them.’

Max Planck, Scientific Autobiography and Other Papers, New York: Philosophical

Library, 1949

1.1 General Introduction

Many phenomena in nature, such as light, sound, thermal radiation and quantum mechan-

ical matter, can be described by waves. This thesis is a study of wave interference, that

is to say, what happens when the wave disturbance from different sources adds together

(constructive interference) or cancels out (destructive interference). Across an entire field

of interfering waves, there are places where either of these types of interference can happen.

Thomas Young, in November 1801, announced his discovery of interference in a light beam,

thereby proving that light physically is a wave [You02]. For fields of interfering waves, in

three dimensions, the destructive interference occurs along lines, resulting in threads of

darkness (silence, etc), and in two dimensions, at points. These interference structures

were discovered as a general phenomenon of wave physics by Nye and Berry in 1974, where,

in analogy with the defects of crystal lattices, they were called wave dislocations.

1



2 Introduction: What is a singularity?

Wave dislocations are not objects in the usual sense (like atoms): they do not have an

independent existence, but are specific features of the patterns set up by the interfering

waves. Such phenomena are called morphologies, another example of which is a shadow

(this a morphology of light rays, not waves). The importance of wave dislocations is

brought out when one asks what physical quantities describe the wave disturbance at each

point: in addition to the size of the wave (the amplitude, a nonnegative real number),

there is also a phase, that is, the angle which determines the point of the wave cycle

(which changes, for example, as time evolves). Where the amplitude of the wave is zero,

the phase cannot be determined (since the wave is zero for all phases): the wavefield zeros

are also phase singularities, and are the most significant features of the phase landscape in

the field. A simple example of a phase singularity (not in a wave) is the singular time zone

at the north pole (where the phase angle corresponds to the position of the hour hand on

a watch, which may validly point to any hour at the north pole).

It is remarkable that, if any wavefield is chosen at random (out of an appropriate

ensemble), these singularities occur naturally throughout the field, out of the random

interference pattern, and part of the work described here is an exact mathematical cal-

culation of the densities of dislocations in general kinds of random wavefield, as well as

the statistical distributions of geometric properties such as curvature, speed (if they are

moving) and twistedness. These calculations apply to the threads of silence in a noisy

room, or the threads of darkness from light emitted from a thermal radiator (ie a black

body).

However, we may also choose to manipulate waves (for instance light in a laser beam)

in order to configure the dislocations in the wave into desired forms; we also describe a

method for creating dislocation loops that are knotted or linked in physically realisable

beams. This construction takes advantage of the mathematical structure of the wave

around the singularity, and the interference pattern near the knot has a detailed and

subtle structure.

Not all waves are just described by amplitude and phase; they may also have po-

larization, where the wave disturbance occurs in a certain direction or directions (ex-

amples include (un)polarized light or elastic waves in a solid). In this case, there are

too many variables for the wavefield naturally to vanish on lines, but there are other

types of singularity in these wavefields, discovered and measured by Nye and Hajnal

[Nye83b, Nye83a, NH87, Haj87a, Haj87b, Haj85]. The mathematical formalism of these
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singularities is reviewed here, and we present calculations of their statistical densities in

random vector waves. The singular polarization structures for vectors may be generalised

to more complicated types of wave (tensor waves, with higher spin), and an outline of how

this happens is presented in the final chapter.

Although dislocations and other wave singularities have been known and studied for

a long time, this new work is original in several ways. The initial motivation was purely

statistical, to generalise the methods used in, and types of quantity considered by, the sta-

tistical analyses of [Ber78, Fre94], leading to the publication of three articles in research

journals, [BD00], [BD01c], [Den01b] as well as a conference proceedings article, [Den01a].

However, more general investigation of the topology of dislocation loops led to the redis-

covery of the ‘twisted loop’ theorem (originally discovered and investigated by Winfree

and coworkers), and thus the possibility of experimentally realisable dislocation knots,

as described in [BD01a] and [BD01b]. The generalization of polarization singularities to

waves of higher spin is not yet complete, and has not been published at this time.

1.2 What is a singularity?

In this section we shall explore the simple but fundamental notions associated with phase

singularities, as well as the related singularities of real vector fields and line (ellipse) fields

in two dimensions. These mathematical structures occur in other contexts than wave

interference, and the discussion here is general.

Phase singularities occur at the zeros (nodes) of complex scalar fields, that is functions

from space (of either two or three dimensions) to the complex numbers (analytic when

convenient). Unless otherwise stated, this function shall always be represented by ψ, so

ψ : R2,R3 −→ C.

Sometimes, ψ is time dependent as well as space dependent. Where confusion will

not ensue, explicit functional dependence on space or time will be suppressed (ie ψ =

ψ(r), ψ(r, t)).

The complex field ψ can be written in terms of its modulus ρ and argument χ or its

real and imaginary parts, ξ, η :

ψ = ρ exp(iχ) = ξ + iη, (1.2.1)

where ρ > 0, χ, ξ, η are real, and the angle χ is singlevalued modulo 2π. Since ψ is to
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denote a wave, the modulus ρ is the wave amplitude, and the argument χ is the phase of

the wave, and plays a crucial role in what follows.

The nodes of ψ are the places r in space for which

ψ(r) = 0 (1.2.2)

and, usually, are points in two dimensions, and lines in three. What is meant by ‘usu-

ally’ (ie generically) will be discussed in the next section. For now, we restrict attention

to the geometry of nodal points in two dimensions, with points labelled R ≡ (x, y) in

cartesian coordinates, (R, φ) in plane polars (see section 1.9 for a summary of notational

conventions).

The simplest function with a phase singularity is simply the natural map from cartesian

space to the complex plane,

ψ(x, y) = x + iy = R exp(iφ) (1.2.3)

which is zero at the origin. The phase here is the polar angle φ, which is defined everywhere

except the origin, where R is 0. φ, as a function of position in the plane, is not continuous;

following any smooth line of constant φ through the origin causes a jump of π. There is

therefore no way of ascribing to φ a value at the origin: the phase of ψ is singular. It

is a necessary condition that R be zero at the singularity, otherwise the argument of the

nonzero ψ in (1.2.3) would not be defined. Phase singularities and zeros are therefore

equivalent, and the two terms shall be used interchangeably.

A reason that phase singularities are important is that their presence determines the

phase structure around them. In particular, consider the line integral

s =
1
2π

∮

C
dχ =

1
2π

∮

C
∇χ · dR, (1.2.4)

where C is some closed nonselfintersecting loop directed in the positive (anticlockwise)

sense in the plane, not passing through any node (so ∇χ is well-defined). Since χ is

singlevalued modulo 2π, s is an integer (possibly positive, negative, or zero). Topologically,

the image χ(C) of the path C is a closed loop in the space of angles, winding round s

times (positive if χ increases around the loop, negative if it decreases). s is therefore

referred to as the winding number of the loop. Now, if C encloses the origin in equation

(1.2.3), s = 1, and s = 0 otherwise. If ψ in (1.2.3) were replaced by its conjugate

ψ∗ = x − iy = R exp(−iφ), then s = −1, since χ = −φ for this function. Similarly,
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for positive integer n, any loop around 0 of the function ψn has winding number n (and

similarly, (ψ∗)n has −n). This topological number, being shared by all loops enclosing the

origin in (1.2.3) (and, more generally, any nodal point) is thus a property of the phase

singularity, called its topological charge [Hal81, Ber98], and, in the case of wave dislocations

(when ψ represents a wavefield), the dislocation strength.

A simple dislocated wave in two dimensions that has often been discussed (for example,

by [NB74, Ber81, Nye99]) has the equation

ψ = (x + iy) exp(iky) (1.2.5)

(actually, it is an approximation to a solution of the Helmholtz equation (1.5.2)). The

dislocation (as phase singularities in waves are called) at the origin has strength 1, re-

gardless of the sign of the wavenumber k, and locally to the dislocation (on a scale where

ky ≈ 0), equation (1.2.5) reduces to (1.2.3). The contours of constant phase (the wave-

fronts) emerge uniformly from the singularity at 0, and, further away, arrange into parallel

lines normal to the y direction, owing to the plane wave factor exp(iky). The pattern of

wavefronts near the dislocation is shown in figure (1.1). This wavefront structure is the

origin of the term dislocation for nodes in wavefields; Nye and Berry ([NB74]) coined the

term since figure (1.1) has a structure similar to the atomic planes in a crystal near to an

edge dislocation.

As mentioned above, across the singularity, the phase changes by π. The zero contours

of the real part ξ are labelled by one of two phases, 0 and π, which alternate at each node;

the position of the node cannot be found by inspection of the real part alone (only that

the node lies along the zero contour), and the phase (out of 0 and π) similarly cannot be

determined. Finding the node using the imaginary part alone has similar problems (with

the two phases being π/2, 3π/2) but the positions of the singularities can be determined

as the intersections of the two sets of zero contours of real and imaginary parts. The

behaviour of the other phase contours are easily found from ξ and η. Phase contours,

wavefronts and phase topology are discussed in more detail in section 2.1.

Phase singularities occur very generally whenever there is an angle continuously de-

pendent on two or three spatial parameters. One example, frequently taken advantage of

in representation of phase fields (although not here) is the so-called colour wheel: we see

the various hues (red, orange, yellow, etc) as a continuum, where purple appears with the

other spectral colours (although it is a mixture of red and blue), joining the two ends of
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π/2

0

π/3
π/6

5π/6
2π/3
π/2

Figure 1.1: Wavefronts (contours of constant phase, mod π) of the edge dislocation (1.2.5),

scaled such that k = 1.

the visible spectrum into a circle. The hues may be continued towards the centre of the

circle, but no colour can be put at the centre which continuously joins up with the others

(it can only be grey). The hue representation of phase has been used to pick out the phase

behaviour near singularities by Winfree [Win87].

Another example of a phase singularity, mentioned already, is the problem of the

correct time zone at the north pole. Consider an idealised globe, where the time zones are

separated by geodesic lines, independent of territories or borders, as in figure (1.2). The

north and south poles lie at points where all these lines intersect, so are not in any unique

zone: it is a phase singularity of the position of the hour hand on a watch (of course,

the variation of local time on the earth ought to be continuous with respect to east-west

position, but for convenience is discretised into one hour jumps). Fortunately, this does

not often give rise to practical problems, because the population at the poles is rather

sparse.1

1As J.F. Nye informs me, the presence of the British Antarctic survey at the south pole has led to

Greenwich Mean Time taken as standard at the south pole, and compass directions are taken with respect

to the Greenwich meridian.
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?

Figure 1.2: The phase singularity of time at the north pole (with idealised time zones).
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The topological charge of the polar singularities (north pole +1, south pole −1) have

interesting implications for a closed loop enclosing the singularity, that is, a closed E-W

journey around the world. Without the international date line, continuous adjustment to

local time gives rise to the acquisition (or loss) of a day on return to the starting point.

This surprising idea was the punchline of Jules Verne’s Around the world in 80 days, for,

as Phileas Fogg discovered, he

... had, without suspecting it, gained one day on his journey, and this merely

because he travelled constantly eastward; he would, on the contrary, have lost

a day, had he gone in the opposite direction - that is, westward.

In journeying eastward he had gone towards the sun, and the days therefore

diminished for him as many times four minutes as he crossed degrees in that

direction ... three hundred and sixty degrees, multiplied by four minutes, gives

precisely twenty-four hours - that is, the day unconsciously gained.

This problem is avoided with the international date line, which introduces a discontinu-

ity of a day’s jump along a line joining the two poles. This line solves the problem of

multivaluedness of the date (at the cost of introducing a 2π discontinuity), but its nature

is easy to misunderstand (see, for example, the confusion of the protagonist in Umberto

Eco’s The Island of the Day Before).

It is no coincidence that the number of phase singularities on the globe is equal to the

Euler characteristic of the sphere, which, by the Poincaré-Hopf theorem [Mil65], is the total

Poincaré index of any smooth vector field on that surface. There are several connections

between phase singularities in complex scalar fields and real vector field singularities, as

we now describe.

Consider a vector field in the plane V(R), with components

V = (Vx, Vy) (cartesian) = (V, θ) (polar), (1.2.6)

such that Vx, Vy are smooth. V and θ are not usually smooth, and in fact θ is singular when

V is zero (for example the origin when V = R). Around any closed nonselfintersecting

loop C (avoiding places where V = 0), take a line integral of θ, analogous to equation

(1.2.4):

IP =
1
2π

∮

C
dθ =

1
2π

∮

C
∇θ · dR. (1.2.7)
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As with phase χ before, θ is well-defined everywhere that V does not vanish, so the integral

is some (positive, negative or zero) multiple of 2π, and IP is an integer. C can be deformed

continuously without changing IP (which can only change by integer jumps), provided it

does not cross a zero. On taking a very small path around a point zero of V, one finds

that this integer is usually nonzero, and is called the Poincaré index of the zero. The

singularity in θ is sometimes called a direction field singularity, and is truly a singularity

of the unit vector field V/V.

There are three distinct types of singularity with Poincaré index ±1, whose linear

behaviour around the zero (taken to be at the origin) is given by a matrix M, where in a

neighbourhood of the origin,

V = MR. (1.2.8)

It is easy to see that the Poincaré index, defined by equation (1.2.7), is equal to the sign

of the determinant of M.

The first type of vector field singularity is a circulation, given by the matrix (up to an

unimportant nonsingular linear transformation)

Mcirc = ±

 0 1

−1 0


 , (1.2.9)

where the sign determines the sense of the circulation around the origin. It has determinant

1, trace 0 and eigenvalues ±i. The second type (again two fields, since the vectors can point

in either direction) are sources and sinks, with matrix (up to transformation)

Mso/si = ±

1 0

0 1


 , (1.2.10)

where sources have the +1 prefactor, sinks −1. They have Poincaré index 1, trace ±2 and

repeated eigenvalues 1 or −1. The final type, a saddle (or saddle point) has the matrix

(up to transformation)

Msad = ±

1 0

0 −1


 . (1.2.11)

Taking the negative of Msad is equivalent to a rotation by π/2 or a reflection in the line

y = x. It has index −1, trace zero and eigenvalues ±1. After an affine transformation,

the determinant of any of the M may change, but its sign does not. The circulations

remain traceless (although the circular flow lines near the singularity may be deformed),
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(a)
 (b)
 (c)


Figure 1.3: The three types of planar vector field singularity with index ±1 : (a) circula-

tions; (b) source and sink; (c) saddle.

but the saddle may acquire a nonzero trace. These three types of singularity are the only

three with unit Poincaré index (circulations, sources, sinks +1, saddles −1), and their

morphologies are shown in figure (1.3). Singularities of higher Poincaré index are possible

[FG82], but are not generic (see next section).

It is easily seen that the gradient of phase ∇χ in equation (1.2.3) has the form of a

right-handed circulation (1.2.9) (its conjugate is left-handed), so phase singularities are

circulations in the phase gradient field. Usually, functions cannot have critical points

(stationary points, or zeros of gradient field) which are circulations, since gradient is curl

free by Stokes’ theorem, but phase, having values which are angles, can, and the phase

singularities are circulations of phase gradient (hence the term optical vortices for their

occurrence in optics [Sos98, SV01, VS99]). The two phase singularities on the globe (figure

(1.2)) can therefore be interpreted as two counterrotating circulations (with vector flow

lines along lines of latitude).

There are also critical points of phase χ where ∇χ is a source or sink (local maximum,

minimum of phase) or a saddle point (corresponding to a saddle points of phase). Phase

singularities are also associated with sinks of ∇ρ, since they are zeros of the nonnegative

amplitude ρ. There are also local maxima and saddle points of ρ (sources and saddles

of ∇ρ); in general, the critical points of phase and amplitude are independent. Critical

points of phase shall be considered further in the next chapter.

Related to vector singularities are singularities of line fields, that is fields of undirected

flow lines (‘headless vectors’ [Mer79] or ‘ridge systems’ [Pen79]). Whereas vectors are only

invariant with respect to a rotation by 2π, headless vectors is invariant with respect to a

rotation by π. These fields are used to describe (in the continuum limit) nematic liquid
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a b c

Figure 1.4: The three types of planar line field singularity with index ±1/2 : (a) star; (b)

lemon; (c) monstar. (Figure courtesy of Michael Berry.)

crystals (modelled by long ellipses) confined to a plane, and the direction (modulo π) in

which the molecule points is called the director, and, as above, the angle of the director is

described by the angle field θ = θ(R), where θ is only defined mod π. Director fields can

also have singularities, with index defined as for vectors by equation (1.2.7), only now,

since θ is the same as θ + π, the director rotates by an integer number of half-turns; the

simplest director singularities have index ±1/2, and there are three distinct morphological

types. They were discovered mathematically first by Darboux [Dar96] in the line fields of

principal curvature of surfaces, and are depicted in figure (1.4). In this context, they are

called umbilic points.

We shall follow Berry and Hannay [BH77] in calling these three singularities lemon,

star and monstar. The lemon (L) is the most familiar singularity of line fields, being

called a disclination (originally disinclination) in liquid crystal theory [Fra58] (the pattern

is also called a ‘loop’ by [Pen79]). It has index +1/2, and has one straight line ending

on the singularity. The star (S), by contrast, has index −1/2 and three lines ending on

the singularity (it is called a ‘triradius’ by [Pen79]). The monstar (M) shares properties

of both the lemon and star (hence the name (le)monstar), having index +1/2 but three

locally straight lines meeting at the singular point.

These singularities shall play a very important part in the consideration of ellipse fields

(usually the polarization ellipse in an electromagnetic vector field). In these fields (in two

dimensions), there is an ellipse defined at each point, with varying orientation of major

semiaxis (playing the role of the director), and eccentricity (size also can vary, but this

is not important provided the ellipse does not vanish). However, when the eccentricity is

0, the ellipse is circular, and the ellipse orientation cannot be uniquely defined (for more
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a
 b
 c


Figure 1.5: The three types of C point singularity in ellipse fields with index ±1/2 : (a)

star; (b) lemon; (c) monstar. The patterns are computed using (4.2.11) with b = ±1 for

lemon/star, b = 3 for monstar.

details about ellipses and their geometry, see appendix A). Such points are called C points

(circular points), and were first discussed in polarization fields by Nye [Nye83a], and the

three types (lemon, star, monstar) are shown in ellipse fields in figure (1.5).

The singularities of lines of principal curvature considered by Darboux, are naturally

described in terms of ellipses, as the Gauss curvature ellipse (with major axis in the

direction of major curvature, the minor axis in the direction of minor curvature). For a real

function f(R), the lines of principal curvature are the eigenvectors of the hessian matrix

∂ijf, with principal curvatures the eigenvalues, and umbilic points occur at degeneracies

of this matrix.

1.3 Structural stability, codimension and catastrophe

One of the main reasons for studying singularities in waves is their ubiquity: they are

structurally stable features of fields, and may be found in rather general wavefields (such

as random waves), even when those fields are perturbed. Structural stability is often

found in theories where symmetry does not play a role, and the best example (from

which much of our terminology is drawn) is catastrophe theory [Arn86, PS78] and its

application to geometrical and wave optics [Ber80, BU80, Nye99]. The concept of a general

wavefield (to be made more precise in the following) is central to most of the work in

this thesis, and is well exemplified by the random scalar wavefields of chapter 3 and

vector wavefields of chapter 4. Chapter 4 of [PS78] is particularly relevant to the present

discussion, complementing the descriptive account here with appropriate mathematical
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terminology. An analysis of dislocations using catastrophe theory may be found in [Wri79].

In ray optics, a perfect point focus of a lens is not structurally stable, and if the lens

is deformed slightly, the point explodes into a more complicated light pattern (a caustic),

more or less dismissed until relatively recently as merely aberration. The unfolded forms

(folds, cusps and the like) are themselves stable under further small perturbations, and

are mathematically completely classified [PS78].

Zero points of complex fields in two dimensions (and lines in three) are similarly struc-

turally stable; if a complex constant c is added to the field (1.2.3), the position of the zero

moves to (x, y) = −(Re c, Im c), but the zero does not vanish. This occurs similarly with

the vector and line field singularities; under small changes, they almost always persist

(excluding the possibility of annihilation between opposite charges/indices).

An important concept related to structural stability is genericity, which is another

property possesses by our singularities: they occur naturally in fields, without further

specific requirements. A related idea is that of codimension; the dimension of the singular

locus is the dimension of the space (called the control space in catastrophe theory) minus

the codimension of the singularity, which is two in the case of phase singularities (in the

plane, 2 − 2 = 0, a point singularity; in space, 3 − 2 = 1, a line singularity). Morpho-

logical objects are often of a codimensional rather than a dimensional nature since the

codimension conditions (such as ξ = 0, η = 0) are insensitive to the number of parameters

specifying the control space. An example of a codimensional object from [PS78] is that of

the border between two countries, which has codimension 1: on a two-dimensional map,

the border is a line, but in three dimensions, one imagines it as a surface rising vertically

from the ground (through which one passes even in an aeroplane).

The codimension of a phenomenon is computed from the number of independent ho-

mogeneous conditions required for it to occur. In the case of a phase singularity, ψ = 0

requires the real and imaginary parts ξ, η each to be zero; the zero contours of these func-

tions are codimension 1 objects; in general circumstances, a real function in two dimensions

vanishes along a line, in three dimensions on a surface. For both ξ = 0, η = 0 to be sat-

isfied, the two zero contours must intersect, which happens along a line (mathematically,

the contours correspond to manifolds, which are said to be transverse).

The zeros of real vector fields have a codimension equal to the dimension of the vectors;

their conditions are that each of the components of the vector is zero. For vector fields, the

dimension of whose vectors is equal to the dimension of the configuration space, the zeros
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are always points. This shows why care must be taken in computing the codimension

of a particular phenomenon: a zero of a real n-dimensional vector v is codimension n

(corresponding to the n equations vi = 0 for i = 1, . . . , n), rather than codimension 1,

which would appear to be the condition that the pythagorean length of the vector |v| be

zero. In fact, this one condition is equivalent to the n components vanishing, since

|v|2 = v2
1 + · · ·+ v2

n, (1.3.1)

which can only be zero if each of the n components vi vanish. Codimension is computed

from a smooth parameterisation of the object (the vector or scalar), in this case a cartesian

decomposition with respect to a certain basis. The polar parameterisation of a vector is

not smooth (when the length of the vector is zero, the polar angles are not defined), and is

not appropriate for computing codimension (at least, in the vicinity of the problem point,

as in the vector example). Since it is frequently these singularities of natural geometric

parameterisations of objects that we are considering, we need to take particular care.

Another important example is in the case of polarization fields in two dimensions

(as shall be discussed in detail in chapter 4). The field is described by a two-dimensional

complex vector E, which is smoothly parameterised by four real functions, the components

of its real and imaginary parts with respect to some arbitrary, fixed basis. Geometrically,

it represents an ellipse, which is traced out by the end of the vector ReE exp(−iχ) as χ

varies from 0 to 2π. The ellipse is described by four geometric variables (which can be

found from the components of E : its size, phase (position on the ellipse when χ = 0),

angle of the major semiaxis (with respect to a fixed direction), and the ellipse eccentricity

ε (a detailed description of the geometry of ellipses may be found in appendix A). The

ellipse field is singular (as in the previous section) when the ellipse is circular, since the

major semiaxis is not defined, so the ellipse angle does not exist, occurring when ε = 0.

Although this is only one condition, points of circularity (C points) are codimension two,

as implied previously and to be shown later; moreover, the codimension of loci where

the ellipse is linear is 1 (on L lines), although it is similarly a single condition on the

eccentricity (ε = 1).

Generic features are often missed in concrete examples of physical phenomena, where,

for mathematical or experimental convenience, the most symmetric configuration of appa-

ratus is chosen (as in the example of a point focus above). However, generic features can

most frequently be found when there are no manifest patterns imposed on the fields (the
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dislocations in a sound field are expected to be generic whether the sound is background

noise, or from a full orchestra playing a Beethoven symphony), and random waves, used

to study the behaviour of singularities in chapter 3, are a good example of fields with the

necessary lack of overall symmetry. The field structure is extremely complicated even if

only a scalar field; for tensor fields, it is difficult even to visualise. However, the existence

and morphology of the singularities provides a natural starting point for the description

of these fields, and the singularities organise the structure of the parameter with respect

to which they are singular; for instance, the phase structure of fields may be guessed from

a knowledge merely of the location of the phase singularities. This is seen to be one of the

major motivating factors for studying topological singularities in waves.

Although singularities are generic in random fields, locally, they themselves are highly

symmetric, as seen by the local forms described in the previous section (saddles, sources,

sinks or circulations for zeros in two-dimensional real vector fields, lemons, stars or mon-

stars for C points). This local nature is important, and chapter 2 is devoted to elucidating

this structure for phase singularities in two and three dimensions.

The connection between singularities and catastrophes in waves runs deeper than sim-

ply an analogy of mathematical description: dislocations play an important role in the

structure of diffraction catastrophes [Ber91b, Ber92, Nye99, Wri77, BNW79], and are an-

other good place to look for the generic behaviour of dislocations (although this is not

investigated here). Berry [Ber94a, Ber98] also raises an interesting point to do with the

nature of singularities in physics (optics, at least); in cases of waves where wavelength is

small, but not vanishingly so, geometrical optics (where wavelength is nothing, and the

waves are rays) is not sufficient, particularly at the caustics, where the geometrical inten-

sity ought to be infinite, but is blurred out by interference, a feature of the wave nature

of the light; the singularity is described by the two theories on either side of the physical

limit being taken. He conjectures that a similar role might be played by dislocations,

which are the singularities of wave optics; since they are zeros of the wave intensity, they

could be places where photonic fluctuation may be detected (due to quantum optics, the

next theory in the hierarchy describing light at different scales). Unfortunately, this very

interesting question will not be investigated here.
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1.4 Geometric phases and topological defects

Other than catastrophe theory, the theory of topological singularities in wave fields has

obvious connections with two other theories in physics, those of topological defects in

ordered media, and geometric phases.

The theory of topological defects is a particularly successful descriptive application of

algebraic topology to problems in condensed matter (see [Mer79] for an excellent review).

Normally, a condensed matter system comprises of a configuration (control) space, like two

or three dimensional real space, which parameterises an order parameter, a mathematical

object residing in a certain topological space (such as the complex plane). We have already

seen this in the case of liquid crystals, which in the continuum limit are described by the

orientations of ellipses in two dimensions, or ellipsoids in three approximating the shape

of the liquid crystal molecule. These order parameter fields are geometrically analogous

to the wave fields which are our concern here, although their mathematical nature (what

equation the order parameter satisfies with respect to the control parameters), and physical

nature (what the order parameter actually describes) may be quite different in the two

cases.

Mathematically, the possible defects of the ordered medium are identified using the

fundamental group of the order parameter as a topological space. The fundamental group

is the group corresponding to closed paths (embeddings of the circle S1) in the order

parameter space, identified by continuous transformation (homotopy), with composition

given by the natural join of the two loops (via base-point homotopies), and is abelian

(commutative). The fundamental group of the circle (taking phase, or polar angle of a

real vector in the plane) is the group of (signed) integers Z, the winding numbers of the

circle corresponding to the topological charge of the phase singularity or Poincaré index

of the vector field singularity. Note that it is important what the order parameter is that

one chooses; if instead of the polar angle, the entire space R2 of planar vectors was chosen,

there are no defects. Once again, the defects, as singularities, appear in the geometric

parameters one chooses.

Examples of ordered media with a complex scalar order parameter are superfluid

helium-4, or a singlet superconductor. The zeros of the superfluid helium order param-

eter are lines in space, called vortices, and their quantisation is well understood [TT90].

Topologically, dislocations as phase singularities are descriptively identical to superfluid
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vortices, and many of the properties of phase singularities described here (particularly in

chapters 2 and 5), such as the reconnection of crossing vortex filaments, applies to defects

in appropriate media.

The topological description becomes important when the topology of the order param-

eter space is more complicated. For instance, the space of possible orientations of a three-

dimensional (nonsymmetrical) object is the space of three-dimensional rotations SO(3),

which is topologically identical to the three-dimensional projective plane, with fundamen-

tal group the two element group; this is a topological account of the fact that (tethered)

rotations by 2π are not identified, but rotations by 4π are [Alt86, Fra97, Han98a]. This

implies that defects in media with this order parameter (such as a field of orientations of

symmetry-free molecules) can only have an index of +1, and if two are combined, they

annihilate.

This shows a limitation of the topological defect theory when the order parameter is

an object derived from the system (like orientation angles), at least for singularities in

waves: the fundamental group description of the oriented ellipses in three dimensional

polarization fields (as defined in chapter 4) suggests that two C lines, each of index 1/2,

could combine to form an index 1 object, suggested by the topology to be an L line. This

does not seem to be the case, for reasons deeper than index alone. Topological reasoning

alone is not sufficient to analyse singularities in waves.

Geometric phases have a lot in common with phase and polarization singularities

[Ber91a, Ber91b, Nye91]. If the phase in a field is only defined up to a phase differ-

ence between neighbouring points, as in a quantum mechanical wavefunction [Dir31], then

around a loop in control space, there is a net phase difference depending only on the

geometry the loop and the field around (through) it [Ber84, SW89]. The control space

may be mathematically rather complicated, although in simple cases, it may be two or

three dimensional real space (the importance is in the phase connection between neigh-

bouring points). Since, apart from the singularities, phase is well-defined everywhere in

our wavefields, the only phase ambiguity between neighbouring points is at phase singular-

ities (zeros), which topologically have codimension 2 from the genericity arguments of the

previous section. Therefore, the quantised phase around a phase singularity is a special

case of a topological (rather than geometric) phase.

It appears that Dirac [Dir31] was one of the first to appreciate the topological phase

nature, when he suggested the quantisation of phase around nodal lines in quantum me-
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chanical wavefunctions (and the resulting possibility of magnetic monopoles), although he

missed the more general geometric phase possibilities. The Aharonov-Bohm effect [AB59]

is another example of a topological phase, where the organisation of the vector potential

into a circulation pattern around an infinitely thin, infinitely long solenoid giving rise to

interference between two electron beams sent around each side of the solenoid appears

to be a violation of locality (since the magnetic field is restricted to being within the

solenoid). Alternatively, it is another example of the phase organising effect of a singu-

larity (the magnetic vector potential is a circulation, the phase given by a line integral

around it), and the presence of a phase singularity along the flux line was confirmed by

[BCL+80].

Another anticipation of the geometric phase was made by Pancharatnam [Pan56],

who found the phase difference between two (two-dimensional) polarization states was

dependent on the (closed) path of polarizations on the Poincaré sphere (see section A.4).

The geometric connection of this Pancharatnam phase difference is the natural definition of

propagation in three dimensional polarization fields [NH87, Nye91], and shall be shown, in

fact, to be the expectation value of the local momentum operator in such fields (section 4.4

[BD01c]). It also provides an illustration of the difference between topological singularities

and geometric phases, for polarization in planar paraxial fields: the Pancharatnam phase

is calculated from the solid angle of the path on the Poincaré sphere corresponding to the

sequence of polarizations the state passes through; the C point index counts the number

of times the north pole is encircled by the path.

1.5 Waves, wavefields and wave equations

The fields with which we are concerned shall usually be solutions of a wave equation,

and in this section we briefly review the relevant types of wave equation and solution,

beginning with scalar waves. The wave equation usually imagined is the time-dependent

(D’Alembert) wave equation

∇2ψ(r, t) = 1/c2 ∂2
t ψ(r, t), (1.5.1)

where r is position in two or three dimensions, and c is the wave speed. All of the waves

we shall use are in free space, and no interactions, or boundary conditions of any kind

are considered (so there are no evanescent waves [Ber94b]). We also ignore the technical
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problems of whether the functional solutions of (1.5.1) and other wave equations are

integrable (or square-integrable), and shall assume that Fourier transforms exist where

necessary.

If the (complex) solution ψ to (1.5.1) is separable, the general solution of the time-

dependent part is exp(−iωt) (ignoring, for convenience, the possibility exp(iωt)) and the

space-dependent part ψH satisfies the Helmholtz equation,

∇2ψH + k2ψH = 0, (1.5.2)

where the real wavenumber k and angular frequency ω are of course related to the wave

speed c by c2 = ω2/k2. Such solutions are called monochromatic: there is only one fre-

quency component, and the pattern is periodic in time. Moreover, in monochromatic

waves, zeros in the solution ψ = ψH exp(−iωt) of the D’Alembert equation (1.5.1) are ex-

actly the zeros of the Helmholtz solution ψH, because the time dependent part exp(−iωt)

can never be zero.

The simplest, and most important, solution to the time-dependent wave equation (and

also the Helmholtz equation, without t-dependence) is the plane wave solution

ψ = a exp(i(k · r− ωt)) (1.5.3)

where a is some complex constant (the modulus |a| being the plane wave amplitude, the

argument being the phase). ω is the angular frequency, and k is the wavevector, which

can be in any direction, provided its squared length k2 = ω2/c2. It represents a plane

wave travelling in the k-direction, in either two or three dimensional space. There are no

singularities at all in the plane wave (1.5.3), and most authors who only identify plane

wave solutions miss the singular wave structure that is present in superpositions of plane

waves.

Fourier’s theorem says that general solutions of the D’Alembert equation are, in fact,

(usually infinite) superpositions of plane waves (1.5.3), labelled by their wavevectors k,

and the Fourier transform of ψ gives the complex wave amplitude a for the appropriate k

labels. We shall usually write the Fourier decomposition as a sum of plane waves (labelled

by the wavevector k, as in (3.1.1), although it is in general an integral). Of course, general

solutions of the Helmholtz equation (1.5.2) are also superpositions of time independent

plane waves (of the form (1.5.3) with ω = 0).

The wavefields in which phase singularities are to be found are general superpositions of

plane waves. Their morphological nature is a feature of the particular plane waves added,
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and a different choice of complex amplitudes ak leads to very different fields, with totally

different singularity structures. Structural stability, of course, implies that a small change

does not remove the singularities, but possibly moves them. The nature of singularities

in isotropic random superpositions of plane waves is the remit of chapter 3; the statistical

properties of the singularities are found to be dependent only on the spectrum of the

waves, that is, the distribution of the (real) square amplitudes with k = |k|.
Other wave equations, such as the time-independent Schrödinger equation in quantum

mechanics, also have Fourier components satisfying the Helmholtz equation; eigenfunctions

in quantum billiards [Ber77] are an example of this (the boundary conditions in this case

make the solution nontrivial).

Any plane section of a three-dimensional spatial wavefield is also obviously a wavefield,

although its spectral decomposition will appear to be different from the true spatial spec-

trum of the wave. An important example of this is in the case of paraxial waves, for which

the wavevectors of a three dimensional superposition are all in the z-direction (say), and,

for simplicity, the overall wave is monochromatic. If k ≈ kz, and ψ̃ = ψ exp(−ikzz) (ψ̃ in

chapter 5 is called a beam solution), then

∇2ψ̃ + (k2 − k2
z)ψ̃ + 2ikz∂zψ̃ = 0, (1.5.4)

and, if |∂zzψ̃| ¿ 2|kz∂zψ̃|, approximating k with kz (the paraxial approximation), then

ψ̃ = ψP satisfies the paraxial wave equation

∇2
⊥ψP + 2ik∂zψP = 0, (1.5.5)

where ∇2
⊥ = ∂xx + ∂yy (the transverse laplacian). Most solutions of laser beams, because

of their definite propagation direction, are considered to satisfy (1.5.5) [MW95]. The

relation between paraxial and nonparaxial equations and their solutions is discussed in

section 5.7; we observe here that the parabolic equation (1.5.5) is formally equivalent to the

time-dependent Schrödinger equation in two spatial dimensions. Its Fourier components

(in x, y) are two-dimensional plane waves, with transverse wavevectors K = (kx, ky) of

variable length although the original three dimensional wave was monochromatic. Waves

of this type are considered in chapter 3.

The fact that the wavefield ψ is complex is of crucial importance mathematically to

us, since the phase singularities are essentially complex objects. How is the complexness

explained physically? The answer is different, depending on the particular physical situa-

tion of the wave. If time-reversal symmetry is broken in the wave (such as in the tides, due
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to the rotation of the earth [Ber01a], in quantum mechanics by a magnetic field [RB85],

or in living systems [Win80]), the waves are naturally complex (even if the real part is the

physical disturbance), and only the phase singularities are always zero (time-invariant).

This is also the case for monochromatic waves; especially at the high frequencies of op-

tics, only the time-invariant zeros can be easily measured. Sometimes the waves in the

general superposition are all real (such as the case with billiard eigenfunctions; in the

absence of a magnetic field, they are time-reversal symmetric and real), but their complex

superpositions are still generic, and phase singularities may be found in them.

For other waves (such as nonmonochromatic, physically real solutions of (1.5.1)), more

elaborate methods are necessary to construct a complex wave. The usual one used (and

used here) is the so called complex analytic signal representation of the field, first intro-

duced by Gabor [Gab46]. Such fields must have nontrivial time dependence, which is

used in the construction. We wish to complexify the real field ξ(t) to a complex field

ψ(t) = ξ(t) + iη(t); clearly any function η, could be used, but is there a natural choice?

The answer is yes: since ξ is real, its Fourier transform ξ̂ must be symmetric in ω, and for

every positive frequency component there is also a negative one. No information is lost

if these are suppressed; the complex analytic signal ψ is the inverse Fourier transform of

twice the positive frequency parts of ξ̂, ie

ψ(t) =
1
2π

∫
dω(1 + signω)ξ̂(ω) exp(−iωt). (1.5.6)

The imaginary part η is now readily identified as the Hilbert transform [Tit48] of ξ,

η(t) =
1
π

∫
−dt′

ξ(t′)
t′ − t

, (1.5.7)

where
∫− represents the Cauchy principal value integral with pole at t′ = t. If t is replaced

by a complex variable, the function (1.5.6) is analytic (for analytic ξ), hence the term

complex analytic signal.

The complex analytic signal obviously reduces to the earlier monochromatic case if ξ is

a superposition of cosines; suppressing the negative frequency component gives a single δ-

function, Fourier represented by an exponential exp(iωt), and the Hilbert transform (1.5.7)

of cosωt is sin ωt. The complex analytic signal is also useful in quantum optics, where the

complex ψ is second quantised to the field annihilation operator ψ̂, and for narrow-band

signals defines an envelope (the amplitude ρ (1.2.1)) with minimal fluctuations [Man67]

(and probably, minimal number of phase singularities).
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Recently, a two-dimensional spatial generalisation of the Hilbert transform (1.5.7) has

been proposed [LBO01, Lar01], where the sign function is replaced by the function (1.2.3),

with a phase singularity at the origin. This provides a way to complexify spatial fields

independently of their time components, but this has yet to be applied to fields containing

phase singularities.

All of the above comments generalise directly to vector or tensor fields; the compo-

nents, in three dimensions, of vector or tensor waves satisfy an appropriate wave equation.

Transverseness (that is, the vector or tensor field is divergenceless, see section 6.4 for a

general discussion), equivalent to requiring that the wave disturbance of each plane wave

component is orthogonal to its wavevector, is always imposed on the tensor or vector fields

we study here. Relativistically, this corresponds to the fact that all fields we study corre-

spond to massless particles [Wig39, FMW99], since the vector and tensor wavefields satisfy

the time-dependent wave equation (1.5.1) [BW48]. This implies that paraxial vector waves

are confined to the (x, y) plane, as is assumed in chapter 4.

1.6 A brief history of phase singularities

It is hardly surprising that phase singularities in waves were found shortly after wave inter-

ference began to be studied intensively (following Young’s observation that light interferes,

so is a wave [Par97]). Since then they have been rediscovered several times in different

physical contexts, before being cast in a general wave framework by Nye and Berry in

1974 [NB74]. This has been reviewed before, (see for example [Ber81, Ber01a]). More

recent developments, where relevant to this work, are cited in the appropriate place, and

also in [Nye99]. The place of topological singularities in waves in the general framework

of Bristol geometric physics has been discussed by Berry [Ber91a].

It appears that the first phase singularities in waves to be discovered physically are the

so-called amphidromic points in the tides. Although the tidal wave equations, governing

the height of water at a given position and time, due to Newton and Laplace, were well-

known at the beginning of the nineteenth century [Car99], applying the theory to the real

tides, for example in the North Sea, is an analytically impossible problem, due to the

rather complicated coastal boundary conditions. Whewell [Whe33] wished to understand

the tides empirically by computing a “map of cotidal lines”, showing the various equiphase

lines of the complex wave amplitude (complex due to the broken time-reversal symmetry
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of the rotation of the earth, although, of course, periodic).

He found [Whe36] that, for the pattern of lines in the North Sea,

we may best combine all the facts into a consistent scheme, by dividing this

ocean [the North Sea] into two rotatory systems of tide waves, one occupying

[the region] from Norfolk and Holland to Norway; and the other the space ..

between the Netherlands and England... The cotidal lines may be supposed to

revolve around a point ... where there is no tide; for it is clear that at a point

where all the cotidal lines meet, it is high water equally at all hours, that is,

the tide vanishes... [The southern one] resembles a watch or clock, which is

kept in continual motion by a sustaining force applied at intervals.2

What he is describing is clearly a phase singularity, and he identifies many of the features

discussed in section 1.2: all the equiphase lines meet at the singularity, it is a (perpetual)

node of the wave, the pattern rotates around the singularity. The phase singularity between

Norfolk and the Netherlands, adapted from Whewell’s original cotidal line map, is given

in figure (1.6). Initially Whewell’s interpretation of the data was contested by Airy, but

soon became widely accepted, and identification of the amphidromic points is a major

part of the theory of tides [Car99].

The next appearance of phase singularities in waves seems to have been in Dirac’s

landmark paper [Dir31], in which he not only observes that a (complex three-dimensional)

quantum wavefunction must have nodal lines along which the phase is singular, but uses

Stokes’ theorem to show that the string must end on a magnetic monopole-like object. As

with the Aharonov-Bohm effect, this is done by realising that the electric vector potential

A = ~c/e∇χ in the Schrödinger equation for a charged particle with charge e. If the line

of phase singularity (‘Dirac string’) ends (only theoretically possible because the wave-

function phase can only be defined between neighbouring points), around a vanishingly

small path C enclosing the phase singularity of nonzero strength s,

2πs =
∮

C
dr · ∇χ =

e

~c

∮

C
dr ·A

=
e

~c

∫

S
d2u∇∧A =

e

~c

∫

S
d2uH

= 4πµ
e

~c
(1.6.1)

2Quotation from [Whe36], pages 298-299.
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Figure 1.6: Showing the amphidromic point (phase singularity) in the tide in the North

Sea between Norfolk and Holland, adapted from [Whe36]. The numbers on the cotidal

lines indicate the phase, that is, the hour at which that line is the high tide. (Figure

courtesy of Michael Berry.)
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where Stokes’ theorem has been applied in the third line over some surface S with boundary

C enclosing the string end point, and H is the magnetic field, with a nonzero flux µ through

S. The product of electric and magnetic charge is therefore quantised topologically, in units

of ~c/2.

Dirac himself realised that there is a problem with the quantum phase singularities

under a (noncontinuous) gauge transformation: the phase singularity can be moved, but

the node of amplitude cannot (since it is observable). This problem was later resolved by

Wu and Yang [WY75], but only by generalising the notion of magnetic vector potential

using fibre bundles, and removing the phase singularity altogether. They also investigate

what monopole-like objects there are in gauge fields with symmetries other than U(1)

(phase), concluding that the possible monopole charges are those of the fundamental

group of the topological gauge group (in a similar way to defects of the order parameter,

as discussed in section 1.4). In particular, there are no monopoles in SU(2)-symmetric

fields; this is a version of the fact, discussed in chapter 6, that there are no topological

singularities in wavefunctions of particles of spin 1/2 (such as neutrinos).

In the 1970s, there was renewed interest in phase singularities in waves. In quantum

mechanical wavefunctions, they were studied by Hirschfelder and collaborators [HCP75,

HGB74, HT76a, HT76b], in which the singularities are identified with circulations of the

current (discussed here in section 2.2). Riess [Rie70a, Rie70b, Rie87] has investigated

the nodal structure of multiparticle solutions of the Schrödinger equation. Also, Winfree

[Win80] worked on phase singularities in biological systems where cyclic rhythms are

important. The starting point for the work described here was that of Nye and Berry

[NB74], who noticed the analogy between nodal points and lines and crystal dislocations.3

1.7 A brief history of polarization singularities

Although polarization singularities in wavefields are not as ubiquitous as phase singular-

ities (fields with a vector nature are more difficult to come by, and it is easier to study

a scalar component of a polarization field than the whole field), the first examples of

polarization singularities were discovered before phase singularities.

3Michael Berry informs me that this paper was initially rejected; one referee claimed that the ideas were

too simple. They are indeed simple, but we hope that this thesis shows they sometimes have surprising

subtleties too.
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Figure 1.7: The polarization pattern around the sun (or antisun), drawn as a dotted circle.

The polarization at a point is tangent to the line at that point; there are two lemon-like

singularities, one above and one below the sun/antisun.

Shortly after Malus discovered the polarizable nature of natural light [Bro98], Arago

discovered (in addition to the laws concerning interference of polarized light) that sunlight

in the sky is naturally polarized, but there is a point in the polarization pattern of sunlight

in the sky of no polarization; Babinet and Brewster later found three more [Bre47, Lee98,

GHMRW01]. The nonzero polarization of skylight is due to scattering, and is linear in the

direction perpendicular to the plane of the incident and scattered ray, and the polarization

in a given direction is the sum of all contributions from the different scattered rays finishing

in that direction, and are only partially polarized (states are described by a point within

the Poincaré sphere (appendix A)); the polarization state is therefore restricted to the

equatorial disk of the Poincaré sphere. The four neutral points are all of lemon type, and

all lie on the great circle in the sky including the zenith and the sun. The four points are

arranged near the position of the sun and the antisolar point (or antisun, ie the point in

the sky antipodal to the sun), and the pattern of linear polarizations around these two

points is shown schematically in figure (1.7), and experimentally measured polarization

maps may be found in [HGP98].

These singularities may be easily understood from a perturbation argument. The

strongest contribution is from rays that are only scattered once, the polarization pattern
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from this clearly being a series of concentric circles around the sun/antisun (rather than

confocal ellipses, as in the figure), with a point of no polarization in the (anti)solar direc-

tion. As we have seen, a singularity in a pattern of lines generically has index ±1/2, rather

than 1 (as in this case), and this unstable configuration is perturbed by secondary scatter.

Although the secondary scatter is weaker, it is sufficient to perturb this pattern, and the

direction of polarization from rays that are scattered in the atmosphere twice, in the solar

direction, is vertical, since more scattering takes place in the directions to the left or right

of the (anti)solar point rather than above or below it. More detailed calculations of this

phenomenon may be found in [Cha50, vdH49].

Although Rayleigh [Ray71] described the phenomenon of polarization in the sky, he

neglected to mention the polarization neutral points in the sky, and these appear to have

been more or less forgotten by non-atmospheric physicists for a while. In the 1970s,

however, a group of astronomers (including Hannay) discovered polarization neutral points

in patterns of radiation from stars [SHH77], where only the star and lemon were identified,

with the monstar coming later [BH77]. Polarization singularities of the types described

here were found to occur generally in paraxial polarization fields by [Nye83a], and in three

dimensional fields by [NH87].

The tides also provide a two dimensional ellipse field - that of the tidal current, whose

vector traces out an ellipse in time [Car99]. Berry [Ber01a] has recently conjectured the

positions of tidal polarization singularities in the North Sea.

1.8 Outline of thesis

The layout of the thesis is as follows.

The second chapter is concerned with questions of dislocation geometry and morphol-

ogy, in both two and three dimensions. The topology of dislocations on contour lines

(including the so-called sign rule) is described, and the interrelation between phase singu-

larities and phase critical points, put on an equal footing as zeros of the field current, is

discussed. The local structure and motion of dislocations are also investigated. In three

dimensions, the reconnection of dislocation lines is described, and general expressions are

derived for dislocation curvature and torsion, as well the generalisation of the geometric

structures of two-dimensional dislocation points. The chapter concludes with a section

on the geometry of the core structure twisting around the dislocation line, and several
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alternative measures of this are constructed.

The third chapter is wholly statistical, and the model used is an ensemble of isotropic

gaussian random waves, made up from superpositions of plane waves isotropically dis-

tributed in direction, but with random phases. As well as calculating statistical averages

and probability densities of the geometric quantities defined in chapter 2, the charge and

number correlation functions of dislocation points in the plane (or plane section) are cal-

culated and discussed in detail.

The subject of the fourth chapter is polarization singularities in vector waves, whose

structure in two and three dimensions is described, and its relevance to electromagnetic

singularities discussed. Calculations of statistical densities of polarization singularities in

gaussian random vector waves are made.

In the fifth chapter, the topology of closed dislocation loops is used to construct a

family of monochromatic waves, in which the dislocation lines are knotted and linked.

Explicit constructions of the trefoil knot and Hopf link are derived in experimentally

realisable Bessel and Laguerre-Gauss wave beams. The creation and dissolution of knots

is investigated, using the reconnection mechanism described in the second chapter.

The final chapter is a discussion on how the polarization singularities of vector waves

generalise to fields of spinors, using the Majorana sphere, and the resulting structures are

similar, but more complicated geometrically in the three-dimensional case. The particular

case of fields of gravitational waves, which are described by a traceless complex symmetric

matrix at each point, are considered briefly.

There is one appendix, which describes some well-known (and some less well-known)

aspects of ellipse geometry; ellipses play a central role in almost all of the material.

There is no overall conclusions section; the outline above is an adequate summary of the

work presented in this thesis, and each chapter concludes with a summarising discussion,

including suggestions for future investigation.

The layout, as described above, may appear somewhat haphazard; phase singularities

are returned to in chapter 5 just after polarization singularities are introduced, which

investigated further in chapter 6. This is (roughly) the order in which the work reported

here was done, and there are conceptual threads relating the different chapters, although

each chapter is self contained. Most of the work has already been published, in [BD00,

BD01c, Den01a, Den01b, BD01a, BD01b], and the reader is referred to these for further

details.
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1.9 Notation conventions

We hope that the notation used in this thesis is sufficiently unremarkable that confusion

will not ensue. Due to the range of physics and mathematics discussed, it is impossible

to avoid certain notational clashes (such as ω, representing an angular frequency and

also vorticity, or ε representing variously ellipse eccentricity, random wave amplitude, the

antisymmetric symbol or a small perturbation parameter). The appropriate meaning is

(hopefully) clear from the context.

Use is made of the three standard coordinate systems in three-dimensional space:

cartesian coordinates (x, y, z), cylindrical coordinates (R, φ, z), and spherical coordinates

(R, θ, φ). φ is used to represent the azimuthal angle, and the polar angle in two dimensions.

Vectors in the plane are usually denoted by uppercase letters (such as the position vector

R), whereas vectors in three dimensions are lowercase (as with the three dimensional

position vector r). It is not always possible to adhere to these conventions; unit basis

vectors (such as ex, ey) are always lowercase, and the electric field vector E is always

uppercase. The modulus of a (real) vector is usually given the same symbol, but in italic

rather than bold (eg |p| ≡ p). The symbol ∧ is used for the vector product; the symbol ×
is used to denote a multiplication broken over two lines (as in the third line of equation

(2.8.7)).

Partial derivatives of scalars are usually written as suffixes (eg ∂ψ/∂x ≡ ψx), and

partial derivatives of vector components as suffixes preceded by a comma (eg ∂vi/∂x ≡
vi,x). Use is made of the summation convention (ie summing over repeated indices), as

usually indicated in the text.

When integrals do not have limits, it is understood that they run from −∞ to ∞, and

never represent an indefinite integral.
∫− represents a Cauchy principal value integral, and

the position of the pole will always be made specific.

Gauge transformations usually refer to a global phase transformation (such as ψ →
ψ exp(iφ0), with φ0 constant); the context is clear when a different type of gauge trans-

formation is appropriate. The spinor notation used in chapter 6 is explained in section

6.1.



30 Introduction: What is a singularity?



Chapter 2

Phase singularity morphology and

geometry

‘We expect to find a hole in the theory here ... a naked singularity would

be very messy. The mathematics is inconsistent - like dividing zero by zero.’

Larry Niven, Singularities Make Me Nervous, in Convergent Series, Macdonald Futura,

1980

In this chapter we investigate the detailed mathematical structure of phase singular-

ities, with emphasis on the physical features of generic dislocations in scalar waves. The

first four sections deal with singular points in two dimensional scalar fields, the others the

geometry and topology of singular lines in three dimensions. As well as setting the scene

mathematically, this chapter is related to the rest of the thesis in the following ways: in

chapter 3 averages of quantities calculated here are computed in isotropic random waves,

and the geometry and topology of dislocation lines explained in this chapter are used in

the knotting constructions of chapter 5. The other chapters are concerned with the vector

theory (chapter 4) and tensor theory (chapter 6) of singularities, which are best under-

stood with the help of scalar singularities. Examples of waves with dislocations exhibiting

the properties discussed are given where appropriate. Much of the earlier material in

this chapter is well-known dislocation theory, and some of the original results have been

published in [BD00, BD01a, BD01b, Den01a, Den01b].

31
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2.1 Dislocation strength and level crossing topology in two

dimensions

As we have seen, phase singularities in complex scalar wavefields ψ occur at the zeros

ψ = 0, that is, on the crossings of the zero contours (level sets) of the real and imaginary

parts ξ, η of ψ (equations (1.2.1), (1.2.2)). We have also seen that in order to be a

topological singularity, the phase (argument) χ around a zero must change by a signed

nonzero integer multiple of 2π, which is called the topological charge (dislocation strength)

s, positive if the phase increases in an anticlockwise sense with respect to a circuit round

the dislocation, negative if clockwise (equation (1.2.4)). Also, although all phase lines

(contours of χ) meet at the singularity, all essential local information can be extracted

from the contours of the real and imaginary parts (and their derivatives).

Although each phase line (mod 2π) ends on a dislocation, each of the real and imaginary

zero contours (which follow the phases 0 and π/2, mod π) are unaffected by the precise

position of the dislocation on them (this being dependent on the other contour), since the

phase is defined on such a contour only up to a sign (ie mod π), and, as the singularity is

crossed, the phase on the contour changes by π and the direction of the gradients ∇ξ,∇η

switch direction. Phase contours (wavefronts) shall sometimes be used modulo π, and

sometimes modulo 2π, depending on the context, usually mod π. The phase contours

mod π do not end - in two dimensions, they are either extend to infinity or are closed

(generically nonselfintersecting) loops; for a given phase χ, they are the zeros of the real

function

uχ = Reψ exp(−iχ). (2.1.1)

ξ, η are two particular phase contours with phases 0, π/2 respectively, and in fact,

uχ = ξ cosχ + η sinχ. (2.1.2)

This clarifies the requirement that all phase contours cross at a dislocation - since, by

equation (2.1.2) only two distinct contours (for convenience, ξ = 0, η = 0) are required

to cross (the singularity has codimension 2). At a singularity with a absolute value of

strength greater than 1, the phase contours intersect themselves as well as each other, and

the codimension and morphology of high strength dislocations is discussed in section 2.3.

For the rest of this section, we shall only consider singularities of topological charge ±1.
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Changing coordinates so the dislocation is at the origin, ψ can be expanded

ψ = ξxx + ξyy + i(ηxx + ηyy) + . . .

= ∇ξ ·R + i∇η ·R + . . . , (2.1.3)

where derivatives ξx, etc are taken at 0. The neighbourhood of the origin in the (ξ, η)

plane is mapped to the neighbourhood of the singularity in the (x, y) plane by the jacobian

matrix M,

M =


ξx ξy

ηx ηy


 . (2.1.4)

The sign of detM gives the sign of the topological charge (that is, the dislocation strength,

since we assume the singularity is generic); a negative determinant means that M reverses

handedness, so when a circuit is anticlockwise in (ξ, η) space, its image in (x, y) space is

clockwise. For a generic singularity, therefore,

s = sign detM

= sign(ξxηy − ξyηx)

= sign Im∇ψ∗ ∧∇ψ, (2.1.5)

where the final equality expresses s is a form invariant of global choice of phase (gauge-

invariant) [Ber98]; the second equality is the form of s one gets from equation (1.2.4) when

χ is written in terms of ξ, η. The local matrix M is investigated further in section 2.3.

The number of (generic, strength ±1) phase singularities DA in an area A of the

plane can be found by generalising the well-known expression for number of zeros of a

one-dimensional function (see, for example, [Gri87] appendix A), and is [Ber78, BD00]

DA =
∫

A
d2R δ(ξ)δ(η)|ξxηy − ξyηx| (2.1.6)

(the δ-functions pick out the zero contours, and the modulus of the jacobian is the correct

factor in transforming from the origin of the (ξ, η) plane to the (x, y) plane, counting

+1 for each singularity). If the dislocation has a strength of modulus higher than 1, the

first derivatives ∇ξ,∇η are zero and the jacobian disappears. To find the total dislocation

strength sA in area A, each singularity is weighted by its topological charge s = ±1, which

is the sign of the jacobian (2.1.5), giving

sA =
∫

A
d2R δ(ξ)δ(η)(ξxηy − ξyηx). (2.1.7)
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If A is simply-connected with boundary C, equation (1.2.4) can be derived from equation

(2.1.7) by Stokes’ theorem.

The statement that the total topological charge of singularities in an area is given

by the net change in argument around the area is reminiscent of the argument principle

in complex analysis [Bea79] : for a well-behaved meromorphic complex function w(z)

with variable z complex, the difference between the number of zeros and poles in an area

A is equal to the change in argument around the boundary of A. This illustrates the

contrast between ψ as a real analytic map R2 −→ C and w, a complex map C −→ C,

analytic except at poles; for ψ to be analytic requires its real and imaginary parts ξ, η to

be (independently) real analytic, and around a zero, are locally expanded as in equation

(2.1.3). On the other hand, if w has a zero at the origin, it is expanded

w(z) = w′z + . . . (2.1.8)

(w′ is the derivative with respect to z at 0), implying that the analogue of the local matrix

M of (2.1.4) is the single complex number w′. The argument around the zero always

increases anticlockwise, so zeros of w are always of positive strength, and the modulus

of the function grows uniformly with distance from the zero (scaled by |w′|). Expanding

about a (simple) pole at the origin,

w(z) = w′
1
z

+ . . . (2.1.9)

and since 1/z = z∗/|z|2, the argument increases anticlockwise about the pole, analogous

to a negative charged phase singularity. M has two additional degrees of freedom to w′,

related to the local dislocation structure (see section 2.3), which is richer than the structure

of zeros and poles of meromorphic complex functions.

The two sets of zero contours ξ = 0, η = 0 partition the plane into four parts (the

images of the four quadrants of the (ξ, η) plane, with phases in the four quadrants of χ).

All four meet at dislocations, and an illustration of the ξ, η contours with dislocations at

the crossings is given in figure (2.1). The topological fact that has come to be called the

sign principle, first stated explicitly and explored thoroughly by Freund and coworkers

(see, for example, [FS94, Fre97, Fre98b], and references therein) follows immediately, and

can be stated in the following way: dislocation points adjacent on a zero contour of ξ, η (or

more generally, any phase contour after appropriate gauge transformation) have opposite

sign. The sign rule holds because the signs of the gradient of η along a ξ contour at

dislocations adjacent on ξ = 0 are opposite.
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Figure 2.1: Illustrating the sign principle, in a random wavefield: the ξ = 0 contours are

the thick lines, η = 0 the thin lines. Positive strength dislocations are the filled circles,

negative ones are empty circles.
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A given singularity is usually adjacent, on different phase contours, to different singu-

larities, although the sign rule holds for any contour. This implies an overall anticorrelation

in sign [SF94b, SF94a], discussed for random waves in the next chapter. If a phase contour

is closed, there must be an even number of phase singularities, alternating in sign, and the

overall topological charge on that contour is zero, giving an overall topological neutrality

condition: topological charge cannot accumulate on a closed contour loop (this is clear

from figure (2.1)).

The sign rule also illustrates a general and important fact: as external parameters

vary (such as time, or the z axis for a plane section of a three dimensional wave pattern),

singularities are created/annihilated in pairs of opposite strength as a ξ contour crosses an

η contour (this is just happening at the lower left-hand corner of the figure, and is about

to happen to the right of this, along the same ξ contour). This is the first singularity

conservation law of several we shall see at various stages: in reactions, the total topological

charge is conserved. This was, of course, implicit from the beginning, since provided no

singularity crosses the loop C in (1.2.4), the topological charge s enclosed does not change

under continuous variation of parameters.

An example of two adjacent dislocations with opposite signs in an exact solution of

the Helmholtz equation is the modification of the edge dislocation of equation (1.2.5),

discussed by [NB74, Nye99],

ψ = (K(x2 − ax) + iy) exp(iKy), (2.1.10)

with zeros at (0, 0) and (a, 0), the second moving as the real parameter a is varied. Simple

modifications of this wave (replacing y by k(y2−by) in the left hand term) produces exact

solutions of the Helmholtz equations with dislocations that are created/annihilated, as

described in [NB74].

2.2 Current topology and phase critical points

As discussed in section 1.2, the phase χ not only has singularities, but also critical points

where its gradient ∇χ vanishes, which can be saddle points or extrema (maxima/minima).

The (Poincaré) index of such a critical point (as a singularity of ∇χ) is the average of signs

of the eigenvalues of the hessian matrix χαβ (α, β = x, y), and maxima are distinguished

from minima since both eigenvalues of the hessian are negative for a maximum, positive for
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a minimum. Only critical points of index ±1 are considered, since only these are generic;

the hessian is always considered to be nonsingular. The intensity ρ2 can also have critical

points, investigated by [WH82, Fre96], but these are not considered here.

The current associated with ψ is the (two-dimensional) current J (properly current

density), defined

J = Imψ∗∇ψ = ρ2∇χ = ξ∇η − η∇ξ, (2.2.1)

which is a real vector field, analogous to local momentum, satisfying the continuity equa-

tion (see, for example, [LL77]), and is invariant under global phase change. It is the

probability current density if ψ is a quantum mechanical wavefunction (the local expec-

tation value of momentum), and the Poynting vector in scalar theories of light (see, for

instance [APB99]).

The current vorticity ω is defined

ω =
1
2
∇∧ J =

1
2

Im(∇ψ∗ ∧ ψ) = ∇ξ ∧∇η. (2.2.2)

It is properly a 2-form, which can be thought of, in two dimensions, as a real number, or

the z-component of a vector perpendicular to the (x, y) plane (ie ω = ω·ez)). It is invariant

up to a global phase change, and, by the last equality, is equal to detM of equation (2.1.4).

Thus signω is the topological charge of the singularity, and J circulates around the zero in

the sense of its strength (as does ∇χ). Since the current plays an important role in light,

it is more due to circulation of current than phase gradient that dislocations are called

optical vortices. By equation (2.2.1), the current vanishes on a vortex, and does not have

any singularities (it is zero whenever its direction is undefined).

This natural association of a nonsingular real vector field with the scalar field ψ has

therefore connected two topological features: the phase singularities are current vortices.

Taking such a point at the origin and expanding J,

J ≈ (∇ξ ·R)∇η − (∇η ·R)∇ξ

= ω0 ∧R, (2.2.3)

so the current not only circulates in the direction of the topological charge, but the flow

lines are, in fact, locally perfectly circular, however anisotropic the dislocation structure is

([Ber01a], fig (2) shows a particularly striking example of this). Mathematically, the form

for J given by equation (2.2.1) is not completely general; as shown here, the circulations

cannot be elliptical or spiral.
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From equation (2.2.1), the other zeros of current are at the critical points of phase

(where ∇χ = 0), where the fraction

ξ

η
=

ξx

ηx
=

ξy

ηy
(2.2.4)

is generically nonzero and finite.

The conservation of index IP (equation (1.2.7)) places additional restrictions on the

allowed topological reactions between phase singularities: for two singularities (each with

Poincaré index +1) to create/annihilate, not only must they be oppositely charged, but

two saddles (with index −1) must also be present, so, where D± denotes a dislocation of

charge ±1, S a saddle, and ® the relation between reaction input and output,

D+ + D− + 2S ® 0; (2.2.5)

the total topological charge and Poincaré index on each side being 0. This reaction was

studied in detail for waves by [NHH88], who showed that, if the wave near the dislocation

satisfies Laplace’s equation, the four singularities must lie on a rectangle with dislocations

on opposite corners in the creation/annihilation limit. An alternative reaction, mentioned

at the end of appendix A of [NHH88] and investigated more thoroughly by Freund [Fre95,

FK01] is

D+ + D− + S ® M+ + M− + S (2.2.6)

(where M+ denotes a phase maximum, M− a phase minimum); the total index is +1 on

each side, and it seems that this reaction can only take place when a ‘reentrant’ saddle is

present [Fre95]. The conservation of index also holds for intensity critical point fields, and

dislocation creation/annihilation usually involves two intensity saddles, analogous to the

reaction (2.2.5).

Defining the matrix MJ ≡ ∂αJβ, (α, β = x, y), the number of current zeros ZA in area

A is

ZA =
∫

A
d2R δ2(J)| detMJ| (2.2.7)

(replacing Jx, Jy for ξ, η in equation (2.1.6)). Since sign detMJ is the index IP of the

critical point, the total index IA in A is (as with equation (2.1.7))

IA =
∫

A
d2R δ2(J) detMJ. (2.2.8)

By the difference between two squares,

detMJ = detMJsym + detMJasym, (2.2.9)
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where MJsym,MJasym are the symmetric and antisymmetric parts respectively of MJ,

with determinants

detMJsym =
1
2
(∇ · J)2 − 1

2
(ξηxx − ηξxx)2 − 1

2
(ξηyy − ηξyy)2

−(ξηxy − ηξxy)2, (2.2.10)

detMJasym = (ξxηy − ξyηx)2 = ω2. (2.2.11)

MJasym contributes only to the vortices, since MJasym and circulations exchange direction

(topological charge) under a reflection, and detMJsym is zero at the vortex since ξ = η = 0

there. Conversely, MJsym only contributes to the extrema and saddles, being invariant

under reflection, and detMJasym = 0 there by equation (2.2.4). The two kinds of zeros

of J (critical points and phase singularities) can therefore be distinguished in equation

(2.2.7), the number of circulations (the contribution from MJasym) being the same as the

number of phase singularities (equation (2.1.6)), the number of critical points CA in area

A being

CA =
∫

A
d2Rδ2(J)| detMJsym|. (2.2.12)

The number of saddles, SA and extrema EA are therefore

SA =
1
2
(ZA − IA) (2.2.13)

EA = CA − SA. (2.2.14)

Extrema are places where the divergence of current ∇ · J is positive, since the sign of

detMJsym is the index of that point, and ∇ · J is the only nonnegative term in equation

(2.2.10). For solutions ψH of the planar Helmholtz equation (cf equation (1.5.2)),

∇2
⊥ψH + K2ψH = 0, (2.2.15)

the current JH is divergenceless since, by equation (2.2.1)

∇ · JH = Im(∇ψ∗H · ∇ψH + ψ∗H∇2
⊥ψH) = Im(−K2|ψH|2) = 0. (2.2.16)

In this case, the only critical points are divergenceless saddles (where trMJsym = 0),

and in such waves the only mechanism for creation/annihilation of dislocations is that of

(2.2.5).

There is a saddle near the edge dislocation in equation (1.2.5), on the selfintersection

of the phase line labelled π/2 in figure (1.1), and the flow lines of current for this wave

are shown in figure (2.2).
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Figure 2.2: The flow of current around the edge dislocation (1.2.5), showing the circulation

about the phase singularity and nearby saddle. (Figure courtesy of Michael Berry.)
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2.3 Local structure of dislocation points

In this section we shall investigate the local structure of phase singularities, and see how

the local intensity structure is related to the way the phase changes around the singularity,

of possibly arbitrarily high strength. This is called the dislocation core structure. The core

structure, as we are about to see, is elliptical, and many relevant properties of ellipses are

discussed in appendix A.

In general, the intensity ρ2 at the core is a quadratic form (where all derivatives and

functions of them are taken at the singularity, translated to the origin),

ρ2 ≈ |R · ∇ψ|2

= (∇ξ ·R)2 + (∇η ·R)2

= RT (∇ξ ⊗∇ξ +∇η ⊗∇η)R. (2.3.1)

The local contours of ρ2 (and therefore of amplitude ρ) are therefore ellipses (see section

A.2 for more details), defining the core anisotropy ellipse, discussed by [BD00, SS96] (also

by [FF97], but the simple elliptical structure was missed). The equations for current

(2.2.1) and its local expansion (2.2.3) give the local form for phase gradient

∇χ ≈ ω ∧R
(∇ξ ·R)2 + (∇η ·R)2

, (2.3.2)

so, by equation (A.1.4), a polar plot of
√
|∇χ| around a circle centred on the dislocation

is an ellipse with the same eccentricity as the ρ2 contours (but with major and minor

semiaxes interchanged). Equation (2.3.2) shows that ∇χ must be in the eφ direction,

therefore

|∇χ| = 1
R

∂χ

∂φ
. (2.3.3)

Taking the modulus of equation (2.2.2), (recalling that ω can be viewed as a vector per-

pendicular to the plane), J(R) = ω(0)R = ρ2|∇χ|, so

R2 ∂φ

∂χ
=

ρ2

ω(0)
, (2.3.4)

which is constant on the intensity contour, giving an analogue of conservation of angular

momentum (defined as R2∂φ/∂χ). The interpretation is that equal area sectors of the core

anisotropy ellipse are swept out in equal intervals of phase (this is related to the geometry

of the auxiliary circle of the ellipse, see section A.1). The distribution of phase lines around

the core ellipse is shown for two ellipses in figure (3.9). This version of Kepler’s law is
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identical to the conservation of angular momentum for a linear central force in classical

mechanics, for instance the force experienced by a conical pendulum (see, for example,

[Arn89]).

Of course, only for monochromatic waves is this quantity actually conserved with time,

where the derivative in (2.3.4) with respect to χ can be replaced by t on the left hand

side of equation (2.3.4), and each phase line (mod 2π) rotates about the ellipse once per

cycle. This type of angular momentum is related to the quantum angular momentum of

laser beams [APB99], as discussed by [SS96].

The eccentricity ε of the core ellipse can be found using the eigenvalues of the quadratic

form in equation (2.3.1). The absolute squared length of ∇ψ, is phase invariant, and shall

be denoted

G ≡ |∇ψ|2. (2.3.5)

This is the unnormalised Stokes parameter S0 (defined in (A.4.7)) for the core anisotropy

ellipse, and the parameter S3 is clearly equal to 2ω. The eccentricity, from equation (A.4.9),

can be written in the simple gauge invariant form

ε =
1√
2ω

(G2 − 4ω2)1/4

√
G−

√
G2 − 4ω2. (2.3.6)

We now consider the local structure of a high-order dislocation in a solution ψ of the

(planar) Helmholtz equation, which we take to be of strength n (n > 0 for convenience)

at the origin of the plane (as investigated in appendix A of [BD01a]). Obviously, for

every phase, n phase contours must intersect at the origin. Around a circuit of the origin,

the phase increases by 2nπ, implying that the first terms in an expansion of ψ around

the origin are proportional to exp(±inφ), and smoothness requires the R dependence to

be proportional to Rn (since Rn exp(±inφ) = (x ± iy)n). This in turn implies that the

leading term of ∇2
⊥ψ goes as Rn−2, and therefore dominates K2ψ in the planar Helmholtz

equation (2.2.15). Sufficiently close to the dislocation, the wave satisfies Laplace’s equation

∇2ψ = 0, the most general solution of which, proportional to Rn, is

ψ = Rn(a+ exp(inφ) + a− exp(−inφ))

= a+(x + iy)n + a−(x− iy)n, (2.3.7)

where a± are complex constants. In a circuit around the dislocation, the a+ term winds

+n times around the origin of the ψ plane, the a− term −n times: in order for the phase

to increase in the correct sense, |a+| > |a−| (and vice versa if n < 0).
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The solution (2.3.7) can also be demonstrated by requiring that ξ and η independently

satisfy Laplace’s equation, vanishing to order n, ie

ξ = Rn(α1 cosnφ + α2 sinnφ)

η = Rn(β1 cosnφ + β2 sinnφ) (2.3.8)

where α1, α2, β1, β2 are real and easily related to a±. This local structure is more restrictive

than for an high-order phase singularity in an arbitrary scalar field, made up of terms in x

and y like xjyn−j , (0 ≤ j ≤ n), caused by the reduction near the zero from the Helmholtz

to the Laplace equation. If the wave is nonmonochromatic, but has Fourier components

satisfying the Helmholtz equation (as discussed in section 1.5), then the above still holds

(since sufficiently close to the dislocation, the laplacian of each component still dominates

the K2ψ term). The contours of intensity ρ2, by equation (2.3.7), lie on the parametric

curve

R(φ) = n

√
ρ

|a+ exp(inφ) + a− exp(−inφ)| , (2.3.9)

whose nth power is one of the generalised ellipses of equation (A.1.7) and figure (A.2), for

n integer. After setting n, there are only four real (two complex) parameters describing

the figure, the same as for a usual ellipse. [FB00, Fre01] have made a study of the

behaviour of higher index phase critical points in two dimensional wavefields, which we

do not discuss here. The angular momentum phase relation of equation (2.3.4) clearly

generalises to the higher order structures. The above construction also applies to high-

order dislocation lines in space (satisfying the three dimensional Helmholtz equation), the

appropriate details being given in [BD01a] appendix A.

Topologically, a strength n dislocation (n > 0 for convenience) not only requires the

coalescence of n strength 1 dislocations, but also n− 1 saddles, in order that the Poincaré

index of the high strength singularity be 1 (the phase contours still radiate outwards, so

the current, and ∇χ, circulate with index 1). This requires the n(n + 1) conditions

∂q
x∂p−q

y ξ = 0, 0 ≤ q ≤ p, 0 ≤ p ≤ n− 1

∂q
x∂n−q

y ξ 6= 0, 0 ≤ q ≤ n,

∂q
x∂p−q

y η = 0, 0 ≤ q ≤ p, 0 ≤ p ≤ n− 1

∂q
x∂n−q

y η 6= 0, 0 ≤ q ≤ n, (2.3.10)

to be satisfied at the dislocation, implying that such a dislocation has a higher codimension

than that required from simply superposing n dislocations. The behaviour of the unfolding
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of high strength dislocations is used to elucidate the structure of knotted phase singularities

in chapter 5; what happens if the 6= conditions in (2.3.10) are violated is also explored

there.

As mentioned in section 1.2, much of the initial study of wave dislocations was by

way of comparison with crystal dislocations; in particular, [NB74] define the Burgers

vector of a dislocation to be the wave propagation direction if, apart from the dislocation,

the wavefronts are otherwise well ordered like a plane wave. [Nye81] discusses in some

detail a certain complex procedure for constructing a Burgers vector for an arbitrary wave

dislocation. In the two dimensional waves considered here, all dislocations are of edge

type, but it is not clear whether there is a natural topological definition of the Burgers

vector for dislocations in arbitrary waves; it is likely that the appearance of the Burgers

vector in waves like the edge dislocated one in equation (1.2.5) is due to the fact that there

is an overall exponential factor representing a plane wave propagating tin the y direction.

We shall not consider the Burgers vector for edge dislocations further.

Although the anisotropy ellipse of the edge dislocation in equation (1.2.5) is a non-

generic circle, it can be easily modified to have elliptic structure:

ψ = (x/a + iy/b) exp(iky), (2.3.11)

where a, b are real and positive, and the ellipse semiaxes are a, b the x, y directions, with

the major semiaxis in the x direction if a > b.

2.4 Motion and velocity of dislocations

We now consider ψ as a time dependent solution of some wave equation in two or three

dimensions (where position is denoted by r . We have already seen in section 1.5 that

the dislocation pattern is stationary for monochromatic waves. This is one of the main

reasons that optical dislocations are significant, because, in a monochromatic field (even

a random one, such as a laser speckle pattern), the dislocations are stationary although

the frequencies are very high (and time-dependent features move too quickly to register).

If the waves are not monochromatic (but still complex), the dislocations may move,

and, as we shall see, may move arbitrarily quickly (and independently of the speed c of the

dispersionless Fourier components of the wave). At first this may appear a contradiction of

relativity, but since dislocations are morphologies of the field (arising from the geometry of
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the interference pattern), they are not subject to the laws which apply to physical objects.

Since they are zeros, they carry no energy, and cannot be used to transmit information.

The speed of other morphological objects is similarly unrestricted: consider the speed of

the intersection of scissor blades (which accelerates increasingly if the scissors are opened

at a constant rate), or the end of a searchlight beam (which, for a sufficiently strong beam,

also moves arbitrarily fast, arbitrarily far away).

A simple example of a wave with a single moving dislocation is a modification of the

edge dislocated wave (1.2.5), given by [NB74] equation (42). The wave now satisfies the

time dependent wave equation, and is

ψ = (ax− kx2 + i(b(y − ct)− y)) exp(i(ky − ωkt)), (2.4.1)

where c = ωk/k, the speed of the wavefronts, and a, b are arbitrary and dimensionless.

There are two dislocations, with x coordinates 0, a/k and common y coordinate bct/(b−1);

they therefore are moving in the y-direction with speed bc/(b−1), which can be arbitrarily

fast for b arbitrarily close to 1. If the wave admits the definition of a Burgers vector, then

it is possible for the dislocation to glide and climb, as shown by [NB74].

We now derive a general expression (valid in two or three dimensions) for the velocity

of a dislocation, which shall be useful later on. The dislocation conditions (ξ(r, t) =

0, η(r, t) = 0) mean that, on dislocations, the total derivative is also zero:

∇ψ · dR + ψtdt = 0. (2.4.2)

The dislocation velocity v is defined v = dr/dt, and so by equation (2.4.2), satisfies the

simultaneous equations

v · ∇ξ = −ξt, v · ∇η = −ηt (2.4.3)

which are easily solved to give (where ω is perpendicular to the (x, y) plane)

v =
1
ω2

(ηt∇ξ − ξt∇η) ∧ ω. (2.4.4)

It is easy to verify that a monochromatic wave, with a single time component gives

zero in (2.4.4). The velocity squared is

v2 =
1
ω2

(ξ2
t (∇η)2 + η2

t (∇ξ)2 − 2ξtηt∇ξ · ∇η). (2.4.5)
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2.5 Nodal lines in three dimensional space

One of the strengths of the analogy between phase singularities and crystal dislocations is

that it holds in three dimensional space as well as two, and, as we have seen, the codimen-

sion 2 nature of phase singularities imply that they are generically lines in space. This fact

was emphasised by [NB74], but has only recently been appreciated by the experimental

optics community [Fre00]. Many of the results and formulae that were derived for dislo-

cations in two dimensions also hold in three, as we shall see. In the following, vectors are

assumed three dimensional (including the ∇ operator) and position in space is given by

the vector r = (x, y, z).

The real and imaginary parts ξ, η of the three dimensional complex field ψ have their

zero level sets (contours) generically on surfaces (each is codimension 1), which intersect

along lines of phase singularity. The geometry of dislocation lines is therefore the geometry

of the generally curved intersections of the family of surfaces Reψ exp(−iχ) = 0 for each

χ mod π. These surfaces are, of course, orientable (twosided) since they separate regions

where the real function is positive and negative. The surfaces may be infinite or finite

(and closed), and may (nongenerically) self intersect; the dislocation lines may also have

any of these properties (they may be infinitely long or closed loops, possibly crossing each

other).

Dislocation strength, as the change of phase (divided by 2π) in a circuit C enclosing

the dislocation line, is identically defined as for the two dimensional case (1.2.4). The

dislocation line cannot end (the Dirac string of section 1.6 is an anomaly, because the

quantum wavefunction does not have a well-defined global phase), and the dislocation

strength is conserved as C slides up and down the dislocation line. This endows a direction

along the dislocation, that about which the phase increases in a right-handed sense: this

defines the topological current, which, like topological charge, is a signed integer (the sign

always being positive along the direction of the topological current). The topological

current is not to be confused with the field current J, or its three dimensional analogue

j. The topological current is generically 1, with higher currents only when the dislocation

corresponds to self-intersection of the phase surfaces.

A convenient vector which points in the direction of topological current is the three-

dimensional generalisation ω of the vorticity, defined as in (2.2.2), as the vector product

∇ξ ∧∇η, which is not now restricted to the z-direction. Since ∇ξ,∇η are the normals to
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the contour surfaces, their vector product must lie in each surface, and the right-handed

sense of the vector product follows the direction of topological current. The dislocation

length `V , therefore, in a volume V, is the integral

`V =
∫

V
d3r δ(ξ)δ(η)|∇ξ ∧∇η|. (2.5.1)

This generalises (2.1.6); the δ-functions again restrict the integral to the intersection of

the zeros of ξ, η, but now the jacobian is the length of a vector; locally, ∇ξ,∇η are

perpendicular to the dislocation, and give the same jacobian as in the two-dimensional

case in this plane.

The 3-current j is also defined in an identical way to its two-dimensional analogue

(2.2.1) (where ∇ in the definition is now three-dimensional). ω is half its curl, and

j vanishes on dislocation lines. The other current zeros are at critical points of ∇χ,

which, being a standard three-dimensional gradient field, only vanishes at points. These

critical points of phase (and zeros of current) have more complicated indices than their

two-dimensional analogues; the local matrix (cf (1.2.8)) is now three-dimensional, with

three nonzero eigenvalues, which may be three positive (a minimum), three negative (a

maximum) or two positive/negative and one negative/positive. They correspond to the

appearance (or disappearance) of a phase surface at a point, and in solutions of the (three-

dimensional) Helmholtz equation, must be divergenceless (as in (2.2.16)). The dislocations

are no longer on an equal footing with the phase critical points in three dimensions (the

dimensions are different), and we shall not consider three-dimensional phase critical points

further.

∇ξ,∇η are perpendicular to the dislocation, and in this plane normal to the dislocation,

the local two-dimensional structure of dislocations in section 2.3 applies in three dimen-

sions, including the structure for higher strength. The core ellipse is defined in the (∇ξ,∇η)

plane, and has eccentricity (2.3.6), with appropriate generalisation of (2.3.5). The velocity

formulae (2.4.4), (2.4.5) similarly hold; the motion again is only in the (∇ξ,∇η) plane;

since the dislocation is not a physical object, but a morphology, the only motion it can

sensibly have is transverse motion.

As before, the only independent phase surfaces that need to be considered are those of

ξ and η, the others being made up from them by (2.1.2). Dislocation loops can be created

or annihilated (as a parameter such as time is varied) when one phase surface passes

through another; at the moment of creation, the two surfaces touch and the gradients
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a

b

Figure 2.3: Changing the topology of dislocation lines. (a) a loop is created/destroyed as

one surface touches another; (b) the dislocation reconnects as one surface passes through

a saddle point in the other (see also figure (2.5)).

coincide (∇ξ ∧ ∇η = 0). A simple example of this, shown in figure (2.3a), occurs when a

function with a maximum passes through a plane. Dislocation lines reconnect when one

of the contour surfaces passes through a saddle point in the other (2.3b), also where the

directions of the two normals coincide, and is discussed in more detail in the following

section.

Mathematically, the field ψ provides two kinds of foliation of space, one on which

the ‘leaves’ are one-dimensional, the other two-dimensional. The latter is simply the

decomposition of space into its individual phase surfaces; this foliation breaks down at

the phase singularity, where all of the different phase surfaces intersect, and also when

ω = 0 (which is where loops are created/destroyed, as in figure (2.3)). The other foliation

is along the lines labelled by the complex number ξ + iη (the dislocations being the only

choice of values invariant under a global phase change).

We conclude the section with a brief examination of how the spatial structures in

three-dimensional space (x, y, z) are related to the two-dimensional ones considered above

(for convenience, in the (x, y) plane). Firstly, the dislocation lines cross the (x, y) plane

in points, the topological charge of which depends on whether the topological current is
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(x,y) plane

+1
-1

Figure 2.4: Indicating the underlying three dimensional geometry of dislocation creation

and annihilation for plane sections of spatial fields

directed into the plane (ωz < 0), in which case the apparent topological charge of the point

is negative, or out of the plane (ωz > 0), in which case the apparent charge is positive

(generically, ωz 6= 0). Therefore, if two dislocation points are created/annihilated in a

plane section of a three dimensional field, the three-dimensional geometry is just that of an

arched dislocation passing through the plane, as in figure (2.4). The perceived core ellipse

is that of a cylinder with elliptic cross section being obliquely sliced: the eccentricity in the

plane section is higher than transverse to the dislocation. If the dislocation is moving, the

motion in the plane is faster than transverse to the line in space, because the position of

the intersection point is moving along the dislocation (it is a morphology of a morphology).

The planar dislocation velocity acquires a virtual component along its direction.

The 2-current J = (jx, jy), and is zero when j is in the z-direction alone, that is when

a phase surface (with normal ∇χ) touches the (x, y) plane. It is a maximum, minimum,

or saddle according to the local geometry of the surface, the geometry being the same as

in figure (2.3), but the plane not necessarily being a phase surface.

The geometry and topology of dislocation lines is obviously richer than dislocation

points, since the lines may touch and reconnect, be curved, and have their phase cores

twisting around them. These possibilities are investigated in the following sections.
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a<0 a=0 a>0

Figure 2.5: Dislocation reconnection, described by equation (2.6.1) with β = π/12. Arrows

give the direction of topological current, and the dashed line shows where ω = 0. The phase

surfaces for these dislocations are those of figure (2.3b).

2.6 Dislocation reconnection

An important topological question of dislocation lines in space is whether they can cross,

and if so, do the lines cross inertly or reconnect (preserving the sense of the topological

current). One would expect such events to have codimension 4, and we shall see that

this is indeed the case, albeit in surprising circumstances. These changes take place as a

parameter a varies, which may represent time evolution. A simple example of a topological

reconnection as a varies is the crossing of a saddle, as in figure (2.3b); the corresponding

picture for the dislocations in this case is shown in figure (2.5). The phase singularities are

two hyperbolae perpendicular to z, crossing and reconnecting at the origin. A solution of

the Helmholtz equation (1.5.2) (with k set to 1) with phase contours that behave in this

way is the wave

ψ =
(

xy

sin 2β
+

1
2
(x2 + y2) + a + iz

)
exp(iz), (2.6.1)

where β is any angle between (but not including) 0 and π/2, (noting the correction from

[BD01b] equation (4)). The dislocations of this function are plotted in figure (2.5). They

have asymptotes in the directions (φ azimuthal angle) φ = β, π/2 − β, π + β, 3π/2 − β.

This appears to be a normal form for dislocation reconnection.

When dislocations cross, the vorticity ω vanishes, since there is no unique dislocation

direction (in equation (2.6.1), the dislocations point in opposite directions, as is clear

from figure (2.5)). Now, ω, as the vector product of two real vector fields, has zeros of

codimension 2 (‘L lines’), as discussed fully in chapter 4 (they are, in fact, L lines of

∇ψ). Dislocation reconnection appears to occur generically whenever a dislocation line
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encounters an L line. When a dislocation loop is born or disappears (as in figure (2.3a)),

the phase surfaces touch in a similar way, and there is an L line threading the dislocation

loop. Therefore, the L lines of ∇ψ play an important role in the topology of dislocation

lines, a point that shall be returned to in chapter 5. In equation (2.6.1), the L line (ω = 0)

is along the z-axis, depicted by the dotted line in figure (2.5).

Dislocations may be made to cross inertly, without reconnecting. A function with

phase singularities doing just this is easy to construct by multiplying two functions, each

with one of the desired zero lines, such as

ψ = (x + iz)(y + i(z − a)), (2.6.2)

with a stationary dislocation along the y-axis from the first factor, the second providing

a dislocation in the x-direction, moving along the z-direction with y = 0; the two cross

when a = 0. However, this function is unstable against perturbation, and the addition of

a plane wave in any direction destroys this benign crossing, the reaction instead taking

place by two reconnections. Moreover, equation (2.6.2) is not a solution to any wave

equation described in section 1.5, and the addition of extra terms in order to satisfy

a wave equation destroys the crossing. The ξ, η contours of equation (2.6.2) are quite

singular as a approaches 0, and it is likely that dislocations can only cross inertly (that is,

without a topological reconnection) if the phase surfaces do change their topology, which

is, of course, not generic.

[BBBBS00] show a wave similar to equation (2.6.2) which satisfies the time-dependent

three- dimensional Schrödinger equation, but in fact, a detailed examination once again

shows that the interaction takes place via a reconnection of the type (2.6.1). This is

therefore a difference between the quantised vortices of phase singularities and the vortices

of hydrodynamics, which may not cross [Mof69]. This is used in chapter 5 to tie and untie

knotted dislocation lines.

2.7 Curvature and torsion of dislocation lines

Generically, dislocation lines are curved (since not even do the contour surfaces ξ = 0, η = 0

usually contain straight lines), and nonplanar, that is, they have nonvanishing curvature

κ and torsion τ. A brief discussion of the geometry of space curves is given here; details

may be found in standard texts on classical differential geometry (such as [dC76, Eis60,
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Gra93]). The differential geometry of curves formed by the intersection of two surfaces is

an interesting and general problem in classical differential geometry (an example of such

a curve is Viviani’s curve, which is the intersection of a sphere and a cylinder [Gra93]).

Generically, dislocation lines are regular, since any inflexion points can easily be per-

turbed away, so the Frenet frame is defined everywhere on the curve. As discussed in

section 2.5, the vorticity ω is in the direction of the curve, so the tangent vector is

T = ω/ω, (2.7.1)

and the orientation of the singularity curve is that of the topological current. When

ω(r) = 0 dislocation lines cross, which is not generic enough to concern us here.

Along the curve, ω is constantly changing (ω′ 6= 0), so provides an acceptable non-

arclength parameterisation of the dislocation curve; the arclength derivative along the

curve can be written is (ω/ω · ∇), and is denoted •′. The curvature κ of the curve is a

measure of the deviation of T from T, defined by

κ = |T′ ·T|, (2.7.2)

which generically does not vanish. The direction of T′ is called the normal direction N,

and locally the curve lies in the (T,N) (osculating) plane. The osculating plane normal

T ∧N is called the binormal B, and the orthogonal frame (T,N,B) is called the Frenet

frame of the curve.

In terms of ω, the curvature (2.7.2) is written

κ =
|ω ∧ (ω · ∇)ω|

ω3
, (2.7.3)

where quantities are evaluated on the dislocation; this expression is phase invariant.

This formula is considerably simplified if coordinates are chosen such that the disloca-

tion passes through the origin when ω lies in the z-direction, so the arc length derivative

is just ∂z. In this case, where ez is the unit vector in the z-direction,

κ2 =
(ez ∧ ∂zω)2

ω2

=
(∂zω)2 − (∂zωz)2

ω2

=
ξ2
zz(∇η)2 + ηzz(∇ξ)2 − 2ξzzηzz∇ξ · ∇η

ω2
(2.7.4)

which is formally the same as the expression (2.4.5) for the squared velocity of a dislocation

line, with ξzz, ηzz for ξt, ηt. This is not surprising, since the rate of change of the surfaces
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ξ, η at the origin in the z-direction is proportional to their second derivatives with respect

to z, provided ω||ez at the origin.

The torsion τ of a curve is a measure of the departure from planarity of the curve, and

is defined

τ = N′ ·B, (2.7.5)

which is clearly 0 for a plane curve. In terms of ω, it is

τ =
ω ∧ (ω · ∇)ω · (ω · ∇)2ω

κ2
, (2.7.6)

again phase invariant. (2.7.6) simplifies, but not significantly, choice of coordinates used

for (2.7.4).

A helix is defined as a curve with constant (nonzero) curvature and torsion. If it has

radius a and pitch (distance between successive coils) 2πb, the curvature and torsion are

κ =
a

a2 + b2
, τ =

b

a2 + b2
. (2.7.7)

Although κ, τ are not invariant if the curve is rescaled, their ratio a/b is. In the limit

of the curve approaching a straight line, (for which κ = 0 and N is not defined), where

a → 0, κ → 0 and b constant, the torsion is approaches the constant value 1/b. Torsion is

not an entirely useful geometric measure.

As Nye discusses ([Nye99], pp103-104), a perturbation of the screw dislocation (2.8.1)

by a plane wave ψε in the z-direction

ψε = −ε exp(ik1z), (2.7.8)

so, after perturbation, the real and imaginary parts being zero give the equations

x cos kz − y sin z = ε cos k1z

x sin kz + y cos z = ε sin k1z, (2.7.9)

with curvature and torsion

κ =
ε(k1 − k)2

1 + ε2(k1 − k)2
, τ =

k1 − k

1 + ε2(k1 − k)2
, (2.7.10)

from equations (2.7.7).
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2.8 Twist and twirl

Much of the geometric interest of dislocation lines is not the geometry of the line itself, but

the geometry of the phase structure which the dislocation organises. In general, a given

phase surface in the neighbourhood of a dislocation is a helicoid, the simplest example

being the example of [NB74],

ψ = (x + iy) exp(ikz) = R exp(iφ) exp(ikz), (2.8.1)

the helicoidal geometry of the phase surfaces being reminiscent of a crystal screw dislo-

cation; by the crystal-wave analogy, this wave dislocation shall be referred to as a screw

dislocation. Each of the phase surfaces is a helicoid with pitch 2π/k, left handed if k > 0.

The phase surfaces are all identical, and rotation about the z-axis by φ0 is equivalent

to multiplying the function by a phase exp(iφ0); such functions (considered at length in

chapter 5) shall be referred to as cylindrically phase-symmetric.

In crystals, a screw dislocation has its Burgers vector in the dislocation tangent di-

rection, unlike an edge dislocation, where the Burgers vector is perpendicular to the dis-

location direction (consider, for example, the wave edge dislocation (1.2.5) trivially as a

function of z as well). The problem of writing a general Burgers vector, discussed above

for edge dislocations, generalises to screw dislocations (and mixed edge-screw dislocations,

discussed by [Nye99, Nye81]). The Burgers vector formalism has been used to analyse the

dislocation structure of quantum mechanical waves [Hol87], but the formalism of this work

is not appropriate at our level of discussion. Although our terminology used may imply the

presence of a Burgers vector, we shall not derive an expression for it, instead concentrating

on geometric features of the phase surfaces.

Nevertheless, it is still desirable to quantify the degree to which a dislocation line is

twisted, that is, the rate of rotation of the phase helicoids with respect to distance along

the line (ie, with respect to direction parallel transported along the line) . For a given

phase surface u = uχ = 0 (see 2.1.2), the rate of rotation Tw(χ) is easily calculated

to be the arc length derivative of the azimuthal angle of ∇u = U in local cylindrical

coordinates. This is the instantaneous twist of the local phase ribbon, as might be used

in a Calugareanu-type calculation (see, for instance, [Ada94, Han98a]). For the remainder

of this section the dislocation, when convenient, shall be assumed to cross the origin with

T(0) = ez, and cartesian and cylindrical coordinates are used interchangeably. Also, X,Y

are used to denote ∇ξ,∇η respectively throughout this section. Thus, at the origin, the
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local rate of rotation of U is

Tw(χ) = (φz)χ

= ∂z arctan
uy

ux

=
uxuyz − uyuxz

u2
x + u2

y

=
T · (U ∧U′)

U2

=




T ·
(
(X ∧X′) cos2 χ + (Y ∧Y′) sin2 χ

+(X ∧Y′ + Y ∧X′) cos χ sinχ
)




X2 cos2 χ + Y 2 sin2 χ + 2X ·Y sinχ cosχ
(2.8.2)

where the last two equalities holds generally, and •′ represents the arc length derivative

as before. Applying this formula to the screw dislocated wave (2.8.1) gives −k for every

choice of χ, as one would expect (the sign indicates the handedness of the helicoid in the

dislocation direction). However, if the core ellipse is not circular, there are problems; in

particular, if the screw dislocated wave (2.8.1) is modified using (2.3.11),

ψ = (x/a + iy/b) exp(ikz), (2.8.3)

with a, b real and positive, a > b for simplicity. The cross section of the dislocation core

is now an ellipse, with semiaxes in the x, y directions. At the origin, Tw(χ) is now

Tw(χ) =
−kab

b2 cos2 χ + a2 sin2 χ
, (2.8.4)

and depends on the phase χ chosen. To get a measure of Tw for the whole dislocation, it

is necessary to average over all phase surfaces; in the following this is done by averaging

with respect to phase χ.

If χ is measured from the rectifying phase χ0 of (A.2.6) (χ → χ + χ0, so X,Y become

X0,Y0 with X0 ·Y0 = 0), the last line of (2.8.2) is simplified,

Tw(χ) =
T · ((X0 ∧X′

0) cos2 χ + (Y0 ∧Y′
0) sin2 χ + (X0 ∧Y′

0 + Y0 ∧X′
0) cosχ sinχ)

X2
0 cos2 χ + Y 2

0 sin2 χ
,

(2.8.5)

and now Tw(χ) may be integrated with respect to χ, giving the phase-averaged twist Twχ,

Twχ =
1
2π

∫ 2π

0
dχ Tw(χ)

=
T · (Y0(X0 ∧X′

0)−X0(Y0 ∧Y′
0))

X0Y0(X0 + Y0)
,

(2.8.6)
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which gives −k in the case of (2.8.3). This is not the only way the twist can be averaged;

Tw(χ) can be averaged with respect to φ instead; using the angular momentum relation

(2.3.4), ∂φ/∂χ = ρ2/R2ω, and rewriting the Tw(χ) denominator using the auxiliary circle

ellipse relation (2.3.1) at phase χ, it is possible to derive the azimuth-averaged twist Twφ,

in the limit R → 0,

Twφ =
1
2π

∫ 2π

0
dφw(χ)

=
1
2π

∫ 2π

0
dχ

∂φ

∂χ
w(χ)

=
1
2π

∫ 2π

0
dχ

ρ2

R2ω

×T · ((X ∧X′) cos2 χ + (Y ∧Y′) sin2 χ + (X ∧Y′ + Y ∧X′) cosχ sinχ)
ρ2(χ)/R2

=
T · (X ∧X′ + Y ∧Y′ sin2 χ)

2ω

=
Re{T · ∇ψ∗ ∧∇ψ′}

2ω
. (2.8.7)

This also is −k in the example, but is clearly different in form from the phase-averaged

(2.8.6).

In [Ber01a], Berry instead works with (χz)φ const, measuring the rate of change of phase

with respect to a parallel transported position φ along the dislocation, and averages in

a strange way around φ (in the limit R → 0) to get the screwness σ, (reproduced from

[Ber01a] equations (6),(7))

σ ≡ lim
R→0

∫ 2π
0 dφρ2(R)χ′(R)∫ 2π

0 dφρ2(R)

= lim
R→0

∫ 2π
0 dφ jz(R)∫ 2π
0 dφρ2(R)

= lim
R→0

∫ 2π
0 dφ (ξ(R)η′(R)− η(R)ξ′(R))∫ 2π

0 dφ (ξ2(R) + η2(R))

=
X ·Y′ −Y ·X′

X2 + Y 2

=
Im∇ψ∗ · ∇ψ′

G
(2.8.8)

where (2.2.1) has been used in the second equality, and a Taylor expansion in the fourth.

This gives −k in the simple example (2.8.3). 1 It is also possible to average the twist Tw(χ)
1The derivation of (2.8.8) was heuristic to get a formula that gives this correct answer.
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of the helicoids with respect to φ, or the rate of change of phase at constant azimuth χ′

with respect to χ; the ones listed here (Twχ and σ) give the answer −k for (2.8.3); they

obviously measure subtly different properties when the situation is more complicated, but

it is not clear what these are at this level of analysis.

The problem would seem to originate from the fact that the phase ellipse is usually

rotating as well, and since this organises the transverse phase lines, the changing pitches

of the different change at different rates. We define the rotation of the phase ellipse as the

twirl tw of the dislocation line (compared to the twist Tw of the phase lines). It is found

using a Stokes parameter representation of the anisotropy ellipse in its plane (the (x, y)

plane), where the rotation is the rate of change of half of the Poincaré sphere azimuth

β = arctanS2/S1, where the Stokes parameters S1, S2 of the ellipse defined by the complex

vector ∇ψ are defined in equation (A.4.7). The twirl is therefore

twφ =
1
2
∂z arctan

S2

S1

=
S1S

′
2 − S2S

′
1

S2
1 + S2

2

, (2.8.9)

which does not simplify particularly (although the denominator is G2 − 4ω2). It is zero

for the wave (2.8.3), since the phase ellipse is fixed with respect to the (x, y) axes. The

rectifying phase χ0, such that ∇ψ exp(iχ0/2) = X0 + iY0 (A.2.6) also changes along the

ellipse in general, giving the phase twirl twχ,

twχ = −1
2
∂z arctan

2X ·Y
X2 − Y 2

. (2.8.10)

This measures the phase twist with respect to the ellipse semiaxes. Neither of these

angles is defined when the ellipse is circular (see chapter 4), and neither type of twirl is

defined in this nongeneric case. Another measure of the phase twist Twtw is the difference

twφ− twχ, the twirl (measuring the rate of rotation of the ellipse along the dislocation line

with respect to parallel transport) plus the rate at which the phase changes with respect

to the ellipse. It is readily shown to be

Twtw = −T · (X ∧X′ + Y ∧Y)− (X ·Y′ −Y ·X′)
X2 + Y 2 + 2X ∧Y

= −Re{T · (∇ψ∗ ∧∇ψ′) + i∇ψ∗ · ∇ψ′}
G + 2ω

. (2.8.11)

Note that, although the twirls are not defined if the ellipse is circular, Twtw, is. It is

appealing in other ways: it does not require averaging over χ or φ, and the numerator is
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the difference of the numerators of twφ (2.8.7) and σ (2.8.8). The topological implications

of twist and twirl are considered in chapter 5.

2.9 Discussion

This chapter sets the scene for the later chapters: values of the geometric quantities found

here, such as speed and core ellipse eccentricity, are averaged in the next chapter (in an

ensemble of isotropic random waves), and the topology of dislocation reconnection is used

in the knot and link constructions of chapter 5. Moreover, polarization singularities in

vector and tensor waves are realised as phase singularities in chapters 4, 6, and have the

structures and morphologies described here. Most of the discussion in this chapter is not

dependent on the field satisfying a wave equation, and applies to phase singularities in

any complex field.

Although much of the work here is a review of earlier work, there is new understanding

on several topics, most significantly for the topology of dislocation lines. There is still a

lot to understand: can benign crossings of dislocation lines occur in the wave equation?

Is the normal form (2.6.1) completely general? What geometric properties distinguish

the different measures of twist in section 2.8? Can a Burgers vector be associated with a

general dislocation line?

The understanding of much dislocation morphology has been aided by concrete exam-

ples of dislocations satisfying the wave equation (this was the approach of [NB74]), and a

solution to many unanswered questions here would be aided by finding appropriate waves.

An example would be a twisting wave dislocation with different values for the various

twists of section 2.8.



Chapter 3

Dislocations in isotropic random

waves

Below, a myriad, myriad waves hastening, lifting up their necks,

Waves, undulating waves, liquid, uneven, emulous waves,

Toward that whirling current, laughing and buoyant with curves

from Walt Whitman, After the sea-ship, in Leaves of Grass, 1892

It is fortuitous that the central limit theorem of mathematics (see, for example, [Fel50])

provides such a tractable probability distribution as the gaussian for many physical ex-

amples of random phenomena, and the isotropic random wave model we use here utilises

gaussian random functions. The averages of many geometrical quantities associated with

wave dislocations may therefore be found analytically. In this chapter the model is in-

troduced and described, and the distributions or mean values of many of the quantities

described in the previous chapter are calculated. There are three sections, not including

the concluding discussion : in the first, the random wave model is defined, the second, the

averages for dislocation points in two dimensions are derived, and the third, averages for

dislocation lines in three dimensions. The technical details to several of the calculations

are omitted here, and may be found in [BD00]. Most of the calculations and discussion

here have been published in [BD00, Den01a, Den01b]. The theory of random scalar waves

discussed here is generalised in the next chapter to vector waves.

59
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3.1 The isotropic random wave model

It seems that the first investigation into the statistical geometry of random functions

was that of Rice [Ric44, Ric45], who used a superposition of one dimensional sinusoidal

waves with random phases and amplitudes to model the random currents in noisy circuits

(such as telegraph signals), deriving expressions for densities and correlations of zeros and

turning points for the functions.

Longuet-Higgins not only extended Rice’s work on one-dimensional functions ([LH58,

CLH56]), but also introduced the corresponding two-dimensional real random plane wave

superposition [LH57b, LH57a, LH60], the complex analogue to which is used here; the

phenomenon he was modelling was waves on the surface of the sea. The mathematical

objects calculated in these papers, such as lengths of contour line per unit area, and

densities and speeds of maxima and minima, are very close to the calculations made here,

and we adopt the same methods. Dislocations were first subjected to statistical analysis

by Berry [Ber78], and some of these results shall appear in the present analysis.

Gaussian random wavefields have found wide application in optics, where, as stated

in chapter 1, complex wavefields are most natural, and the theory of complex gaussian

random waves is particularly appropriate to the statistical analysis of laser speckle patterns

[Goo75, Dai76], and there are a number of studies, experimental, numerical and theoretical

(eg [BZM+81, Fre98a, WH82]) of the statistical properties of dislocations and critical

points in optical fields. Another physical application of random complex wavefields is in so-

called quantum billiards, where the eigenfunctions of modes in cavities (in two dimensions)

whose classical dynamics is chaotic are assumed to be gaussian random wave superpositions

[Ber77], and are complex in the presence of in/out channels or a magnetic field [BR86,

BPSS99].

Not only is the geometry of gaussian random fields important in view of its physical

applications, but also from mathematical interest alone [Adl81], if only as an application

of probability theory to classical differential geometry. Such fields also give a feeling for

what phenomena really are generic, and provide a means of studying dislocations and

critical points ‘in the wild’. General accounts of the theory of calculating with gaussian

random functions may be found in [Goo85, Fri95], as well as the papers cited above.

The complex fields ψ studied in this chapter are all stationary and isotropic, but other-

wise quite general. Calculations are made for arbitrary power spectra (defined below), and
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we shall see that the averages of geometric quantities of the field, such as the dislocation

density, are determined completely by the (radial) moments of the power spectrum.

A gaussian random wavefield is taken to be a sample function of the ensemble of

infinitely many scalar complex homogeneous nondispersive plane waves with speed c, in

two or three dimensions,

ψ(r, t) =
∑

k

ak exp(i(k · r− ckt)), (3.1.1)

ψ(R, t) =
∑

K

aK exp(i(K ·R− cKt)), (3.1.2)

where the sum is over all wavevectors k = (kx, ky, kz) in three dimensions and K =

(Kx,Ky) in two (conventions are described in section 1.9). Reference shall usually be

made to the three dimensional waves (3.1.1), but the two-dimensional analogue ought to

be obvious. The complex amplitudes multiplying the plane waves are, in (3.1.1),

ak = εk exp(iφk), (3.1.3)

and each φk (labelled by the wavevector k) is uniformly distributed in the interval 0 ≤ φk <

2π. The nonnegative real amplitude εk can have a Rayleigh distribution, the calculations

here are unaffected whether it does or not. εk is only dependent on the wavenumber

k = |k|, so the functions (3.1.1), (3.1.2) are statistically isotropic (rotation invariant), and

all averages are independent of any particular direction.

The ensembles (3.1.1), (3.1.2) are also manifestly stationary (statistically translation

invariant) both in space and time, since any translation is absorbed by the random phase

φk. They are also ergodic, so spatial (or temporal) averages commute with ensemble aver-

ages. Averaging over the ensemble of φk shall be denoted by angle brackets, so formally,

for any function f,

〈f〉 =

(∏

k

1
2π

∫
dφk

)
f. (3.1.4)

Due to the uniformly random phases φk, it follows that the real and imaginary parts

ξ(r, t) =
∑

k

εk cos(k · r− ckt + φk) (3.1.5)

η(r, t) =
∑

k

εk sin(k · r− ckt + φk) (3.1.6)

are identically gaussian distributed, so ψ satisfies circular gaussian statistics [Goo85]. The

statistics for ψ are also phase-stationary, and are unaffected by a global change in the
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phase (gauge transformation). The variance of ξ (and identically for η) is

〈ξ2〉 =
∑

k

∑

k′
εkεk′〈cos(k · r− ckt + φk) cos(k′ · r− ck′t + φk′)〉

=
∑

k

ε2
k〈cos2(k · r− ckt + φk)〉

=
1
2

∑

k

ε2
k, (3.1.7)

and assume that the sum in k is sufficiently finely spaced that it may be replaced by an

integral,

1
2

∑

k

ε2
k ≡

∫
d3kE(k)

=
∫

dk
Π(k)
4πk2

(3.1.8)

where E is the energy spectrum of the wave, and Π is the radial energy spectrum (we use

the term ‘energy spectrum’ rather than ‘power spectrum’, which implies a time dependence

we shall not usually be interested in). E and Π only depend on wavenumber k (since εk

does), so Π is the natural distribution to consider, and it has a finite integral (otherwise

the variance (3.1.7) would diverge). Averages of k-dependent quantities with respect to

the power spectrum are denoted by double angle brackets 〈〈•〉〉, and the nth moment of k

is written kn, that is

kn = 〈〈kn〉〉 =
∫ ∞

0
dk knΠ(k), (3.1.9)

and Π(k) is taken to be normalised, so k0 = 1. Rescaling Π (equivalently, ψ) does not alter

any of the physical averages here. For two-dimensional wavefields, the two dimensional

radial energy spectrum Π2(K) is defined

1
2

∑

K

ε2
K ≡

∫
d2K

Π2(K)
2πK

, (3.1.10)

and where confusion might ensue, subscripts 2,3 shall be used appropriately on the radial

spectrum Π and its averages 〈〈•〉〉. The moments Kn are defined analogously to those of

equation (3.1.9), and Π2 is normalised such that K0 = 1.

If ψ is a plane section of an isotropic wavefield in three dimensions, the Π3,Π2 are

related by projection in wavevector space (where the plane is taken to be the (kx, ky)
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plane),

Π2(K) = 2πK

∫
dkz

Π3(
√

K2 + k2
z)

4π(k2
z + K2)

= K

∫ ∞

K
dk

Π3(k)
k
√

k2 −K2
, (3.1.11)

and it is easily shown that for such a projection

Kn =
(1
2)!(n

2 )!
(n+1

2 )!
kn. (3.1.12)

P (f) is understood to represent the probability density function for a quantity f with

respect to the ensemble of functions ψ in (3.1.1), (3.1.2). The normalisation of Π, and the

circular gaussian statistics for ψ, imply that

P (ψ) =
1
2π

exp(−|ψ|2/2) (3.1.13)

P (ξ, η) =
1
2π

exp(−(ξ2 + η2)/2), (3.1.14)

and probabilities usually will only be taken for real functions (that is, like (3.1.14) rather

than (3.1.13)).

In addition to averaging geometric quantities, correlation functions of dislocation posi-

tions shall also be found for dislocation points in the plane, where values of ψ are taken at

two points RA and RB ≡ RA +R; values of functions at these two points are written with

subscript A or B appropriately (eg ξ(RA) = ξA), and by isotropy, it is only the magnitude

R = |R| that is important. The simplest such average is the (spatial) autocorrelation

function C(R), defined

C(R) = 〈ξAξB〉 = 〈ηAηB〉, (3.1.15)

and by an argument similar to (3.1.7), by (3.1.8), (3.1.10),

C(R) = 〈〈J0(KR)〉〉2 =
〈〈

sin kR

kR

〉〉

3

, (3.1.16)

where J0 is the zero order Bessel function of the first kind. Note that the autocorrelation

function, as defined here, is real, since it is the autocorrelation function of the real func-

tions ξ, η; other authors define the autocorrelation function as 〈〈ψAψB〉〉. The Wiener-

Khinchin theorem [Goo85, Fri95] states that the autocorrelation function is the two or

three-dimensional inverse Fourier transform of the energy spectrum E, implying that the

moments kn,Kn are related to the derivatives of C(R) at the origin. The normalisation

implies that C(0) = 1.
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The moments kn,Kn shall appear in calculations as quadratic averages of ξ, η and

their (spatial and time) derivatives which are also stationary gaussian random functions.

The only nonvanishing averages (up to second order in space, first in time) are, for three

dimensions, where i 6= j denote x, y, z,

〈ξ2
i 〉 = 〈η2

i 〉 = −〈ξξii〉 = −〈ηηii〉 = k2/3

〈ξ2
ii〉 = 〈η2

ii〉 = k4/5

〈ξ2
ij〉 = 〈η2

ij〉 = 〈ξiiξjj〉 = 〈ηiiηjj〉 = k4/15

〈ξ2
t 〉 = 〈η2

t 〉 = c2k2

〈ξηt〉 = −〈ηξt〉 = ck1, (3.1.17)

and in two dimensions, where α 6= β denote x, y,

〈ξ2
α〉 = 〈η2

α〉 = −〈ξξαα〉 = −〈ηηαα〉 = K2/2

〈ξ2
αα〉 = 〈η2

αα〉 = 3K4/8

〈ξ2
αβ〉 = 〈η2

αβ〉 = 〈ξααξββ〉 = 〈ηααηββ〉 = K4/8

〈ξ2
t 〉 = 〈η2

t 〉 = c2K2 (or, for plane sections of spatial waves, c2k2)

〈ξηt〉 = −〈ηξt〉 = cK1 (or, for plane sections of spatial waves, ck2), (3.1.18)

which are consistent with (3.1.12). Note that, if the two-dimensional wavefield is a section

of a spatial wave, the time derivative correlations involve the spatial k (because they come

from an angular frequency).

For averages involving the correlation function C, it matters in what direction spatial

derivatives are taken with respect to the vector R. For convenience, we take R to be in

the x-direction (and isotropy is recovered after averaging). Therefore, where •′ = d/dR,

〈ξAξBx〉 = 〈ηAηBx〉 = −〈ξAxξB〉 = −〈ηAxηB〉 = −〈〈KJ1(KR)〉〉2 = C ′(R)

〈ξAxξBx〉 = 〈ηAxηBx〉 = −〈〈K2J ′′0 (KR)〉〉2 = −C ′′(R)

〈ξAyξBy〉 = 〈ηAyηBy〉 = −〈〈K2J1(KR)〉〉2/R = −C ′(R)/R, (3.1.19)

where the three-dimensional autocorrelation is easy to find, and noting the small correction

from [BD00] equation (3.16).

All other averages (up to appropriate orders) vanish; in particular, the only nonvan-

ishing average involving ξ, η together is 〈ξηt〉 = −〈ηξt〉.
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These correlations are used to average over the various geometric quantities for dis-

locations, found in the previous chapter as functions of ξ, η,∇ξ,∇η, etc. The theory of

integrating gaussian random functions is well known (see, for example, [Goo85, Fri95]),

and the techniques are only outlined here. Consider any vectoral set of N gaussian random

scalar functions, depending on space, time, and the choice of random phases φk,

u(r, t) = (u1(r, t), u2(r, t), . . . , uN (r, t)), (3.1.20)

(which may be ξ, η, ξx, ηy, etc), and a vectoral set of auxiliary variables

b = (b1, b2, . . . , bn). (3.1.21)

Then, using gaussian randomness, it can be shown that

〈exp(ib · u(r, t))〉 = exp(−1
2
〈(b · u)2〉) = exp(−1

2
b ·M · b), (3.1.22)

where M is the correlation matrix with elements

Mmn ≡ 〈umun〉, (3.1.23)

found in the appropriate tables above. Using (3.1.22), it is possible to find the joint

probability density function P (u1, . . . , uN ) of the value of the gaussian random variables

un, by taking the Fourier transform of the δ-function:

P (u) ≡ 〈δ(u− u(r, t))〉
=

1
2π

∫
dNb exp(−ib · u)〈exp(ib · u(r, t))〉

=
exp(−u ·M−1 · u)
(2π)N/2

√
detM

(3.1.24)

The use of these quadratic averages of the field is used to calculate the joint probability

for the quantities G = (∇ξ)2+(∇η)2, ω = |∇ξ∧∇η| from equations (2.2.2), (2.3.5), defined

appropriately in two or three dimensions. The probability distributions are

P3(G,ω) =
27ω

2k3
2

exp(−3G/2k2)Θ(G− 2ω), (3.1.25)

P2(G,ω) =
1

K2
2

exp(−G/K2)Θ(G− 2|ω|), (3.1.26)

and details of these derivations may be found in [BD00] appendix A. Recall that 2ω/G

is the normalised Stokes parameter s3 for the ellipse described by ∇ψ (equations (A.4.7),
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(A.4.8)); the density (3.1.26) shows that this Stokes parameter is uniformly distributed

between (−1, 1), regardless of the spectrum (Stokes parameter statistics are considered in

more detail in the next chapter).

The remainder of this section is a description of five particular wave spectra of theo-

retical or experimental interest, whose dislocation statistics shall be calculated explicitly.

Three are for waves in the plane, two for waves in space (whose planar statistics are also

evaluated):

(1) Monochromatic waves in the plane. The energy spectrum is a δ-function at some

fixed wavenumber Km, wavelength Λm = 2π/Km and the field satisfies the planar

Helmholtz equation (1.5.2), (2.2.15). Following [LH57a], we call the spectrum for

this ensemble the ring spectrum, since all of the waves in Fourier space lie on a ring

of radius Km. Thus

Πring(K) = δ(K −Km), (3.1.27)

implying that

Kn ring = Kn
m (3.1.28)

and

Cring(R) = J0(KmR), (3.1.29)

easily identifiable as the two-dimensional Fourier transform of a ring. These waves

are the most coherent planar waves possible since there is only one wavelength

present, and the Bessel function gives interesting long range properties, as discussed

in [OGH87, HOG89]. [Ber77] suggested that these wavefields are a good model for

quantum billiards, since the ray dynamics for such systems, corresponding to the

directions of the wavevectors, is random. Dislocations in such quantum waves have

been studied by [BR86, MB89, BPSS99, SBS01]. The radial spectrum, autocorrela-

tion function, and intensity and real, imaginary zero contours of a random sample

function (a sum of 100 monochromatic plane waves with random directions and

phases) for the ring spectrum are shown in figure (3.1).

(2) Disk spectrum. In this case the energy spectrum is a radial step function of radius

Kd = 2π/Λd, so has radial energy spectrum

Πdisk(K) = 2KΘ(K −Kd)/K2
d. (3.1.30)
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Figure 3.1: The ring spectrum: (a) Radial spectral density (δ-function), (units of Km),

(b) Autocorrelation function J0 (in units of 1/Km), (c) Intensity (light is more intense)

of a sample function, (d) ξ = 0, η = 0 contours for the same sample function, plot size is

four square wavelengths.
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This is a spectrum often studied in optics, being that of uniform diffuse monochro-

matic light in three dimensions illuminating a plane, having passed through a cir-

cular aperture (the geometry of the energy spectrum matching the aperture shape

by the Zernike-van Cittert theorem [Goo85, BW59]). Note that although the two-

dimensional Πdisk(K) is not monochromatic, it arises from the interference of a

spatial monochromatic wave, so there is only one angular frequency component ωk,

and the dislocation pattern is therefore stationary, as discussed in section 1.5. The

disk spectrum has moments

Kn disk = 2Kn
d /(2 + n), (3.1.31)

and autocorrelation function

Cdisk(R) = 2J1(KdR)/KdR, (3.1.32)

the inverse Fourier Transform of a disk in K-space. Dislocations with the disk

spectrum have been investigated numerically by Freund [Fre98a]. The spectrum,

autocorrelation function and a sample function of the disk spectrum are shown in

figure (3.2).

(3) Gaussian spectrum. The energy spectrum is a gaussian, with standard deviation

Kσ = 2π/Λσ, so

Πgauss(K) = K exp(−K2/2K2
σ)/K2

σ. (3.1.33)

This is a reasonable model for the monochromatic speckle pattern transverse to a

paraxial laser beam, or from a gaussian scatterer. As with the disk spectrum, the

physical (spatial) beam is monochromatic, so the dislocation pattern is stationary.

This distribution has moments

Kn gauss = 2n/2
(n

2

)
!Kn

σ (3.1.34)

and gaussian autocorrelation function

Cgauss(R) = exp(−K2
σR2/2), (3.1.35)

and is shown in figure (3.3). Some statistical features of these fields were investigated

by [OG83].
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Figure 3.2: The disk spectrum: (a) Radial spectral density, in units of Kd, (b) Autocorre-

lation function, in units of 1/Kd, (c) Intensity (light is more intense) of a sample function,

(d) ξ = 0, η = 0 contours for the same sample function (plot size is four square wavelengths

Λd.
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Figure 3.3: The gaussian spectrum: (a) Radial spectral density (units of Kσ), (b) Autocor-

relation function (units of 1/Kσ), (c) Intensity (light is more intense) of a sample function,

(d) ξ = 0, η = 0 contours for the same sample function, in four square wavelengths.
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(4) Monochromatic waves in space. This is the three-dimensional analogue of the ring

spectrum, where all of the waves in the superposition (3.1.1) have wavenumber km =

2π/λm. It shall be referred to as the shell spectrum, and has the three-dimensional

radial spectrum

Πshell(k) = δ(k − km), (3.1.36)

and spatial moments

kn shell = kn
m. (3.1.37)

By equation (3.1.11), the shell spectrum projects to a radial planar spectrum

Π2 shell(K) =
KΘ(km −K)
km

√
k2

m −K2
(3.1.38)

and planar moments found directly from equation (3.1.12). The autocorrelation

function is the spherical Bessel function

Cshell =
sin kmR

kmR
. (3.1.39)

Such a wavefield, shown in figure (3.4), is a model for monochromatic waves in a

three-dimensional chaotic cavity.

(5) The Planck spectrum. This is the Planck’s distribution for blackbody radiation,

which has the normalised radial spectrum

ΠPlanck(k) =
15k3

π4k4
T (exp(k/kT )− 1)

, (3.1.40)

where the thermal wavelength kT and thermal wavenumber λT are defined, for tem-

perature T,

kT =
kBT

~c
, λT =

hc

kBT
, (3.1.41)

where kB is Boltzmann’s constant, h = 2π~ is Planck’s constant and c is the speed

of light in vacuo. It is easily shown that the moments of this spectrum are

kn Planck = 15(n + 3)!ζ(n + 4)/π4, (3.1.42)

where ζ here represents the Riemann ζ-function. The corresponding planar moments

KnPlanck are easy to determine by equation (3.1.12), although there is no simple an-

alytic form for the plane projected spectrum Π2Planck. The autocorrelation function,

correctly calculated in the errata to [BD00], is

CPlanck(R) =
15

(πkT R)4

(
1− (πkT R)3 cosh(πkT R)

sinh3(πkT R)

)
. (3.1.43)
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Figure 3.4: The shell spectrum: (a) Plane projected radial spectral density Π2shell(K)

(units km), (b) Autocorrelation function (units 1/km), (c) Intensity (light is more intense)

of a plane section of a sample function, (d) ξ = 0, η = 0 contours for the same plane

section, for four square wavelengths.
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Figure 3.5: The Planck spectrum: (a) Radial spectral density (not projected, in units of

kT ; note the peak at 2.82), (b) Autocorrelation function (units 1/kT ), (c) Intensity of a

plane section of a sample function, (d) ξ = 0, η = 0 contours for the same plane section,

in four square thermal wavelengths.
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The scalar caricature of blackbody radiation has historically been used several times

(such as [Ray89, EH10a, EH10b]), and certainly is reasonable as a model (in chapter 4

we shall consider blackbody vector radiation). Bourret [Bou60] studied the longitudinal

and lateral autocorrelation functions of vector waves with the Planck spectrum, finding

functions similar (but not identical) to equation (3.1.43). Note that, as in figure (3.5), the

peak of ΠPlanck, at 2.82kT , is large compared to kT , unlike the other radial spectra, whose

peaks are all approximately 1 in the appropriate wavenumber units. This implies that,

although kT , λT are convenient units to use, the structural features (such as dislocation

curvature) will all appear to be very small in these units (as is obvious, for example,

in figure (3.5c)). Note that this is the only spectrum out of the five listed here whose

dislocation pattern is moving, the real waves being complexified using the analytic signal

of section 1.5.

3.2 Statistical geometry of dislocation points in two dimen-

sions

This section consists of calculations of dislocation density, critical point density, dislo-

cation correlation functions, anisotropy ellipse eccentricity and speed probability density

functions, for the ensemble of isotropic gaussian random waves in the plane, defined in

equation (3.1.2).

3.2.1 Dislocation density

The first quantity to be calculated is the mean density of dislocation points in two dimen-

sions. It is the fundamental statistic for dislocations in the plane, giving an approximation

of the mean spacing of dislocations (as 1/
√

density), and is also the simplest of the calcu-

lations presented here. The number of dislocations DA in an area A was given in equation

(2.1.6). The average number dD of dislocations in the plane, therefore, is the average over

space (where the symbol A also represents the area of the set A), taking the limit as A
fills the space,

dD = lim
A→R2

DA
A

= 〈δ(ξ)δ(η)|ω|〉, (3.2.1)
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where in the second line, the spatial average limA→R2 1/A has been replaced, by ergodicity,

with the ensemble average, and we recall from equation (2.2.2) that ω = ξxηy−ξyηx. There

are therefore six gaussian random functions, ξ, η, ξx, ξy, ηx, ηy that are involved in the

evaluation, which are all independent from (3.1.18). Using (3.1.24) to find the necessary

probability density functions, we find

dD =
∫

dξdηdξxdξydηxdηy δ(ξ)δ(η)|ξxηy − ξyηx|P (ξ, η, ξx, ξy, ηx, ηy)

=
1
2π

1
(πK2)2

∫
dξxdξydηxdηy |ξxηy − ξyηx| exp(−(ξ2

x + ξ2
y + η2

x + η2
y)/K2)

=
1

π3K2
2

2π

∫ ∞

0
dX

∫ ∞

0
dY

∫ 2π

0
dθ X2Y 2| sin θ| exp(−(X2 + Y 2)/K2)

=
2K2

π2

∫ π

0
dθ sin θ

[∫ ∞

0
dX X2 exp(−X2)

]2

=
K2

4π
. (3.2.2)

In the third line, ∇ξ and ∇η are transformed to polar coordinates ∇ξ → (X, θ0),∇η →
(Y, θ0 + θ), and ω becomes XY sin θ under this transformation. θ0, not appearing in any

of the quantities being averaged, is integrated automatically. This technique could be

used because of isotropy, and shall be frequently taken advantage of in the calculations

to follow. Only the second moment appears in the result (3.2.2), having the correct

dimension of inverse length squared, and is multiplied by a trigonometric factor of 1/4π.

Most dislocation statistics will have this form (a moment of K, or product of moments,

times a trigonometric factor). The dislocation density may also be written in terms of the

derivatives of the field autocorrelation function C(R) when R = 0,

dD =
K2

4π
= −C ′′(0)

2π
. (3.2.3)

It is also straightforward to calculate the mean dislocation strength density ds by averaging

the expression (2.1.7) for dislocation strength in an area,

ds = 〈δ(ξ)δ(η)ω〉

=
K2

π2

∫ 2π

0
dθ sin θ ×

[∫ ∞

0
dX X2 exp(−X2)

]2

= 0. (3.2.4)

As one would expect, there is no statistical preference for either +1 or −1 dislocations,

and the net topological charge is zero. Therefore, in addition to the topological neutrality
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condition of the sign rule, there is a second, statistical neutrality condition, that of global

(statistical) neutrality.

It appears that this calculation was first made by Berry [Ber78], (for slightly more

general waves, including anisotropy), and was rederived by Halperin [Hal81], in a form

closer to that here. The densities for the various spectra are shown in table 3.1.

Dislocation averages, that is, averages of any quantity f for dislocations in the plane

(such as anisotropy ellipse eccentricity), are defined

〈f〉d ≡ 1
dD
〈δ(ξ)δ(η)|ω|f〉, (3.2.5)

which gives the correct statistical weighting.

3.2.2 Phase critical point density

It is also possible to evaluate the density of phase critical points (points where ∇χ = 0),

described and discussed in section 2.2. The dislocations and critical points are all realised

as zeros of the current J, defined in equation (2.2.1), and, using ergodicity and equations

(2.2.7), (2.2.9), the mean density dZ of current zeros is

dZ = 〈δ2(J)|detMJ|〉
= 〈δ2(J)|detMJsym|〉+ 〈δ2(J)| detMJasym|〉 (3.2.6)

where MJ = ∂αJβ, α, β = x, y, with determinants of symmetric and antisymmetric parts

given in equations (2.2.10), (2.2.11). The MJasym summand in the second line of (3.2.6)

merely gives the dislocation density (3.2.2), as may be verified by direct substitution of

variables. The critical point density dC (sum of saddle density dS and extremum density

dE) is therefore

dC = 〈δ2(J)|detMJsym|〉. (3.2.7)

The following Fourier identities are used, with µ real:

δ(µ) =
1
2π

∫
dt exp(itµ), (3.2.8)

|µ| = − 1
π

∫
−ds

s
∂s exp(isµ), (3.2.9)

(where
∫− represents a Cauchy principal value integral with pole at 0). Where t = (tx, ty),

equation (3.2.7) may be written in integral form

dC = − 1
4π3

∫
−ds

s
∂s

∫
d2t〈exp(it · J + isdetMJsym)〉. (3.2.10)
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The average is taken with respect to 12 gaussian random functions

ξ, η,∇ξ,∇η, ξxx, ξyy, ξxy, ηxx, ηyy, ηxy;

of these, (ξ, ξxx, ξxy) and (η, ηxx, ηxy) are correlated. The first few integrals are straight-

forward gaussians, and in turn are taken with respect to ∇ξ,∇η, t, ξxy, ηxy, and then

(ξxx, ξyy, ηxx, ηyy) as a vector. When this has been done, ξ + iη is replaced with ρ exp(iχ)

and s is rescaled to u = is, yielding

dC = − 2
π3K2

∫ 2π

0
dχ

∫ ∞

0
dρ ρ exp(−ρ2/2)

∫
−du

u
∂u

1
(4 + iK4u)

√
2− i(K4 −K2

2 )u
.

(3.2.11)

The ρ, χ integrals are trivial, giving 4π, leaving only the Cauchy principal value integral

in u. This may be evaluated as the average of two contour integrals, with the contour

displaced in the complex plane both above and below the origin, each of which may now

be safely integrated by parts (since neither contour now intersects the pole). The integrand

now has a double pole at the origin, a simple pole in the upper half-plane at u = 4i/K4,

and a branch point in the lower half-plane at −2i/(K4 − K2
2 ); the branch cut is taken

along the imaginary axis to −i∞. The upper contour can be deformed about the simple

pole, giving −πK
3/2
4 /16

√
3K4 − 2K2

2 ; the lower, deformed about the branch cut, can be

integrated by elementary means to give −π(K3/2
4 /

√
3K4 − 2K2

2−K2
2 )/16. The final result

is

dC =
K

3/2
4

2πK2

√
3K4 − 2K2

2

− K2

4π
. (3.2.12)

Since the dislocation density is K2/4π, the total number of current zeros is

dZ =
K

3/2
4

2πK2

√
3K4 − 2K2

2

. (3.2.13)

Spatial averages ar replaced by ensemble averages in (2.2.8) to give the average Poincaré

index dI ,

dI = 〈δ2(J) detMJ〉. (3.2.14)

The determinant detMJ again separates into contributions from the symmetric and anti-

symmetric parts, the latter being simply the dislocation density. Each of the summands
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in (2.2.10) can be averaged in (3.2.14) separately:

〈δ2(J)
1
2
(∇ · J)2〉 =

K4 −K2
2

2πK2

〈δ2(J)(ξηxy − ηξxy)2〉 =
K4

8πK2

〈δ2(J)
1
2
(ξηxx − ηξxx)2〉 = 〈δ2(J)

1
2
(ξηyy − ηξyy)2〉

=
3K4 − 2K2

2

16πK2
, (3.2.15)

the result being that

dI = 0. (3.2.16)

This implies that, just as topological charge is statistically neutral, so is the Poincaré

index; this ought to be no surprise given that the field ψ is statistically stationary and

invariant with respect to change of overall phase.

By equation (2.2.13), the density of phase saddles dS is

dS =
1
2
(dZ − dI) =

dZ

2

=
K

3/2
4

4πK2

√
3K4 − 2K2

2

, (3.2.17)

and by (2.2.14), the number of phase extrema is

dE = dC − dS

=
K

3/2
4

4πK2

√
3K4 − 2K2

2

− K2

4π
. (3.2.18)

The densities of maxima and minima adding to give (3.2.18) are obviously equal. The size

of the ratio of dislocations to extrema depends on the relative size of the fourth moment

K4 compared with the second moment K2; if it is very small, most positive index current

zeros are dislocations, but as K4 dominates K2, more critical points are extrema, as seen

in the table.

The results for the five different spectra are tabulated in table 3.1, where densities

of dislocations and saddles (extrema density is just the difference of these) are given for

the various spectra, as well as a numerical approximation to the fraction f of dislocation

density divided by density of positive index current zeros (= dS = dD + dE).

The corresponding calculations for critical points in the intensity were made by [WH82],

and are shown there to be rather more complicated than the relatively simple functions
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Dislocation density dD Saddle density dS f = dD/dS

General value K2
4π

K
3/2
4

4πK2

√
3K4−2K2

2

-

Ring spectrum π π 1

(units Λ−2
m )

Disk spectrum π/2 π(2/3)3/2 0.919

(units Λ−2
disk)

Gaussian spectrum 2π 2
√

2π 0.707

(units Λ−2
σ )

Shell spectrum 2π/3 2
√

3π/5 0.962

(units λ−2
m )

Planck spectrum 80π3/63 1764
√

3π3/25
√

2929 0.566

(units λ−2
T )

Table 3.1: A comparison of dislocation and saddle densities in the plane, for the five

different spectra.

found here. Equation (3.2.11) shows that critical points are evenly distributed in phase

χ, and negative exponentially distributed in intensity ρ2, therefore being most likely to

be found for low intensities. Therefore saddles and extrema are most likely to be found

near dislocations, as would certainly be expected near dislocation creations/annihilations

by conservation of Poincaré index (via the mechanisms (2.2.5), (2.2.6)), and agrees with

(numerical) observations [SF95, Fre98a]. The probable proximity of saddles, extrema and

dislocations implies that there is some form of index screening analogous to the dislo-

cation charge screening discussed in the next section, but calculations for critical point

correlation functions (involving a 24× 24 correlation matrix) have not been possible.

3.2.3 Dislocation correlation functions

In this section, we consider the spatial structure of the distribution of dislocations, by

calculating the (planar) two-point dislocation correlation functions, for both dislocation

number and topological charge. The two points taken are RA,RB, and we use the field

autocorrelation function C(R) defined in equation (3.1.15). Isotropy and stationarity

ensure that any two points may be taken, and it is only the distance between the two

points that matters.
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The dislocation number correlation function g(R) is defined to be the (normalised)

average of the product of two local densities, separated by R = |RB −RA| :

g(R) =
〈δ(ξA)δ(ηA)|ωA|δ(ξB)δ(ηB)|ωB|〉

〈δ(ξ)δ(η)|ω|〉2 . (3.2.19)

As R → ∞, it is expected that the two local densities become statistically independent,

and g(R) → 1 by the normalisation. The dislocation charge correlation function gQ(R) is

defined to be the corresponding correlation for topological charge, where the local densities

are weighted by signω,

gQ(R) =
〈δ(ξA)δ(ηA)ωAδ(ξB)δ(ηB)ωB〉

〈δ(ξ)δ(η)|ω|〉2 . (3.2.20)

and, as R → ∞, we expect gQ(R) → 0 by (3.2.4). We shall neglect any self-correlation

(usually described by a δ-function at the origin).

If there is no correlation, the local dislocation densities are completely independent for

all R; this is the situation for a random distribution of signed points (Poisson distribution)

in the plane, which can have any specified density. Such a set of Poisson distributed dots

clearly have

gPoisson(R) = 1, gQ Poisson(R) = 0. (3.2.21)

Comparison shall also be made to another situation of arrangements of signed points in

the plane (rather than continuous field autocorrelations), namely the case of ionic liquids,

where, for simplicity, we consider two species (ions) identical except for opposite charges

±1, for example as considered by [HM86, HM75]. In liquid theory, the partial correlation

functions g++(R), g+−(R) are frequently studied, where

g++(R) ≡ g(R) + gQ(R), g+−(R) ≡ g(R)− gQ(R). (3.2.22)

Both of these functions approach 1 as R →∞, and represent the correlation of dislocations

with others of the same sign (different sign) alone.

If there are two dislocations close together (R is small), then expanding ψ, generically

the dislocations are of opposite signs, and in the limit R → 0,

g(0) = −gQ(0), (3.2.23)

implying g++(0) = 0, so there is a statistical repulsion of like-signed dislocations, a statisti-

cal effect of the higher codimension of high-strength singularities. Note that all references
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to attraction, repulsion, etc are statistical; no dynamics are implicit in the correlation

functions g(R), gQ(R), only the average over the ensembles of wavefields ψ.

The calculations involve the equations (3.1.19), and for convenience the notations

C ≡ C(R)

E ≡ C ′(R)

H ≡ −C ′(R)/R

F ≡ −C ′′(R)

F0 ≡ −C ′′(0) = K2/2 (3.2.24)

are used, recalling that C(0) = 1 by normalisation. The displacement R, is taken to be

in the x-direction for the calculation, as described in section 3.1. This implies that in the

averages (3.2.19), (3.2.20), there are two different nondiagonal correlation matrices, with

the two gaussian random vectors in ξ (and equivalently in η)

u1 = (ξA, ξB, ξAx, ξBx), u2 = (ξAy, ξBy), (3.2.25)

with correlation matrices

M1 =




1 C 0 E

C 1 −E 0

0 −E F0 F

E 0 F F0




, M2 =


F0 H

H F0


 . (3.2.26)

These matrices have determinants

detM1 ≡ D1 = [E2 − (1 + C)(F0 − F )][E2 − (1− C)(F0 + F )],

detM2 ≡ D2 = F 2
0 −H2, (3.2.27)

with relevant probability densities

P (ξA = 0, ξB = 0, ξAx, ξBx) =
exp(−u′1 ·N1 · u′1/2)

4π2
√

D1
,

P (ξAy, ξBy) =
exp(−u2 ·N2 · u2/2)

2π
√

D2
, (3.2.28)
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where

u′1 ≡ (ξAx, ξBx)

N1 =
1

D1


−[E2 − F0(1− C2)] CE2 − F (1− C2)

CE2 − F (1− C2) −[E2 − F0(1− C2)]




N2 =
1

D2


 F0 −H

−H F0


 (3.2.29)

and similarly for η, for which the correlation vectors are written v instead of u (and noting

the slight corrections from [BD00] equations (4.39), (4.40)).

The number correlation function g(R) is rather complicated to evaluate, mainly due

to the presence of the modulus signs in ω; these are transformed using a Fourier identity

similar to (3.2.9),

|ω| = 1
π

∫
dt

t2
(1− (exp(iωt) + exp(−iωt))/2). (3.2.30)

Applying this to (3.2.19) and multiplying out, one finds

g(R) =
1

d2
Dπ2

∫
dtA
t2A

∫
dtB
t2B

[T (0, 0)− T (tA, 0)− T (0, tB) + (T (tA, tB) + T (tA,−tB))/2],

(3.2.31)

where

T (tA, tB) = 〈δ(ξA)δ(ηA)δ(ξB)δ(ηB) exp(i(ωAtA − ωBtB))〉. (3.2.32)

Since the ω are quadratic in the integration variables, each such T is a gaussian vector

integral, which is easy to evaluate, using (3.2.28), (3.2.29),

T (tA, tB) =
1

(2π)2D(tA, tB)
, (3.2.33)

where D(tA, tB) is the determinant of the matrix in the gaussian integral, given by

D(tA, tB) = (1−C2)+(t2A+t2B)F0(E2−F0(1−C2))−tAtBH(CE2−F (1−C2))+t2At2BD1D2.

(3.2.34)

tA, tB are now rescaled, and defining the R-dependent functions

Y ≡ H2(CE2 − F (1− C2))2

F 2
0 (E2 − F0(1− C2))2

Z ≡ D1D2(1− C2)
F 2

0 (E2 − F0(1− C2))2

X ≡ [E2H − F0(CE2 − (1− C2)(F −H))][E2H + F0(CE2 − (1− C2)(F + H))]
F 2

0 (E2 − F0(1− C2))2

=
√

(1− Y + Z)2 − 4Z (3.2.35)
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the expression becomes

g(R) =
F0(E2 − F0(1− C2)

4π4d2
D(1− C2)2

∫
dtA
t2A

∫
dtB
t2B

I(tA, tB, Y, Z), (3.2.36)

where

I(tA, tB, Y, Z) = 1− 1
1 + t2A

− 1
1 + t2B

+
1 + t2A + t2B + Zt2At2B

(1 + t2A + t2B + Zt2At2B)2 − 4Y t2At2B
. (3.2.37)

tA is now evaluated by residues, and this leaves the one remaining integral

g(R) = −2(E2 − F0(1− C2))
πF0(1− C2)2

∫ ∞

0

3− Z + 2Y + (3 + Z − 2Y )t2 + 2Zt4

(1 + t2)
√

1 + (1 + Z − Y )t2 + Zt4
. (3.2.38)

It is possible to evaluate this integral, and the result involves elliptic functions in a rather

nonilluminating way;1

g(R) =
2(E2 − F0(1− C2))

πF0(1− C2)2
(2
√

2− Y + 2Z − i√
2UZ

[(4− U)ZFp − 4ZEp

+ 2Y UΠp + 2
√

Z(UEm + 2Y Πm − (1 + X + Y )Fm)]), (3.2.39)

where

Fp = F (i arcsinh(
√

V/2)|U/V ),

Fm = F (−i arcsinh(
√

2/V )|V/U),

Ep = E(i arcsinh(
√

V/2)|U/V ),

Em = E(−i arcsinh(
√

2/V )|V/U),

Πp = Π(2/V ; i arcsinh(
√

V/2)|U/V ),

Πm = Π(V/2;−i arcsinh(
√

2/V )|V/U) (3.2.40)

where F, E, Π are the incomplete elliptic functions of the first, second and third kinds re-

spectively (with the conventions for elliptic functions being those of Mathematica [Wol99])

and the symbols used are not to be confused with other definitions of E, F, Π. Finally,

U ≡ 1 + X − Y + Z, V ≡ 1−X − Y + Z. (3.2.41)

The charge correlation function gQ(R) is considerably easier to find than the number

correlation g(R); having integrated out the trivial δ-functions, the eight first derivatives
1The integral (3.2.38) was calculated symbolically using Mathematica, with (3.2.39) being the (sim-

plified) output. It is possible this function may be simplified further. See [SBS01] for an alternative

derivation.
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remain, giving

gQ(R) =
1

d2
D(2π)6D1D2

∫
d2∇ξAd2∇ξBd2∇ηAd2∇ηB ωAωB

× exp(−(u′1 ·N1 · u′1 + u2 ·N2 · u2 + v′1 ·N1 · v′1 + v2 ·N2 · u2)/2). (3.2.42)

The gaussians are Fourier transformed, and, integrating by parts, the quadratic terms in

ωA, ωB can be replaced with derivatives. The resulting the integration is easy, producing

gQ(R) =
2E(CE2 − F (1− C2))

RF 2
0 (1− C2)2

=
1

C ′′2
0 R

∂R

[
C ′(R)2

1− C(R)2

]
(3.2.43)

The first equation of (3.2.43) is a special case of equation (6.27) in [Hal81].

For the five spectra, the number and charge correlation functions g(R), gQ(R) are

shown in figure (3.6), and the partial correlation functions g++(R), g+−(R) in figure (3.7),

where the repulsion of like charges is manifest. When R = 0,

g(0), gQ(0) = ±1
2

(
C(0)′′′′

C(0)′′2
− 1

)
= ±1

2

(
3K4

2K2
2

− 1
)

, (3.2.44)

the same combination of K2,K4 which appeared in the phase critical point calculations.

The value of g(0), gQ(0) is inversely related to the ratio f = dD/dS of dislocations to

saddles, listed for the five spectra in table 3.1. Dislocations (of opposite sign) are obviously

more likely to be closer together in waves whose spectra have many short waves.

The second equation of (3.2.43) implies the relation

2πdD

∫ ∞

0
dR RgQ(R) = −1 (3.2.45)

which is a screening relation, saying that, on average, the integral of the topological charge

throughout the rest of the plane must compensate the strength of a dislocation centred

on the origin (whose self interaction we neglect). In ionic structure theory, (3.2.45) is

known as the first Stillinger-Lovett sum rule [SL68b, SL68a, HM86], in the particularly

simple case of two equal but oppositely charged species. The second Stillinger-Lovett sum

rule related the second moment of R with respect to gQ with the screening length, that

is, the effective distance over which the screening in (3.2.45) takes place. It is perhaps

striking that these tools of statistical mechanics, conceived to handle situations where

there is a pairwise coulombic interaction between the points, should apply here, to the

zeros of complex wavefields signed by the topological charge. The generalisation of these

rules to zeros of the chaotic analytic function [Han98c] was observed by Hannay [Han96],
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Figure 3.6: Number and charge correlation functions g(R), gQ(R) for the five spectra, in

units of the appropriate inverse wavenumber. The thicker line represents g(R), the thinner

gQ(R). (a) Ring spectrum, (b) Gaussian spectrum, (c) Disk spectrum, (d) Shell spectrum,

(e) Planck spectrum.
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Figure 3.7: Partial correlation functions g++(R), g+−(R) for the five spectra, in units

of the appropriate inverse wavenumber. The thicker line represents g++(R), the thinner

g+−(R).(a) Ring spectrum, (b) Gaussian spectrum, (c) Disk spectrum, (d) Shell spectrum,

(e) Planck spectrum.
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from coulombic calculation of Jancovici [Jan87] although in these cases there was only one

species.

The nature of the screening may be understood by considering the charge Q(N) asso-

ciated with the dislocations in an area A = N/dD, where the mean number of dislocations

in A is N (À 1). The average charge 〈Q(N)〉 is obviously zero, but what about its mean

square fluctuation 〈Q2(N)〉? If the charges merely have average neutrality, then there

would be no long-range correlations, and we would expect 〈Q2(N)〉 ∼ N. However, the

nontrivial correlation functions give a more interesting result; the boundary of A must

be smoothed (here by a gaussian) in order that the subtle behaviour is not dominated by

unimportant edge effects (this was not done in [FW98]). With the circular A gaussian

weighted, we have

〈Q2(N)〉 =
1
2
N

(
1 + 2πdD

∫ ∞

0
dR RgQ(R) exp

(
−πR2

2A
))

=
1
4

∫ ∞

0
dR R

C ′(R)2

1− C(R)2
exp

(
−πR2

2A
)

(3.2.46)

where (3.2.43), (3.2.45) have been used. The first equality shows that, without screening

(as in the Poisson case where gQ(R) = 0), the leading term for large N would be N/2, and

the fluctuations would be those of a random distribution with overall neutrality. However,

for dislocations there is screening, and expanding in 1/N,

〈Q2(N)〉 =
1
4

∫ ∞

0
dR R

[
C ′(R)2

1− C(R)2

]
+O(N−1), (3.2.47)

provided the integral converges, leaving fluctuations that are independent of N for large

N. For the sharp spectra (the ring spectrum (3.1.27), shell spectrum (3.1.36)), the integral

does not converge, and asymptotics on (3.2.46) show that 〈Q2(N)〉 ∼ log N for the shell

spectrum, and 〈Q2(N)〉 ∼ √
N for the ring spectrum.

The relationship between dislocation correlation functions and salt correlation func-

tions must be treated with caution. Although the sharp spectra have oscillations in their

correlation functions (figures (3.6,3.7a,c,d)), the physical origin of the oscillation is dif-

ferent. For molten salts, the oscillation originates simply from packing effects due to the

finite radii of the charged species; for dislocations, packing is no problem, but any sharp

cutoff in the spectrum Π leads to oscillations in the correlation function C(R) (the Fourier

transform of the spectrum), and, excepting the disk spectrum, it is these spectra which

have infinite screening length. The ring spectrum in particular has long range structure;
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the J0 correlation function decays very slowly, and the geometric feature on the large scale

of these fields is very striking, and discussed in [OGH87]. It is possible that the ‘scarlet’

structures observed here may be quantified using dislocation correlations. Such patterns

are not seen for the other spectra.

The fact that the oscillations in the correlation function are not due to packing is

made more obvious when one looks at the partial correlation functions in figure (3.7a,c,d):

the oscillations of g++, g+− are almost in phase, whereas one expects them to be out of

phase from packing considerations [HM86]. The disk spectrum, with oscillations yet a

finite screening length, gives the closest comparison with ionic salts, but even its partial

correlation functions (plotted in figure (3.7c)) are in phase. There does not seem to be any

analogue in ionic theory to the correlation functions of the Gaussian and Planck spectra

(figure (3.6b,e)), where there are no oscillations at all.

The nearest neighbour probability density functions P (R), P++(R), P+−(R) may be

crudely estimated from the two-point correlation functions g(R), g++(R), g+−(R) by a

Poisson approximation (neglecting the correlations for between more numbers of points).

The probability that the nearest neighbour is a distance R from the singularity is taken to

be the probability of there being no dislocations in the annular rings of radii R1, R2, . . . ,

RM−1, with small widths δRi, and there being one dislocation in the ring with radius

R = RM , width δR, the approximation being that the number in each such annular ring

is independent of the others (the true probability calculation would involve all multipoint

correlation functions). With this approximation,

P (R)dR = 2πR δR dDg(R)
M−1∏

i=1

(1− 2πRiδRi dDg(Ri)), (3.2.48)

and in the limit M →∞, δRi → 0,

P (R) = 2πRdRg(R) exp
(
−2πdD

∫ R

0
dR′R′g(R′)

)
, (3.2.49)

with appropriate substitutions for the partial correlation functions. For randomly dis-

tributed (Poisson) points, g(R) = 1 and (3.2.49) is simply a two-dimensional Poisson

distribution (ie a Rayleigh distribution), whose length scale is fixed by 1/
√

dD. The dis-

tributions for the different spectra is given in figure (3.8), along with the earlier 1/
√

dD

estimate for mean spacing (providing the scale for the corresponding Poisson distribu-

tion). The repulsion of like charges is again clearly represented. A similar calculation
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Figure 3.8: Approximate nearest neighbour probability densities P (R) (dashed line),

P++(R) (thick line), P+−(R) (thin line) for the five spectra, (with R in units of inverse

wavenumber): (a) ring; (b) gaussian; (c) disk; (d) shell; (e) Planck.
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(and refinement based on the Bernoulli approximation), was made for the ring spectrum

by [SBS01], who also found good agreement between theory and simulation.

3.2.4 Phase anisotropy ellipse eccentricity probability density

Hitherto only densities of singularities and their correlations have been calculated; here

we begin calculating the averages of geometric quantities associated with dislocations, in

particular the distribution of eccentricity of the anisotropy ellipse, described in section 2.3,

with eccentricity ε given in terms of G,ω in equation (2.3.6). It is easier to manipulate ε2,

ε2 =
1

2ω2

√
G2 − 4ω2

(
G−

√
G2 − 4ω2

)
, (3.2.50)

where the joint probability of G and ω was given in equation (3.1.26). The probability

distribution of ε can be found in terms of ε2, using

P (ε) =
dε2

dε
P (ε2) = 2εP (ε2). (3.2.51)

The probability distribution of ε2 for dislocations is therefore (using equations (3.1.24),

(3.1.26), (3.2.5))

P (ε2) =
〈

δ

(
ε2 − 1

2ω2

√
G2 − 4ω2

(
G−

√
G2 − 4ω2

))〉

d

=
4

K3
2

∫ ∞

0
dG exp(−G/K2)

∫ G/2

0
dω

×ωδ

(
ε2 − 1

2ω2

√
G2 − 4ω2

(
G−

√
G2 − 4ω2

))

(rescaling ω → u = 2ω/G)

=
4

K3
2

∫ ∞

0
dG (G2/4) exp(−G/K2)

︸ ︷︷ ︸
K3

2/2

∫ 1

0
duuδ(ε2 − 2

u2

√
1− u2(1−

√
1− u2))

(rescaling u → v =
√

1− u2)

= 2
∫ 1

0
dv vδ(ε2 − 2v(1− v)/(1− v2))

(rescaling v → w = 2v/(1 + v))

= 4
∫ 1

0
dw

w

(2− w)3
δ(ε2 − w)

=
4ε2

(2− ε2)3
. (3.2.52)

Thus, by (3.2.51), the probability density for the eccentricity of the core anisotropy ellipse,
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in two dimensions, is

P2(ε) =
8ε3

(2− ε2)3
. (3.2.53)

The moments of this distribution are

〈ε〉d,2 =
8

4 + n
2F1(1, 3; (3 + n)/2;−1), (3.2.54)

where 2F1 denotes the (Gauss) hypergeometric function [AS65]. The first two moments

are

〈ε〉d,2 = arctanh
1√
2
− 1 ≈ 0.8697

〈ε2〉d,2 = 2(2 log 2− 1) ≈ 0.7726 (3.2.55)

The probability distribution and moments are all completely independent of the spectrum,

unlike the other averages (density, speed, etc). This is because the eccentricity only

depends on quadratic objects involving first derivatives (G and ω), giving rise to a factor

of K2 which is cancelled in the dislocation normalisation. The average eccentricity 〈ε〉d,2 is

quite large and universal, implying that a generic dislocation is in fact rather anisotropic.

An ellipse with this eccentricity (with phase lines) is shown in figure (3.9). Note that

this eccentricity is not the same, in general, as the eccentricity on average of the ellipse

associated with ∇ψ at an arbitrary point in the field, since the first line of (3.2.52) involves

the dislocation average (3.2.5), with an extra factor of |ω| in the integral.

3.2.5 Planar speed probability density

The final planar statistic we consider is that of speed V, given in equation (2.4.4), which

involves the averaging the gaussian random functions ξ, η,∇ξ,∇η, ξt, ηt. Therefore, the

calculation involves the correlation matrices

M± =


 1 ±cK1

±cK1 c2K2


 (3.2.56)

for the vectors u+ = (ξ, ηt),u− = (η, ξt). Note that for plane sections of spatial waves,

kn should be used here rather than the projected Kn, as discussed after the equations

(3.1.18). The matrices M± imply that the relevant joint probability density functions

(when ξ, η = 0) are

P (ξ = 0, ηt) =
1

2πvc

√
K2

exp(−η2
t /2v2

ck2)

P (η = 0, ξt) =
1

2πvc

√
K2

exp(−ξ2
t /2v2

ck2), (3.2.57)
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where vc is the characteristic velocity, defined

vc ≡





c
√

1−K2
1/K2 (two-dimensional wave)

c
√

1− k2
1/k2 (plane section of three-dimensional wave)

. (3.2.58)

vc is limited by the speed of the carrier wave, reaching that limit as K2
1/K2 → 0. V is

rescaled to be in units of vc,

Vsc ≡ V/vc, (3.2.59)

and the probability density function for speed is found using

P (V ) =
1
vc

P (Vsc) =
2V

v2
c

P (V 2
sc). (3.2.60)

Using equations (2.4.5), (3.1.24), we have

P (V 2
sc) =

〈
δ

(
V 2

sc −
[
(ξ2

t (∇η)2 + η2
t (∇ξ)2 − 2ξtηt∇ξ · ∇η)

v2
cω

2

])〉

d

=
1
2π

∫
dq exp(−iqV 2

sc)
〈

exp
(

iq
[
(ξ2

t (∇η)2 + η2
t (∇ξ)2 − 2ξtηt∇ξ · ∇η)

v2
cω

2

])〉

d

(using equation (3.2.8) )

=
4
π

∫
dq

∫ ∞

0
dG

∫ G/2

0
dω

ω2 exp(−G + iqV 2
sc)√

ω2 + 2iGq − 4q2
, (3.2.61)

where in the final line, equations (3.1.26), (3.2.57), have been used, and G,ω rescaled.

The final integral is evaluated (see [BD00] appendix B) to give

P (V 2
sc) =

2
(2 + V 2

sc)2
, (3.2.62)

which, by (3.2.60), implies

P (V ) =
4v2

cV

(2v2
c + V 2)2

. (3.2.63)

Although vc cannot be greater than the speed c of the component waves, the distribution

(3.2.63) is not limited, and admits arbitrarily high speeds.

All moments of this distribution diverge except for the first, which is

〈V 〉d =
πvc√

2
. (3.2.64)

The only spectrum we are considering with moving dislocations is the Planck spectrum,

for which, by (3.1.42),

vc Planck = c

√
1− 68040ζ(5)2

π10
≈ 0.4678c, (3.2.65)

so the average speed of dislocations in plane sections of (scalar) blackbody radiation is

1.039c; faster, on average, than the speed of light.
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3.3 Statistical geometry of dislocation lines in three dimen-

sions

We now come to the calculations of statistical properties of dislocation lines in space,

calculating quantities that were found in chapter 2 sections 2.5, 2.7, 2.8. As before, all

quantities depend only on the spatial moments kn of the spectrum (3.1.8).

3.3.1 Dislocation line density

The average length of dislocation line in space, dD,3 plays an identical role for the three

dimensional statistics as the two dimensional density dD (3.2.1) did in two. By ergodicity,

it may be found using the formula (2.5.1) for dislocation length in a volume, so

dD,3 = 〈δ(ξ)δ(η)|∇ξ ∧∇η|〉, (3.3.1)

where now the ensemble is that of the three dimensional waves (3.1.1). Using a similar

trick of writing the (rescaled) coordinates of ∇η = Y
√

k2/3 in terms of ∇ξ = X
√

k2/3,

(transforming the X direction to the z-axis gives jacobian 4π and Y has polar angles θ, φ

with respect to this direction),

dD,3 =
1

(2π)4

(
3
k2

)3 ∫
d3∇ξd3∇η |∇ξ ∧∇η| exp(−3((∇ξ)2 + (∇η)2)/2k2)

=
4πk2

3(2π)4

∫ ∞

0
dX

∫ ∞

0
dY

∫ 2π

0
dφ

∫ π

0
dθ X3Y 3 sin2 θ exp(−(X2 + Y 2)/2)

=
k2

3π
(3.3.2)

Since geometric properties are invariant under rotation, we shall frequently choose a simple

local frame when spherical averaging is necessary.

Comparison with (3.2.2) shows that, for a plane section of a three dimensional wave,

dD,2 =
k2

6π
=

dD,3

2
, (3.3.3)

the ratio of 1/2 coming about since

dD,2

dD,3
=
〈|ωz|〉
〈|ω|〉 , (3.3.4)

and the average modulus of the z-component of any isotropically distributed unit vector

e is

〈|ez|〉 =
1
4π

∫ 2π

0
dφ

∫ π

0
dθ sin θ| cos θ| = 1

2
. (3.3.5)
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This result holds generally for the distribution of points in plane sections of any random

set of lines which are isotropically distributed, and shall be used in the corresponding

calculations of three dimensional polarization singularity densities in section 4.6.

Dislocation averages in three dimensions are defined, in analogy with (3.2.5). For a

quantity f, its dislocation average is

〈f〉d,3 ≡ 1
dD,3

〈δ(ξ)δ(η)|ω|f〉, (3.3.6)

which again gives the correct statistical weighting.

3.3.2 Anisotropy ellipse probability density in three dimensions

As stated in 2.5, the anisotropy ellipse is defined in three dimensions in the (∇ξ,∇η)

plane normal to the dislocation direction. With the three dimensional definition of G, ω,

distributed as in (3.1.25), the squared eccentricity ε2 is the same as in equation (3.2.50).

The calculation is very similar to its two dimensional analogue (3.2.52), and the eccentricity

probability density is

P3(ε) =
24ε3

√
1− ε2

(2− ε2)4
, (3.3.7)

where, of course, 0 ≤ ε ≤ 1. This distribution has moments

〈εn〉 =
6
√

π(1 + n/2)!
((5 + n)/2)! 2F1(3/2, 4; (7 + n)/2;−1) (3.3.8)

and the first two moments are given explicitly by

〈ε〉d,3 =
3π

8
√

2
= 0.8330,

〈ε2〉d,3 =
(3π − 8)

2
= 0.7124. (3.3.9)

As with the two-dimensional case, these are universal for all spectra, but are less than the

corresponding moments (3.2.55). This is expected, since if an elliptic cylinder is obliquely

sliced (the dislocation crosses the plane, but is not normal to it), the eccentricity of the slice

is greater than that of the transverse ellipse. Ellipses with the eccentricities 〈ε〉d,2, 〈ε〉d,3

are shown in figure (3.9).

3.3.3 Dislocation speed in three dimensions

The relationship between the distribution of speeds in two and three dimensions is similar

to the distribution of ellipse eccentricities; the expressions for speed (2.4.4) and its square
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(a)
 (b)


Figure 3.9: Anisotropy ellipses (with phase lines in intervals of π/6) with the mean ec-

centricities (a) transverse to dislocation lines in space 〈ε〉d,3 from (3.3.9) (b) in the plane

〈ε〉d,2 from (3.2.55).

(2.4.5) are identical in two and three dimensions, for ∇, ω defined appropriately. The

characteristic speed vc (3.2.58) is identical for speed in plane sections and in space. The

calculation is similar to (3.2.62), and details of the calculation may be found in [BD00].

The resulting probability density function for transverse speed v of a dislocation line is

P (v) =
35/2vv3

c

(3v2
c + v2)5/2

. (3.3.10)

Only the first two moments do not diverge:

〈v〉d,3 =
√

3vc = c

√
3

(
1− k2

1

k2

)
,

〈v2〉d,3 = 6v2
c = 6c2

(
1− k2

1

k2

)
(3.3.11)

The first moment is less than the first moment of the distribution plane section speed V

(3.2.64), as expected from the discussion in section 2.5. The only spectrum with nonzero

vc is the Planck spectrum, with characteristic speed given in (3.2.65). The root mean

square transverse speed of dislocation lines in blackbody radiation is therefore 1.146c.

3.3.4 Statistics of curvature and torsion

The observation (2.7.4) that, in an appropriate reference frame, the squared curvature

is equal to the squared speed (with ξzz, ηzz replacing ξt, ηt) means that the probability

density function for curvature is the same as for speed (3.3.10). This reference frame is

chosen when integrating to find the curvature distribution. When this is done (ie averaging

the expression (2.7.4), there are only two (identical) nondiagonal correlation matrices (as
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with speed), that between ξ and ξzz, and between η and ηzz; they both have the same

matrix ( 1 −k2/3
−k2/3 k4/5

). This implies, anticipating averaging only on dislocations,

P (ξ = 0, ξzz) =
1

2πκc

√
k2

exp(−ξ2
zz/2k2κc), (3.3.12)

and similarly for η, ηzz. κc is the characteristic curvature, defined analogously to charac-

teristic speed vc,

κC ≡
√

9k4 − 5k2
2

45k2
. (3.3.13)

The calculation of the curvature probability density is now identical to the three dimen-

sional speed probability density, so the resulting distribution is

P (v) =
35/2κκ3

c

(3κ2
c + κ2)5/2

, (3.3.14)

with first two moments

〈κ〉d =
√

3κc, 〈κ2〉d = 6κ2
c . (3.3.15)

Note that the form for κc is similar to the distribution of phase saddles in plane sections

(3.2.17) using (3.1.12), because the averages involve the same correlation matrix (between

second derivatives ξii and the field ξ). With the shell spectrum, κc = 2km/
√

45, so the

mean square curvature is

〈κ〉d = 2〈κ〉2d =
8k2

m

15
; (3.3.16)

a measure of the radius of curvature is

1/
√
〈κ〉d = 0.218λm, (3.3.17)

indicating that dislocations are sharply curved on the wavelength scale. For the Planck

spectrum,

〈κ2〉d = 2〈κ〉2d =
5938k2

T

1575
. (3.3.18)

The average radius of curvature is approximated by

1/
√
〈κ2〉d = 0.026λT . (3.3.19)

If this were measured in units estimated from the peak of the Planck spectrum (3.1.40),

this comes to be about 0.2, similar to (3.3.17).

The torsion calculation (using (2.7.6)) is considerably more complicated; not only does

it involve third derivatives of ξ, η, but is divided by κ2, making evaluation of the integrals

rather difficult. It has not been possible to calculate the probability density function of

torsion, and its second moment seems to diverge.
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3.3.5 Statistics of twist and twirl

In this section the probability density functions of the various twist and twirl values from

section 2.8 are calculated, and the notation of that section is used, such as ∇ξ = X,∇η =

Y. The dislocation may be rotated to be in the z-direction without loss of generality, as

in the previous section. We shall calculate the distribution of the phase helicoid twist

Tw(χ) (2.8.2), the azimuth-average phase twist Twφ (2.8.7), Berry’s screwness parameter

σ (2.8.8), the phase and azimuth twirls twφ, twχ (2.8.9), (2.8.10), and their difference, the

twirl twist Twtw (2.8.11).

The individual phase helicoid twist Tw(χ) is easy to evaluate; any phase may be chosen

by statistical gauge invariance, and we choose to work with the surface corresponding to

ξ = 0, which has twist

Tw(0) =
T ·X ∧X′

X2
(3.3.20)

The only second derivatives appearing are the cross terms ξxz, ξyz which are statistically

independent of the other functions in the average by (3.1.17). Therefore the probability

distribution of Tw = Tw(0) is (by (3.1.24))

P (Tw) = 〈δ(Tw −T ·X ∧X′/X2)〉d
=

3
4Twc

1
(1 + Tw2/Tw2

c)5/2
, (3.3.21)

where details of the calculation are omitted. Twc is the characteristic twist, defined by

Twc =
√

k4

5k2
. (3.3.22)

The other twists can all be found by using the conditional probability density function

P (f ;G, ω), where f is the appropriate twist. For screwness σ, this is

P (σ; G,ω) =
√

15/2πk4

√
G exp(−15Gσ2/2k4), (3.3.23)

and the others are the same apart from a different dependence on G,ω. For σ, there is

a factor of G in the exponent (multiplied overall by
√

G for normalisation). This factor

is replaced by 4ω2/G for Twφ, (G + 2ω) for Twtw, and (G2 − 3ω2)/G for the two twirls

twφ, twχ. The probability density calculations are similar to that of Tw in (3.3.21), except

the distribution (3.1.25) for G and ω is used. The resulting normalised probability density

functions of the various twists and twirls are (all are scaled in terms of the characteristic
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First moment 〈|f |〉 Second moment 〈f2〉
Phase helicoid twist Tw 1

2
1
2

Azimuth-averaged twist Twφ
15
32

1
2

Screwness σ 5
16

1
2

Twirl-averaged twist Twtw
7

4
√

2
− 1 1

2

(
log 2− 1

2

)

(Phase and ellipse) twirls tw 0.7363 not convergent

Table 3.2: Table of first and second moments of the various twists and twirls, in appropriate

units of characteristic twist Twc, computed from (3.3.21), (3.3.24).

twist Twc (3.3.22))

P (σ) =
35

32(1 + σ2)9/2
,

P (Twφ) =
3

32Tw4
φ

(
2− (2 + 7Tw2

φ)

(1 + Tw2
φ)7/2

)
,

P (Twtw) =
1
8

(√
2(11 + 8Tw2

tw + 32Tw4
tw)

(1 + 2Tw2
tw)7/2

− 4
(1 + Tw2

tw)3/2

)
,

P (tw) =
1

32tw4(1 + tw2)5/2

(
(2 + tw2)(3 + 3tw2 + 8tw4)E

(
tw2

1 + tw2

)

−2(3 + 3tw2 + 2tw4)K
(

tw2

1 + tw2

) )
, (3.3.24)

where in the last equality, tw represents either twφ, twχ, and K,E represent the complete

elliptic integrals of the first and second kinds [AS65]. The five different distributions are

plotted in figure (3.10), and their first two moments are given in table (3.2). Although

the twists were all equal for the twist example (2.8.3), the distributions are all different

for dislocations in random waves.

From the table and figure, it is clear that the distribution of azimuth-averaged twist

Twφ is closest to the twist of a single phase surface Tw = Tw(χ).

The characteristic twist of the shell spectrum is Twc = km/
√

5. A measure of the mean

pitch of a single phase helicoid is

2π/
√
〈Tw2〉d =

√
10λm. (3.3.25)



3.4 Discussion and Conclusions 99

0.5 1 1.5 2

0.2

0.4

0.6

0.8

1

1.2

1.4
P

Figure 3.10: The probabilities of the different twists and twirls, given by equations (3.3.21),

(3.3.24). In ascending order up the y-axis, they are: twirl tw (thick black line), helicoid

twist Tw (thin black line), azimuth-averaged twist Twφ (dotted line), screwness σ (dashed

line), twirl-averaged twist Twtw (thick grey line).

3.4 Discussion and Conclusions

In this chapter, we have used a natural isotropic random wave model to calculate the

statistics of geometric quantities of dislocation points in three dimensions, and dislocation

lines in three. Apart from the calculations involving speed, the wave equation played

only a minor role, and, with appropriate modifications, many of the averages apply to

ensembles of more general random functions.

For dislocation points in the plane, the interesting questions that remain are connected

with the various correlation functions, and were discussed in detail in section 3.2.3. As

indicated there, it is possible that the ring spectrum correlation functions can be used

to explain the morphological scarlet structures observed by [OGH87], although so far,

investigation of this question has not produced any interesting new results. Further insight

may be gained from a calculation of the critical point correlation functions (with Poincaré

index playing the role of charge). However, the multiple integral necessary to evaluate

these functions has so far proved intractable.

For dislocation lines, of the quantities averaged here (core ellipse eccentricity, speed,

curvature and the various phase twists) have been local properties, depending only on
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the local derivatives at a point on the dislocation (detailed torsion statistics were not

possible, and the distribution of Twχ (2.8.2) was not even attempted). More interesting

statistics are global (that is, topological). Are dislocation lines, on average, infinitely long

or closed loops? We shall see in chapter 5 that dislocation loops may be knotted, but does

knottedness (or linking) occur with finite probability? If so, what is the distribution of

knot invariants (screw numbers), etc? It is not clear how one should even go about trying

to evaluate these global statistics.



Chapter 4

Polarization singularities in vector

waves

‘ “In giving to these sides [of the vertical ray] the name of poles, [Malus]

calls the modification which imparts to light properties relative to these poles,

polarization ... ” But this unfortunately assumed a sense of pole quite different

from its use in astronomy, geography, and magnetism, with the consequence

that polarization as applied to light and radiant heat has nothing in common

with magnetic or electric polarization.’

From the etymology for polarize in the Oxford English Dictionary, 2nd edition, 1989

(the quotation is translated from Nouveau Bulletin de Sciences 45, March 1811)

This chapter is concerned with the details of polarization singularities, their nature,

and their statistical densities in random vector waves in both two and three dimensions.

General results concerning ellipses are in appendix A, and the statistical part relies heavily

on the previous chapter (particularly section 3.1). Some of the earlier material in this

chapter is well-known; some of the new results and statistics for polarization singularities

in three dimensions have been published in [BD01c]. The structures described here are

generalised to singularities in tensor waves in chapter 6.

101
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4.1 Polarization: The vector nature of vector waves

The waves considered in chapters 2, 3 were scalar fields, in which the topological sin-

gularities were nodal points and lines. However, many waves in physics, particularly

electromagnetic radiation and light, are physically described by vectors (or, more gener-

ally, tensors), requiring additional physical parameters other than phase and amplitude

to describe them. This additional structure shall be referred to as the polarization struc-

ture of the field, and topological singularities (of codimension 1,2,3) in such waves are

singularities of the polarization structure rather than phase.

As the author of the quotation above appreciated, the ‘poles’ of a polarized plane wave

are rather different from the poles of a magnet; the polarization ellipse is invariant with

respect to a rotation by π, unlike a magnet (which also requires the poles to change sign).

This rotational symmetry, as we saw in chapter 1, implies that the index of a point of

circular polarization in a vector wavefield is in units of 1/2, rather than 1.

As with scalar waves, the vector wavefields we shall use are complex, where, if necessary,

the complex analytic signal of a real vector field is used. The topological singularities

in such fields are therefore different from the saddles, sources, sinks and circulations of

real vector fields. As phase is varied, the real part of the complex vector traces out an

ellipse (the polarization ellipse), and the polarization singularities occur when the ellipse

is circular (C singularities) and when it is linear (L singularities). These singularities are

invariant with respect to a global phase change, as were the dislocations studied earlier.

In paraxial vector waves, all of the component plane waves propagate in (almost) the same

direction, so the vectors are confined to the same transverse plane, and the polarization

ellipse field resides in this plane [Nye83b, Nye83a]. Although these references consider

the paraxial field in three dimensions, we shall only consider the field in the transverse

plane, and so have a two-dimensional vector field in two dimensions. In the more general

nonparaxial case, in three dimensions, the plane wave components may be propagating in

any direction, and the planes of the polarization ellipses at different places in space are

different [NH87].

The codimension of L singularities, unlike C singularities or dislocations, is sensitive

to the dimension of the wavefield (ie whether it is paraxial or not), as we shall see. More

care must therefore be taken than for scalar waves as to the nature of the field, and we

shall treat the two cases separately (there are, of course, similarities between the two
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cases as well). Although much of the discussion applies to any (complex) vector field, we

often shall be concerned when the field is the electric field describing light. In section 4.4,

possible singularities involving the entire electromagnetic field (involving both electric and

magnetic fields) are discussed.

We begin with a discussion of two-dimensional polarization singularities, since these are

easier to visualise and study experimentally, have a simpler geometry, and were historically

the first to be found.

4.2 Polarization singularities in two dimensions

4.2.1 The polarization ellipse

We consider a two dimensional vector field E : R2 −→ C2, possibly time-dependent, and

the complex vector E = E(R, t) is written in terms of its real and imaginary parts

E = P + iQ. (4.2.1)

As in equation (A.2.3), the real vector ReE exp(−iχ) traces out an ellipse as the real phase

χ varies. As χ increases, the ellipse is traced out either anticlockwise (right handed, or

positive polarization), or clockwise (left handed, or negative polarization). These conven-

tions differ from that of some authors. The field of ellipses is therefore invariant under

any phase transformation E → E exp(iχ), as are the Stokes parameters (A.4.7) describing

the ellipse at each point. For monochromatic fields, time acts like the phase; the physical

disturbance is the real part of E as phase varies, and the entire ellipse field is stationary.

We shall not consider the possibility that E is partially polarized, and time dependence

shall not play an important role in the following discussion.

The squared modulus of the vector E, |E|2 = |P|2 + |Q|2, plays the role of intensity

for vector waves, and shall be referred to as the intensity of the ellipse. It corresponds to

the Stokes parameter S0 (equation (A.4.7)). It only vanishes when both vectors P,Q are

zero, which occurs with codimension 4, so does not happen generically.

For complex vector E, the rectifying phase angle χ0 (defined modulo π), is defined:

tan 2χ0 =
2P ·Q

P 2 −Q2
, (4.2.2)

(see also equation (A.2.6) and the discussion there); the real and imaginary parts P0,Q0

of E exp(−iχ0) = P0 +iQ0 are orthogonal. This angle was called phase of the vibration by
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[Nye83a]. The smallest value of χ0 in the arctangent is taken, meaning either P0 or Q0

can be the major semiaxis, but we shall usually assume it to be P0. The angle the major

semiaxis P0 makes with the x-axis is denoted by γ, so

tan γ =
P0y

P0x
. (4.2.3)

The ellipse can also be described by coordinates on the Poincaré sphere, (that is, by

normalised Stokes parameters s1, s2, s3), with azimuthal angle β = 2γ. We also define the

phase-invariant quantity

N =
1
2

Im(E∗ ∧E)

= P ∧Q

= P0 ∧Q0

= PxQy − PyQx, (4.2.4)

which is the E-analogue of ω defined for the complex vector ∇ψ in equation (2.2.2). As

with ω, the sign of N defines the handedness of the ellipse (N > 0 right handed, N < 0

left handed), and 2N is the Stokes parameter S3, proportional to the area of the ellipse.

From (A.4.9), the ellipse eccentricity ε can be found from

ε2 =
1

2N2

√
|E|4 − 4N2

(
|E|2 −

√
|E|4 − 4N2

)
. (4.2.5)

As with ω defined in the plane, N may sometimes be considered as a vector in the z-

direction. There are four real parameters Px, Py, Qx, Qy describing the field at each point;

four geometric parameters describing the polarization ellipse are size of the ellipse (in-

tensity |E|2), phase of the ellipse (rectifying phase χ0), ellipse orientation angle γ, and

eccentricity ε, as discussed in section 1.3. There is, in addition, one discrete parameter,

the handedness of the polarization. At C points, χ0 and γ are singular, and on L lines,

the ellipse handedness is singular.

4.2.2 C points

The codimension of a C locus is 2 (ie a point in the plane), since there are two conditions

for the ellipse traced out by ReE exp(−iχ) to be a circle [Nye83a, NH87, BD01c]: P,Q

must be equal in length (since they are radii of the circle) and orthogonal (since they

are conjugate semidiameters of the ellipse, as shown in equation (A.2.7)). Defining the
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polarization scalar ϕ by

ϕ = u + iv ≡ E ·E = P 2 −Q2 + 2iP ·Q, (4.2.6)

the C conditions are satisfied if

ϕ = 0 at a C point. (4.2.7)

Complex vectors with a vanishing scalar product with themselves are called null [Syn58,

PR84b] or isotropic [Car66], (not to be confused with the use of the word isotropic em-

ployed for wave superpositions), and have important and interesting mathematical prop-

erties (which generalise to waves of higher spin, as explored in chapter 6).

There is no unique set of orthogonal semiaxes for a circle (any orthogonal pair of radii

suffice), so a C point is a singularity of the rectifying phase χ0, and indeed, this is the

phase which is singular, since from (4.2.2),

arg ϕ = 2χ0. (4.2.8)

Also,

|ϕ|2 = (P 2 −Q2)2 + 4(P ·Q)2

= P 4 + Q4 − 2P 2Q2 + 4(P ·Q)2

= (P 2 + Q2)− (2P ∧Q)2

= S2
0 − S2

3 = S2
0(1− s2

3)

= P 2
0 ε2, (4.2.9)

so the interpretation of the modulus of ϕ is the length of the major semiaxis times the

eccentricity of the ellipse, which is zero for a circle.

Geometrically, the fact that a unique semiaxis frame (P0,Q0) cannot be defined at a

C point implies that the orientation angle γ = β/2 is singular, suggesting an alternative

polarization scalar ϕS (the Stokes scalar), with zeros the C points, defined by

ϕS ≡ S1 + iS2 =
√

S2
0 − S2

3 exp iβ. (4.2.10)

This has the same modulus as ϕ by (4.2.9), but phase β instead of 2χ0. These two scalar

fields, ϕ and ϕS , are not equivalent, although they have the same zeros (since they have

the same modulus). ϕ is rotation invariant, but is dependent on the overall phase. ϕS , on
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the other hand, only depends on the ellipse geometry, and is completely phase invariant.

However, any rotation of the coordinate system changes the phase of ϕS by twice that

angle (since β = 2γ).

There is no simple geometric transformation between the two scalars, and they contain

different information, ϕ about the ellipse phase, ϕS the ellipse geometry. The u = 0

contours of ϕ are the locus of places where the conjugate semiaxes P,Q are of equal

length, v = 0 where they are orthogonal; S1 = 0 occurs when the ellipse semiaxes are in

the directions of the lines x = 0, y = 0, S2 = 0 when they are parallel to x = y, x = −y.

The existence of these two scalars is accounted for by the fact that two different geometric

quantities, γ and χ0, are singular at a C point.

The complex vector E can be written in a circular basis, in which it has components

α+, α−, as defined and discussed in section A.3, one of which is zero at a C point (α− = 0

for a right handed C point and vice versa). This provides a third way of identifying C

points: as dislocations in the scalar fields α+, α−, a zero in α± being a C point with the

opposite handedness ∓.

As described in chapter 1, the generic C points have index ±1/2 (+1/2 for lemon and

monstar, −1/2 for star), the sign corresponding to the sense in which γ rotates in a circuit

around the C point. Therefore, the sign of the (index ±1) phase singularity in the Stokes

scalar ϕS gives the correct sign of the C point index, the factor 2 from the fact that a

change of 2π in β implies γ changes by π.

Berry [Ber01a] constructed a simple field with a right-handed C point at the origin,

E(x, y) = (1 + iay, i(1− x)), (4.2.11)

which is a has index −1/2 (star) if a < 0, and index +1/2 if a > 0 (lemon if a < 2, monstar

otherwise). These fields, with the vectors P,Q, are shown in figures (4.1) (lemon) and

(4.2) (star), for a = ±1.

The relationship between the sign of a phase singularity in the polarization scalar ϕ

and the C point index is more complicated than for the Stokes scalar. For a right-handed

C point, the sign of the phase singularity in ϕ gives the correct sign of the C point. This

is because in the neighbourhood of the C point, neither of P,Q are generically zero, so

the (P,Q) frame, although not orthogonal, is smoothly defined (neither vector has any

circulations, nor are they collinear). Therefore the ellipses rotate about the (P,Q) phase

frame as well as the coordinate frame, giving the same index as the rotation. However, a
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Figure 4.1: A C point with index +1/2 (lemon) from (4.2.11) with a = 1. The thicker line

is the real part P = (1, 0), (see also figure (1.5)).

Figure 4.2: A C point with index −1/2 (star), from (4.2.11) with a = −1. The thicker line

is the real part P = (1, 0).
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left-handed C point behaves like the complex conjugate of a right-handed C point, so χ0

decreases around a left-handed C point where it increases around a right-handed C point.

This implies that, around an index +1/2 C point, zeros of ϕ have strength −1, and vice

versa.

This can be understood more clearly with a simple example. Define the field

ER = (c + x, y) + i(x, b + y), (4.2.12)

where c is a real positive constant, and b is real. Here, N = c2 + c(x + y), so the C point

is right-handed. For this field, up to linear terms only,

ϕ = ϕS = 2c((x− y) + i(x + y)) (4.2.13)

which is easily verified to have a +1 phase singularity at the origin, and is of lemon type.

By comparison, the function

EL = (c + x, y)− i(x, b + y), (4.2.14)

has a left-handed lemon C point at the origin, with polarization scalars (including linear

terms only)

ϕ = ϕ∗S = 2c((x− y)− i(x + y)) (4.2.15)

which has topological charge −1 at the origin. The Stokes parameters S1, S2 are the same

for each of ER,EL.

This example may also be used to see what happens with the sign of the index of the

C point and the dislocation strengths of the zeros of the circular components α+, α− : the

sign of the dislocation in α− corresponding to a right-handed C point is the same as that

of the C point index, whereas the sign of a dislocation in α+ corresponding a left-handed

C point is minus the sign of the C point index.

C points occur in the Poincaré sphere description at the poles, (right-handed at the

north pole, left at the south, the index of each being +1/2), and many of the points made

above correspond to a geometrical argument on the Poincaré sphere. The alternative po-

larization scalars ϕ, ϕS also imply that there is another geometrical object analogous to the

Poincaré sphere: this phase-Poincaré sphere has the same colatitude as the corresponding

Poincaré sphere (ie same third cartesian component s3 = 2N/|E|2), but with azimuth 2χ0

instead of β, implying that the phase-Stokes parameters are defined

(T0, T1, T2, T3) = (S0, Reϕ, Imϕ, S3), (4.2.16)
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which shall be used in chapter 6.

Since C points have been realised as phase singularities, the mathematics of chapter 2

applies, although ϕ, ϕS are not solutions to any wave equation, and are quadratic in the

field variables. There are two sign rules, one for each of the scalars; it seems that C points

of different handedness cannot generically be created/annihilated in pairs, since opposite

index, oppositely handed C points have the same strength in ϕ. Regions of right-handed

polarization and left-handed polarization are separated by the second type of paraxial

polarization singularity, the L line.

4.2.3 L lines and disclinations

The polarization ellipse becomes a line when the angle between P,Q vanishes (modulo

π), and the real vector ReE exp(−iχ) points in the same direction for all χ. This occurs

when

N = P ∧Q = S3/2 = 0. (4.2.17)

This requires the satisfaction of a single equation, implying that the polarization is linear

along lines; L singularities, in two dimensions, have codimension 1 ([Nye83a] calls them

S lines). Mathematically, on L lines, the complex vector E becomes a real vector times

a phase, and the singularity in this case is the handedness of the ellipse. (Codimension

1 singularities are usually singularities of a discrete variable, whereas higher codimension

implies singularity of a continuous variable [Mer79]). Generically, the L lines separate

regions of the plane of different handedness.

On a circuit around a closed L line, the change in the line orientation γ divided by

2π corresponds to the total index of C points enclosed by the L line. For instance, the

equator of the Poincaré sphere is a closed L line, where the linear ellipses rotate by +π/2

as β increases from 0 to 2π; there is a single lemon-type C point at the north pole.

The direction of the L line at a point can be found by finding the direction in which N

remains zero; if the point is taken to be the origin, the direction of the L line is R, where

R · ∇N = 0, (4.2.18)

ie a vector orthogonal to ∇N. The direction DL is therefore

DL = (PxQy,y−PyQx,y +Px,yQy−Py,yQx,−PxQy,x+PyQx,x−Px,xQy +Py,xQx), (4.2.19)
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and along the direction of DL, the region with right handed polarization is to the left. To

find the total length `L A of L line in an area A of the plane, equations (2.1.6), (2.5.1) are

appropriately modified,

`L A =
∫

A
d2R δ(N)|∇N |. (4.2.20)

We observe that |DL| = |∇N |.
There is another type of singularity, not phase invariant, called a wave disclination,

introduced by Nye [Nye83b]. These are places where, for a given phase χ, the real vector

Uχ(R) ≡ ReE(R) exp(−iχ) (4.2.21)

vanishes. If χ = 0 (π/2), these are the zeros of P (Q). Clearly, they have codimension 2,

and are always found along L lines. At any point on an L line, there is always a phase for

which that point is a disclination.

As phase varies (say with time), the disclinations move along the L line periodically

with period π. Not being invariants of phase, we shall not consider them in any more

detail, but notice that the number of disclinations in A for phase χ is

ddisc A =
∫

A
d2R δ2(Uχ)|Uχx,xUχy,y − Uχx,yUχy,x|. (4.2.22)

A disclination is a zero of the field Uχ, and generically has Poincaré index ±1 [Nye83b].

Of course, if one considers three-dimensional paraxial fields, disclinations are lines, as

described by [Nye83b].

4.3 Polarization singularities in three dimensions

4.3.1 The polarization ellipse in three dimensions

We are now interested in complex solutions of a three-dimensional vector wave equation

E : R3 −→ C3, where

E(r) = p(r) + iq(r), (4.3.1)

and p,q are three-dimensional vectors. As phase varies, the real vector

fχ = ReE exp(−iχ). (4.3.2)

traces out an ellipse in the (p,q) plane. The rectifying phase χ0 for the ellipse in three

dimensions is defined analogously to (4.2.2):

E exp(−iχ0) = p0 + iq0, (4.3.3)
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with p0,q0 perpendicular. The normal to the ellipse is given by

N = Nn ≡ p ∧ q = p0 ∧ q0, (4.3.4)

where N here corresponds to the modulus of the definition for N in two dimensions

(4.2.4). As before, and with ω defined previously, N is proportional to the area of the

ellipse. The ellipse is always right-handed with respect to the unit vector n. The field at a

point is determined by six real numbers (the components of p,q); these can be interpreted

geometrically as the ellipse intensity |E|2, the rectifying phase χ0, the eccentricity ε, but the

orientation of the ellipse in space now has three parameters: the direction of n providing

two, and the angle the ellipse makes in the plane normal to n, which as before shall be

called γ (these three angles, γ and the polar angles defining n, are equivalent to the three

Euler angles). Note that there is no smooth canonical way of ascribing a direction for

γ = 0 for all n. The handedness of the ellipse no longer has any meaning. The ellipse gives

rise to a positively oriented orthogonal frame field (p0,q0,n), which are the eigendirections

of the matrix

M = ReE∗ ⊗E = p⊗ p + q⊗ q, (4.3.5)

as discussed in section A.2. It is this frame that becomes singular at polarization singu-

larities [NH87, BD01c]. Note that the C lines and L lines defined here are called CT , LT

lines by [NH87].

4.3.2 C lines in three dimensions

The C conditions in three dimensions are analogous to those in two, and the polarization

scalar ϕ can be similarly defined:

ϕ = u + iv = E ·E = p2 − q2 + 2ip · q. (4.3.6)

The phase singularities of ϕ are C lines, where u = 0, v = 0. As with equations (4.2.8),

(4.2.9), arg ϕ = 2χ0, |ϕ| = p0ε, and p0,q0 do not uniquely exist at a C point as before. The

matrix M (4.3.5) is degenerate in its nonzero eigenvalues in this case. The degeneracies of

real symmetric matrices are well-known to have codimension 2, and are called diabolical

points (see, for instance, [Ber84] page 50).

The Poincaré sphere is not defined for three-dimensional polarization, and ϕS cannot

be defined. The Majorana sphere M2 can be used instead, and the details of this are
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explained in chapter 6. The problem is due to the lack of any canonical way of defining γ

for every ellipse orientation in three dimensions. The phase-Poincaré sphere, however, is

defined for complex vectors in three dimensions.

As with the three-dimensional definition of vorticity ω in section 2.5,

ωϕ =
1
2
∇ϕ∗ ∧∇ϕ = ∇u ∧∇v (4.3.7)

points in the direction of the C line, giving a form for the topological current. The direction

of the ellipse normal vector n is unrelated to the direction of the C line. However, in the

vicinity of a point r0 on the C line, the local ellipses are confined to the plane normal to

n(r0) and the C point in this plane generically has index 1/2, with lemon, star or monstar

morphology. The sign of the index of this C point is the sign of ωϕ · n, as described by

[NH87] (see in particular figure 2). This is consistent with the relation between index of

C points and phase singularities of ϕ, described in section 4.2.2, where the sign of the C

point index was seen to be the product of the handedness of the circle with the topological

charge of ϕ; n points in the direction with respect to which the ellipse is right handed.

Along a C line, its the index switches at points where n ·ωϕ = 0. The topological current

of the C line, however, does not change.

Any geometric property of dislocation lines (curvature, torsion, anisotropy ellipse) can

be found for C lines using the polarization scalar ϕ, although we do not provide a geometric

interpretation of the anisotropy ellipse, or the twist and twirl of a C line.

4.3.3 L lines and disclinations

The L condition for three-dimensional vectors is that p,q should be (anti)parallel, which

now is two conditions (the direction (two polar angles) of q corresponds to p). L singu-

larities therefore are lines in three dimensions, and are places where the ellipse normal N

is zero:

N = p ∧ q = 0 on an L line. (4.3.8)

The codimension of this phenomenon is only 2, although it is a zero of a three-dimensional

vector field; N is a cross product, and vanishes when p,q are parallel, which only requires

equality of the two sets of polar angles of p,q. Three-dimensional L lines are singularities

of the direction of the ellipse normal n, where the intermediate eigenvalue of the matrix

M (4.3.5) becomes zero, and the matrix is degenerate again. The direction DL of the L
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line, to be found below, is unrelated to the direction in which p,q and fχ coincide; we

shall denote the unit vector in the direction of p by ef .

Local to a point on the L line, the nearby n vectors are all coplanar, in the plane

normal to the direction of ef . It is therefore a singularity in a (locally) two-dimensional

vector field, and can be a source, sink, circulation or saddle. The index of the L line

switches when DL · ef = 0, as described by [NH87].

We now derive a general expression for the direction DL of the L line, taken initially to

be crossing the origin with ef in the z-direction. In this case, we have the local expansion

(where r = (x, y, z))

p(r) = (r · ∇px, r · ∇py, pz),

q(r) = (r · ∇qx, r · ∇qy, qz), (4.3.9)

so, to first order

N(r) = (r · (qz∇py − pz∇qy), r · (pz∇qx − qz∇px), 0)

= (A · r,B · r, 0). (4.3.10)

and if r lies in the direction of the L line, N(r) = 0 in (4.3.10). This direction must

therefore be in the direction of

DL = A ∧B

= (qz∇py − pz∇qy) ∧ (pz∇qx − qz∇px)

= ∇(p ∧ q)x ∧∇(p ∧ q)y. (4.3.11)

This can be written in coordinate-free form as

DL =
1
2
∇a ∧∇b(Na ∧Nb · ef ), (4.3.12)

where a, b are labels showing where the ∇ operators act (this is a notation suggested by

Feynman [FLS63a]). (4.3.10) can be used to find the necessary behaviour in E to make the

L line have the various vector field singularity morphologies described above. The choice

of ef (rather than −ef ) was arbitrary, and making this change reverses the direction of

DL; the sign of the product DL ·ef , remains the same, and the singularity does not change

index.

We now wish derive an expression for the total length of L line in a volume V, again

choosing coordinates such that the L line crosses the origin and ef (0) is in the z-direction
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(so DL = A∧B). The correct δ-functions, restricting the integral to the L line, are δ(A ·r)
in x, δ(B · r) in y, from (4.3.10), whose transverse jacobian is

∂xA · r ∂yB · r− ∂yA · r ∂xB · r = (A ∧B)z (4.3.13)

divided by the cosine of the angle between DL and ef . This cosine is (A ∧B)z/|A ∧B|,
giving a net jacobian factor of |A ∧B| = |DL|. Moreover, using the δ-function identity

δ(X)δ(Y ) =
δ(
√

X2 + Y 2)
π
√

X2 + Y 2
, (4.3.14)

and (4.3.10), the length of L line `L V in a volume V is

`L V =
∫

V
d3r

δ(N)
πN

|DL|. (4.3.15)

As with (2.5.1) and (4.2.20), the length of the simplest vector in the direction of the

singular line homogeneous in the field variables gives the correct jacobian.

Disclinations are defined for spatial waves in the same way as for paraxial waves (zeros

of fχ for phase χ) and are points on the L lines. The number of disclination points in

volume V is simply

ddisc V =
∫

V
d3r δ3(fχ)|∇fχ|. (4.3.16)

C lines and L lines can only cross if the ellipse at that point is both circular and linear,

that is, it vanishes (and E = 0). This phenomenon has codimension 6 (all of the six field

variables are zero), which is more of a restriction than the codimension 4 crossing of C

lines with themselves or L lines with themselves. Therefore, C lines and L lines repel,

and their points of intersection the true phase singularities of the vector field, where the

amplitude of the vector field is zero and phase is undefined.

4.4 Polarization singularities in electromagnetic waves

The previous section described topological singularities arising out of the structure of

complex three-dimensional vector wavefields. However, the full theory of electromagnetism

(in free space) involved two such fields, the electric field E and also the magnetic field H,

both of which are related to the magnetic vector potential A (in appropriate units):

E = −∂tA, H = ∇∧A. (4.4.1)
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All three fields in free space are solutions of the same vector wave equation (1.5.1), and it is

a natural physical question to ask whether there is a single singularity structure involving

the entire electromagnetic field.

Since E and H are derived from A by (4.4.1), we start by examining the polariza-

tion singularities of the vector potential A. There is immediately a problem, because

the positions of the polarization singularities are gauge dependent; the transformation

A → A + A0, where A0 is even a constant vector field, ruins the delicate polarization

structure of a singularity. A natural gauge to choose is the one (explicitly taken in (4.4.1)),

for which the scalar potential vanishes, as is done by [BW59], page 73. This requires trans-

verseness of A, ∇ ·A = 0.

If the field in this gauge is monochromatic, then time dependence may be factored

out, and the C and L lines are in the same places in the E and A fields. However,

there is no clear connection between the singularities of A and its curl, H, which involves

the differential structure of the field in a nontrivial way. There does not therefore seem

to be a connection between the polarization singularities in E and H, even in the field

is monochromatic. We shall see in section 4.6 that in the model of isotropic spatial

distributions of random plane electromagnetic waves, the components of E and H at a

point are statistically independent.

Many authors of more abstract texts [LL75, Syn58, PR84b] use the complex vector

V = ReE + i ReH (4.4.2)

which can be constructed in a natural way from the electromagnetic tensor Fµν (as is done

in the cited texts). The real and imaginary parts of ϕV ≡ V ·V are Lorentz invariant, so

the C lines have special invariant status in the field. The (instantaneous) Poynting vector

(electromagnetic current density vector) SPoy is defined [BW59]

SPoy = ReE ∧ ReH, (4.4.3)

and is the analogue of N (4.3.4) for the electromagnetic field V, that is, L lines are

instantaneous current stagnation lines. The Poynting vector is not Lorentz invariant, and

it can be shown that there is a Lorentz transformation that can transform the field such

that any point in the field lies on such a current stagnation line, provided that point is

not on a C line [PR84b].

The main problem with the interpretation of the field V is that the singularity lines

move (at optical frequencies) even in monochromatic waves (although for these the pattern
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is time periodic). In optics, it is more usual to consider the time-averaged Poynting vector

〈SPoy〉t, where,

〈SPoy〉t =
1
2
(E∗ ∧H + E ∧H∗), (4.4.4)

where E,H are now complex (see [BW59]p33). This real vector is the sum of two cross

products like (4.4.3), and does not generically vanish along lines (it cannot be written as a

single cross product of real vectors). Therefore the time averaged Poynting vector does not

have any time-dependent stagnation lines, so are not a vector analogue for dislocations,

which are stationary in monochromatic fields.

In chapter 6, three-dimensional vector fields are realised as spin 1 fields, and the po-

larization is parameterized by the Majorana sphere M2 (rather than the Poincaré sphere,

which is only appropriate for transverse paraxial fields). This suggests the theory of C and

L lines in three dimensions may be recast in a formalism evoking the quantum description

of light, and for the remainder of this section we shall reformulate the material of section

4.3 in quantum-mechanical terms.

To this end, we observe that for any two (real) three-vectors c,d, there is the identity

c ∧ d = −i(c · Ŝ)d, (4.4.5)

where the hermitian vector operator Ŝ is a three-dimensional representation of the spin

operator with cartesian basis [VMK88] (not to be confused with the Stokes parameters

S0, S1, S2, S3). Its components are vectors operating on d, and are

Ŝ = (Ŝx, Ŝy, Ŝz) =







0 0 0

0 0 −i

0 i 0


 ,




0 0 i

0 0 0

−i 0 0


 ,




0 −i 0

i 0 0

0 0 0





 , (4.4.6)

or more succinctly, in terms of the antisymmetric symbol, Si = −iεijk. (Note the small

correction from [BD01c] equation (3.2)). In quantum mechanics, in units of ~, Ŝ satisfies

the commutation rules for spin 1 particles,

Ŝ ∧ Ŝ = iŜ. (4.4.7)

None of the polarization structure is lost if the complex vector E is considered as a state

(parameterised by r, t), represented by the complex unit vector e

e =
E
|E| (4.4.8)
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The polarization ellipse is not affected if the overall phase of e is ignored, that is, if E is

taken to be a state in projective Hilbert space. In Dirac notation, we have



ex

ey

ez


 ≡ |e〉,

(
e∗x e∗y e∗z

)
≡ 〈e|, 〈e|e′〉 = e∗ · e′. (4.4.9)

The local expectation value S of the spin operator Ŝ (taking advantage of the antisymmetry

of its components), is

S = 〈e|Ŝ|e〉 =
2N
|E|2 , (4.4.10)

The local spin state can therefore be regarded as a vector perpendicular to the polarization

ellipse (with a length equal to the Stokes parameter s3 defined in the plane normal to S). It

is interpreted as the local angular momentum of e at r. C and L lines are loci of particular

spin values. By the C conditions,

S2 = S · S = (−ie∗ ∧ e) · (−ie∗ ∧ e) = 1− |e · e| = 1 on a C line. (4.4.11)

As one would expect, C lines therefore correspond to places where the (modulus of) spin

expectation is 1, and in fact |e〉 is an eigenstate of the operator n · Ŝ,

(n · Ŝ)|e〉 = in ∧ e

=
i((p ∧ q) ∧ (p + iq))
|p ∧ q|(p2 + q2)

=
i([p2q− (p · q)p] + i[(p · q)p− q2p])

|p ∧ q|(p2 + q2)
(on C line, |q| = |p|,p · q = 0)

=
p + iq
2p2

= |e〉. (4.4.12)

The sign of the eigenvalue corresponds to the fact that n points in the direction of the

circulation of e.

For L lines, (4.3.8) and (4.4.10) show that the expectation S = 0 on an L line, and

indeed |e〉 is an eigenstate of the operator e∗ · Ŝ with eigenvalue 0. These observations

support the photon interpretation of polarization of light fields.

The vector direction of an L line DL may therefore be rewritten more transparently,

DL =
1
2
N2 Im〈∇n| ∧ (ef · Ŝ)|∇n〉, (4.4.13)
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where the cross product connects the gradients. This type of notation is frequently used

in the theory of geometric phases, where the two spaces (configuration space and state

space) may be quite different [SW89].

It is possible to extend the quantum-style description to other properties of the field.

For instance, the natural definition of the momentum k (again in units of ~) of the field

E is the local expectation of the momentum operator on the state |e〉, namely

k ≡ −i〈e|∇|e〉 (4.4.14)

Nye [Nye91] observed that this geometric phase 1-form (Pancharatnam phase difference)

connecting the field at neighbouring points, is the natural definition of a propagation

direction at a point in the field. It was found by [NH87] by other means. Unlike the

wavevector for rays in geometrical optics, k is nonintegrable, and there is a geometric

phase γ(Γ) defined by the integral of k round a circuit Γ in r (see section 1.4). It may be

interpreted as the following: take a vector e′ equal to e at each point r along the curve Γ

apart from a phase determined by parallel transport from the starting point, where e′ = e

exactly, that is, keeping 〈e′|∇|e〉 = 0. γ(Γ) is the phase difference between e′ and e at

the end of the circuit, and is independent of the initial phase of e, so works for e being

a vector in projective Hilbert space [AA87]. γ(Γ) is also the flux through Γ of a 2-form,

which is (using the suffix notation of (4.3.12)),

B = ∇∧ k = Im〈∇e| ∧ |∇e〉 = Im∇a ∧∇be∗a · eb. (4.4.15)

There does not seem to be any simple interpretation of B in terms of the polarization

geometry of the field E, although details of the geometric phase derivation for the Majorana

sphere M2 may be found in [Han98d]. Singularities of B, the codimension 3 monopoles

associated with geometric phases [Ber84], occur when the field intensity E∗ · E vanishes

(vector field phase singularities where a C line and L line may intersect), with codimension

6.

Places where k and n are (anti)parallel (that is, k∧n = 0, and k is orthogonal to both

p,q) are helicity states, where the momentum direction corresponds to the normal of the

ellipse. This situation occurs generically along lines, which provides further codimension

2 structure to E. [NH87] defined a handedness to the ellipse in the field at every point

by signk · n, and regions of right and left handedness are separated by the so-called T

(‘transverse’) surface, on which L lines lie and C lines cross (but helicity lines are restricted
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to regions of appropriate handedness). We shall not investigate these structures further

here.

4.5 Singularity densities in random paraxial vector waves

4.5.1 Random paraxial vector waves

We intend to generalise the paraxial gaussian random waves of section 3.1, equation (3.1.2),

and calculate the densities of C points, disclinations and L lines in two dimensions.

Physically, we are adding together many transverse plane waves, with propagation di-

rections all very close to the z-direction, and any longitudinal z component is negligibly

small. The spectral distribution of amplitudes is a paraxial one, such as the disk spectrum

(3.1.30) or gaussian spectrum (3.1.33). The ring spectrum, is not appropriate here, since

the waves are not propagating in the plane. We shall assume that the spectrum is de-

rived paraxially from a monochromatic three-dimensional wave, and factor out time and

z dependence.

The isotropic paraxial gaussian random vector wave superposition analogous to (3.1.2)

is

E(R) =
∑

K

aKdK exp(iK ·R), (4.5.1)

where, as before, K = (Kx,Ky), and aK is a complex amplitude with argument φK

uniformly random and modulus εK , independent of the direction of K, related to the

plane radial spectrum Π(K) by (3.1.10). As before, the nth moment of K with respect to

Π(K) is denoted Kn, and Π(K) is normalised such that K0 = 1.

dK is a normalised complex polarization vector describing the polarization state of the

plane wave component labelled by K. If the components of dK are chosen uniformly at

random, one finds that the distribution of polarizations is uniform on the Poincaré sphere

(and so, by the discussion in section A.4, uniformly random in the circular components of

dK). Using the Poincaré sphere representation, dK has cartesian components

dK = (cosαK/2 exp(−iβK/2), sinαK/2 exp(iβK/2)), (4.5.2)

where αK, βK are the polar angles on the Poincaré sphere for the plane wave labelled by

K. The ensemble averaging (cf (3.1.4)) involves averaging over all of the random phases
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φK, and the Poincaré sphere angles αK, βK :

〈•〉 =
∏

K

1
2π

∫ 2π

0
dφK

︸ ︷︷ ︸
phase average

1
4π

∫ π

0
dαK sinαK

∫ 2π

0
dβK

︸ ︷︷ ︸
polarization average

• . (4.5.3)

This implies that the average length of E is normalised,

〈E∗ ·E〉 = 1. (4.5.4)

(4.5.1) is a complex vector, and the real and imaginary parts of its components

Px, Py, Qx, Qy, are gaussian random functions of position R, and the ensemble is sta-

tionary, ergodic, etc. Moreover, we can write

P =
∑

K

εKXK,

Q =
∑

K

εKYK, (4.5.5)

where XK,YK are found from (4.5.2) (suppressing K suffices),

X = (cosα/2 cos(K ·R + φ− β/2), sinα/2 cos(K ·R + φ + β/2)),

Y = (cosα/2 sin(K ·R + φ− β/2), sinα/2 sin(K ·R + φ + β/2)). (4.5.6)

The components of these vectors are averaged to give

〈X2
i 〉 = 〈Y 2

i 〉 =
1
4
, 〈XiXj〉 = 〈YiYj〉 = 〈XiYj〉 = 〈XiYi〉 = 0, i 6= j are x, y,

(4.5.7)

implying that the gaussian random functions Px, Py, Qx, Qy are all identically and inde-

pendently distributed. Using the notation ρ(f) for the probability density function of

random variable f (since the symbol P, used in chapter 3, is in use), the probability

density function ρ(E) is

ρ(E) =
4
π2

exp(−2E∗ ·E) =
4
π2

exp(−2(P 2
x + P 2

y + Q2
x + Q2

y)). (4.5.8)

Also, from (4.5.6),

∂iXj = −KiYj , ∂iYj = KiXj , i, j = x, y, (4.5.9)

so the derivative fields Pi,j , Qi,j are also gaussian random, whose only nonvanishing cor-

relations are

〈P 2
i,j〉 = 〈Q2

i,j〉 =
K2

8
, i, j = x, y. (4.5.10)
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These functions can be used to determine the probability density functions of the

unnormalised Stokes parameters S0, S1, S2, S3, which are

ρ(S0) = 4S0 exp(−2S0), ρ(Si) = exp(−2|Si|), i = 1, 2, 3, (4.5.11)

(the normalised Stokes parameters s1, s2, s3 are uniformly distributed between 0 and 1),

and these calculations agree with those of [Bar87, Bro95] in the case of completely unpo-

larized radiation.

4.5.2 Density of paraxial C points

Since the random wavefield (4.5.1) is statistically stationary and ergodic, and C points are

phase singularities of the polarization scalar ϕ = u + iv (4.2.6), the density of C points

dC,2 can be found by direct analogy with (3.2.1):

dC,2 = 〈δ(u)δ(v)|uxvy − uyvx|〉. (4.5.12)

Writing the jacobian |uxvy − uyvx| ≡ |J |, the average is

dC,2 =
∫

d2Pd2Qd4∇Pd4∇Q δ(P 2 −Q2)δ(2P ·Q) |J | ρ(P,Q,∇P,∇Q). (4.5.13)

We shall integrate P,Q first, and write the integrals involving the first derivatives as I1.

Rewriting P,Q in polar coordinates (P, θ0), (Q, θ0 + θ) and integrating θ0 out easily,

dC,2 =
8
π

∫ ∞

0
dP

∫ ∞

0
dQ

∫ 2π

0
dθ PQ δ(P 2 −Q2)δ(2PQ cos θ) exp(−2(P 2 + Q2)) I1.

(4.5.14)

The δ-functions are easy to integrate (with respect to Q and θ), and the integral becomes

dC,2 =
16
π

∫ ∞

0
dP

P 2

4P 3
exp(−4P 2)I1(Q=P,cos θ=0) (4.5.15)

and the notation I1(Q=P,cos θ=0) is obvious. The jacobian |J | now simplifies:

|J | = 4P 2|Px,xPy,y + Px,xQx,y − Py,yQy,x + Qx,xQy,y − Px,yPy,x − Px,yQx,x

−Qx,yQy,x + Py,xQy,y|. (4.5.16)

Rewriting the first derivatives as a vector

V =
√

K2/2(Px,x, Px,y, Py,x, Py,y, Qx,x, Qx,y, Qy,x, Qy,y)
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the jacobian in (4.5.16) can be written as a quadratic form, and after rescaling (to remove

factors in the gaussian), is equal to (K2/4)4|V ·Ξ ·V|, with Ξ numerical and symmetric.

Therefore

dC,2 =
16
π

(
4

πK2

)4 ∫ ∞

0
dP P exp(−4P 2)

∫
d8V |V ·Ξ ·V| exp(−V 2). (4.5.17)

Now we perform a linear transformation V → W = ΓV with Γ an orthogonal matrix

diagonalising Ξ,

ΓTΞΓ = diag{1, 1,−1,−1, 0, 0, 0, 0}. (4.5.18)

Such a Γ can always be found because Ξ is real symmetric. The jacobian of this transfor-

mation is 1 since Γ is orthogonal, so after the transformation, the calculation concludes:

dC,2 =
K2

2π5

∫
d8W |W 2

1 + W 2
2 −W 2

3 −W 2
4 | exp(−W 2)

(transforming to plane polars, (W1,W2) → (r1, φ1), (W3,W4) → (r2, φ2),

then integrating out angles and W5, . . .W8)

=
K2

2π5
4π4

∫ ∞

0
dr1

∫ ∞

0
dr2 r1r2|r2

1 − r2
2| exp(−r2

1 − r2
2)

(transforming to polars (r1, r2) → (r, φ))

=
2K2

π

∫ ∞

0
dr r5 exp(−r2)

∫ π/2

0
dφ cosφ sinφ| cos 2φ|

=
K2

2π
. (4.5.19)

The density of paraxial C points is therefore twice the planar dislocation density (3.2.2).

This is not surprising, as each type of C point (right, left handed) is a dislocation in a

circular component α+, α−; each of these components acts just like a random scalar field.

4.5.3 Density of paraxial L lines

By stationarity and ergodicity, the average length of L line per unit volume can be found

from (4.3.15), giving

dL,2 = 〈δ(N)|∇N |〉. (4.5.20)
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where N = PxQy − PyQx from (4.2.4). Now, P and Q may be transformed to polar

coordinates as before (but now, by isotropy, we choose P to be (P, 0)), and

dL,2 =
8
π

∫ ∞

0
dP

∫ ∞

0
dQ

∫ 2π

0
dθ PQδ(PQ sin θ) exp(−2(P 2 + Q2)

×
∫

d∇Pd∇Q ρ(∇P,∇Q)|∇N |

=
16
π

∫ ∞

0
dP

∫ ∞

0
dQ exp(−2(P 2 + Q2))

×
∫

d∇Pd∇Q ρ(∇P,∇Q)|∇N |. (4.5.21)

Transforming to polars (P,Q) → (T, φ), and using the fact that both P,Q are in the

x-direction, |∇N | becomes

T
√

c2(∇Qy)2 + s2(∇Py)2 − 2cs∇Py · ∇Qy, (4.5.22)

where c, s denote cosφ, sinφ respectively. |∇N | only now involves the derivatives of the y

components of P,Q, so only these need to be integrated over. Writing these as a vector

V =
√

K2/2(Py,x, Py,y, Qy,x, Qy,y), and writing |∇N | as a quadratic form TK2/4|V · Ξ ·
V|1/2, the integral becomes

dL,2 =
16
π

∫ ∞

0
dT T 2 exp(−2T 2)

∫ ∞

0
dφ

√
K2/2
4π2

∫
d4V|V ·Ξ ·V| exp(−V 2). (4.5.23)

As before, V can be orthogonally transformed to a basis in which Ξ is diagonal, and

therefore can easily be integrated, with the result

dL,2 =
π

4

√
K2

2
. (4.5.24)

The density of L lines per unit area is related to the density dL,1 of (point) intersections

of L lines with a straight line in the plane, by the same argument as that used in section

3.3.1. The two densities differ by a factor equal to the average modulus of x-component

of a random isotropic unit vector, ie a factor of 2/π, so

dL,1 =
1
2

√
K2

2
. (4.5.25)

4.5.4 Paraxial disclination density

We now compute the disclination density, which is easily done by choosing the phase

χ = 0; we are finding the density of zeros of the real vector field P. By ergodicity from
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Singularity type General value Disk spectrum Gaussian spectrum

Dislocation density dD,2
K2
4π

π
2Λ2

d

2π
Λ2

σ

C point density dC,2
K2
2π

π
Λ2

d

4π
Λ2

σ

L line density dL,2
π
4

√
K2
2

π2

4Λd

π2

2Λσ

Disclination density ddisc, 2
K2
4π

π
2Λ2

d

2π
Λ2

σ

Table 4.1: Statistical densities of paraxial polarization singularities and comparison with

planar dislocation density, for general values, the disk spectrum and the gaussian spectrum.

(4.2.22), the disclination density ddisc,2 is

ddisc, 2 = 〈δ2(P)|Px,xPy,y − Px,yPy,x|〉
=

∫
d2Pd4∇Pδ(Px)δ(Py)|Px,xPy,y − Px,yPy,x|ρ(P,∇P)

=
K2

4π
(4.5.26)

the same as the paraxial dislocation density, and half the C point density. Formally, this

calculation is identical to that for two dimensional dislocation density (3.2.2) since the

statistical relationship between Px, Py is the same as that between ξ, η; it is also given

by [Hal81] equation (6.25). The mean spacing of disclinations on L lines is dL,2/ddisc,2 =

π2/
√

2K2.

The results of this section are summarised in table (4.1), where values of the density

are also given for the disk and gaussian spectra.

4.6 Singularity densities in random spatial vector waves

4.6.1 The random three-dimensional wave model

We now consider the three-dimensional analogue to the paraxial vector waves of the last

section. As with three-dimensional random scalar waves, the ensemble is made up of

superpositions of an infinite number of plane waves with random phases (each randomly

polarized transverse to its propagation direction), with propagations uniformly distributed

in direction; the normal n(r) to the resulting polarization ellipse at any point r changes

smoothly over space. Although the random waves constructed shall be the complex ana-

lytic signal of a real complex wavefield, we shall see the statistical model applies equally

well to the electromagnetic field V = ReE + i ImH of equation (4.4.2).
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By analogy with (3.1.1), (4.5.1), the isotropic random complex three-dimensional vec-

tor wave superposition E(r) is (ignoring t dependence)

E(r) =
∑

k

akdk exp(ik · r), (4.6.1)

where each wave in the superposition is labelled by its wavevector k. As before, the ak are

complex scalar amplitudes with uniformly distributed phases φk and moduli εk related to

the spatial radial power spectrum Π(k) by (3.1.8). Moments of k with respect to Π(k)

are denoted kn (k0 = 0), as with (3.1.9). The polarization vector dk, is defined in the

plane orthogonal to k identically to the planar case. The right-handed orthogonal frame

(uk,vk,k) with u2
k = v2

k = 1, and

dk = uk cosαk exp(−iβk/2) + vk sinαk/2 exp(iβk/2) (4.6.2)

where αk, βk are polar angles on the Poincaré sphere defined in the (uk,vk) plane, chosen

uniformly randomly as before. By virtue of the central limit theorem, E in (4.6.1) rep-

resents an ensemble of complex gaussian random vectors, parameterised by the random

φk, αk, βk, with ensemble averaging analogous to (4.5.3). As with paraxial waves, these

conditions imply that, on the average, E is normalised, as with (4.5.4).

The frame (uk,vk,k) is chosen such that, if wk = k/k is the direction vector of k in

space, parameterised by polar angles θ, φ, then

wk = (cosφ sin θ, sinφ sin θ, cos θ),

vk =
ez ∧wk

|ez ∧wk| = (− sinφ, cosφ, 0),

uk = vk ∧wk = (cosφ cos θ, sinφ cos θ,− sin θ). (4.6.3)

(The weighting when wk = ±ez, and vk,uk are singular, is negligible.) The real and

imaginary parts of E are

p =
∑

k

εkXk, (4.6.4)

q =
∑

k

εkYk, (4.6.5)

where Xk,Yk are defined

Xk = uk cosαk/2 cos(k · r + φk − βk/2) + vk sinαk/2 cos(k · r + φk + βk/2),

Yk = uk cosαk/2 sin(k · r + φk − βk/2) + vk sinαk/2 sin(k · r + φk + βk/2)(4.6.6)
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(cf (4.5.6), and note that the phases φk are unrelated to the spatial azimuth φ). In the

uk,vk plane, the components of Xk,Yk, satisfy (4.5.7). Averaging the components of p

(the result for q is the same), and suppressing obvious subscripts k on uk,vk,

〈pipj〉 =
∑

k

ε2
k(〈X2

k1〉uiuj + 〈X2
k2〉vivj + 〈Xk1Xk2〉(uivj + ujvi))

=
1
4

1
4π

∫ π

0
dθ

∫ 2π

0
dφ(uiuj + vivj)

︸ ︷︷ ︸
2
3
4πδij

∫ ∞

0
dk Π(k)

=
δij

6
, (4.6.7)

(where i, j = x, y, z, and δij is the Kronecker δ-symbol) agreeing with the statistical

normalisation of E. By similar arguments, it can be shown

〈piqj〉 = 0. (4.6.8)

Therefore p,q have the joint probability density function

ρ(p,q) =
(

3
π

)3

exp(−3(p2 + q2)). (4.6.9)

Using the three dimensional analogue to (4.5.9), the derivatives of p,q have the nonvan-

ishing averages

〈p2
i,i〉 = 〈q2

i,i〉 =
k2

30

〈p2
i,j〉 = 〈q2

i,j〉 =
k2

15

〈pi,jpj,i〉 = 〈qi,jqj,i〉 = −k2

60
.

(4.6.10)

Since E is divergenceless (being a sum of plane waves), the random variables px,x, py,y, pz,z

are dependent, and in fact, in all calculations, pz,z is replaced by −px,x− py,y, with equiv-

alent substitution for q.

The distributions of p,q can be used to find the probability density function of the

square of local angular momentum expectation value S, defined in equation (4.4.10).
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Therefore

ρ(S2) =

〈
δ

(
S2 −

(
2p ∧ q
p2 + q2

)2
)〉

=
(

3
π

)3 ∫
d3p

∫
d3q exp(−3(p2 + q2))δ

(
S2 −

(
2p ∧ q
p2 + q2

)2
)

(exploiting isotropy, transforming p,q to spherical polars)

=
216
π

∫ ∞

0
dp

∫ ∞

0
dq

∫ π

0
dθ p2q2 sin θ exp(−3(p2 + q2))δ

(
S2 − 4p2q2 sin2 θ

(p2 + q2)2

)

(transforming (p, q) to plane polars (r, φ))

=
108
π

∫ ∞

0
r5 exp(−3r2)

∫ π/2

0
dφ

∫ π/2

0
dθ sin θ sin2(2φ)δ(S2 − sin2 2φ sin2 θ)

= 1. (4.6.11)

The distribution of S2 is therefore uniform in space, between values of 0 and 1.

For the remainder of this section, we shall be concerned with the electromagnetic vector

V of (4.4.2), with E,H,A real. Let E be equal to p, defined in equation (4.6.4), with

time dependence included in the obvious way, by replacing k · r by k · r − ωkt. The real

vector potential A is such that ∂tA = −E, so integrating,

A(r, t) = −
∑

k

εk

ωk
Yk (4.6.12)

and ∇∧A = H gives

H(r, t) = − 1
µ0c

∑

k

εk

ωk
Zk (4.6.13)

where

Zk = vk cosαk/2 cos(k · r + φk − βk/2)− uk sinαk/2 cos(k · r + φk + βk/2). (4.6.14)

Comparison of Xk and Zk confirms that, for each individual plane wave component k,

Ek ·Hk = 0 and Ek ∧Hk ||k.

All components of E are independent of those of H, since

〈EiHj〉 =
1

4µ0c

∑
ε2
k(ukivkj − ukivkj), (4.6.15)

which disappears for each choice of i, j = x, y, z on integration in k-space. The other

statistics are similar to those derived above.
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4.6.2 Density of C lines

Only an outline of the calculation of the C line density dC,3 is given here (full details are

given in [BD01c]). The result is discussed in section 4.6.4.

Where u, v are now the real and imaginary parts of the polarization scalar ϕ = E · E
(4.2.6), the density of C lines in space dC,3 is given by an expression analogous to (3.3.1),

dC,3 = 〈δ(u)δ(v)|∇u ∧∇v|〉. (4.6.16)

For now, let U,V, be ∇u,∇v respectively. We begin by finding the conditional probability

density function ρ(U,V;p,q) of U,V with respect to certain fixed (but arbitrary) values

of p and q. In an obvious notation

ρ(U,V;p,q) = 〈δ(U−∇u)δ(V −∇v)〉(p,q)

=
(

1
2π

)6 ∫
d3sd3t exp(i(U · s + V · t))〈exp(−i(s · ∇u + t · ∇v))〉(p,q)

=
(

1
2π

)6 ∫
d3sd3t exp(i(U · s + V · t)) exp(−T/2), (4.6.17)

by (3.1.22), (3.1.24); summing repeated indices,

T ≡ 4[(sisk + titk)(pjpl + qjql)〈pj,ipk,l〉]. (4.6.18)

Thus

dC,3 =
(

3
π

)3 ∫
d3p

∫
d3q δ(p2 − q2)δ(2p · q) exp(−3(p2 + q2))

×
∫

d3U
∫

d3V|U ∧V|ρ(U,V;p,q). (4.6.19)

Isotropy is now used to simplify the U,V integrals, by choosing pf = (p, 0, 0). Integrating

the δ-functions, we put qf = (0, p, 0), and find that (4.6.18) becomes

T = 4p2k2

[
1
10

(s2
x + s2

y + t2x + t2y) +
2
15

(s2
z + t2z)

]
. (4.6.20)

The s, t integrations in (4.6.17) are easy gaussians, and after rescaling U,V to remove

factors of p and k2 from the exponential, the p,q integrals in (4.6.19) are easy and similar

to those in (4.5.14), (4.5.15), leaving the integral

dC,3 =
9k2

20π4

∫
d3U

∫
d3V|U ∧V| exp(−[U2 + V 2 − 1

4
(U2

z + V 2
z )]) (4.6.21)
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Equation (3.2.9), may be generalised to find a Fourier expression for the modulus of a

3-vector W,

|W| = − 1
2π

∫
d3t
t2
∇2

t exp(iW · t). (4.6.22)

This may be applied to the vector product term in (4.6.21) to give a 6× 6 quadratic form

matrix M (given explicitly in [BD01c] eq (C4)), with determinant

detM =
1
16

(3 + 4(t21 + t22) + 3t23)
2. (4.6.23)

The U,V integrals are an easy 6-dimensional gaussian vector integral, giving

dC,3 = − 9k2

5π3

∫
d3t
t2
∇2

t

1√
detM

. (4.6.24)

The laplacian is easily evaluated, and in the resulting integral the vector t is naturally

expressed in terms of cylindrical coordinates Rt, φt, and zt ≡ t. The azimuthal and radial

integrals follow, and the final integral is written

dC,3 = −72k2

5π2

∫
dt[g(t) + h(t)], (4.6.25)

where

g(t) =
19 + 16t2 + 5t4

(t2 − 3)3(t2 + 1)2
, h(t) =

33 + 17t2

(t2 − 3)2
log

(
3(1 + t2)

4t2

)
. (4.6.26)

These are tricky but standard integrals that can be integrated by standard methods of

complex contour integration. The final answer is

dC,3 = k2

(
3

10π
+

1
5
√

3

)
= 0.21096k2. (4.6.27)

This result is discussed below in 4.6.4.

4.6.3 Density of L lines

This section, like the last one, is an outline of the derivation of the L line density dL,3 in

space, where details of the calculation can be found in [BD01c], and discussion in section

4.6.4.

As before, taking advantage of ergodicity, the density of L lines is, in analogy with

(4.3.15),

dL,3 =
〈

δ(|p ∧ q|)
π|p ∧ q| |DL|

〉
(4.6.28)
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where DL is given in (4.3.12). The calculation is performed in a similar way to that of

dC,3; p is fixed to (0, 0, p), with jacobian 4π, and on the L line, DL becomes A ∧B as in

(4.3.11). By analogy with (4.6.17), we write the conditional probability density function

(anticipating the L-condition in the δ-function giving q = (0, 0, q)),

ρ(A,B;p,q) = 〈δ(A + p∇qy − q∇py)δ(B− p∇qx − q∇py)〉(p,q)

=
1

(2π)6

∫
d3sd3t exp(i(A · s + B · t)− F/2) (4.6.29)

where F is given by

F = 〈[s · (−p∇qy + q∇py) + t · (p∇qx − q∇px)]2〉(p,q). (4.6.30)

(4.6.28) can now be rewritten, with p already fixed, and the azimuthal direction of q fixed

with jacobian 2π, with p · q = cos θ,

dL,3 =
(

3
π

)3

8π2

∫ ∞

0
dp

∫ ∞

0
dq

∫ π

0
dθ p2q2 sin θ

δ(pq sin θ)
πpq sin θ

exp(−3(p2 + q2))

×
∫

d3Ad3B |A ∧B|ρ(A,B;p,q)

=
216
π2

∫ ∞

0
dp

∫ ∞

0
dq exp(−3(p2 + q2))

∫ π

0
dθ δ(sin θ)

×
∫

d3Ad3B |A ∧B|ρ(A,B;p,q). (4.6.31)

Since p,q are now both parallel in the z-direction, F in (4.6.30) can be found using

(4.6.10):

F =
k2(p2 + q2)

30
[(s2

y + t2x − sxty − sytx) + 2(s2
x + s2

z + t2y + t2z)]. (4.6.32)

Since F is now a quadratic form in the components of s, t, they are straightforward gaussian

integrals. The method of calculation follows exactly that of the previous section, only the

final integral with respect to the vector t (from Fourier transforming the modulus of the

vector product) is particularly difficult, is integrated numerically to give

dL,3 = 0.21360k2, (4.6.33)

which is very close to the C line density (4.6.27).

The density of disclination points in three dimensions is another case of equation (6.25)

of [Hal81], and is simply

ddisc,3 =
1
π2

(
k2

6π

)3/2

. (4.6.34)
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Singularity type General value /k2 Shell spectrum Planck spectrum

(in appropriate (in appropriate

units of λm) units of λT )

Dislocation density dD,3 0.106103 4.18879 78.7461

C line density dC,3 0.21096 8.3283 156.57

L line density dL,3 0.21360 8.4326 158.53

Disclination density ddisc, 3 0.001238 0.3071 25.03

Table 4.2: Numerical statistical densities of polarization singularities and comparison with

spatial dislocation density, for general values, the shell spectrum and the Planck spectrum.

4.6.4 Summary of statistical densities of polarization singularities in

three dimensions

The numerical results of the foregoing calculations are summarised in table (4.2), as well

as the values for the shell and Planck spectra.

The C, L line densities are numerically about twice the dislocation density. In the

paraxial case, the C point density was exactly twice the dislocation density, since paraxial C

points are dislocations of the right or left hand circular components of the vector. However,

there appears to be no simple explanation for the factor of almost 2 (dC,3/dD,3 = 1.988).

It is possible that the factor 2 is related the index 1/2 nature of C lines, and the field ϕ

in which the field components are quadratic has phase singularities where the C lines are.

It is not clear why the L lines should have almost equal density to the C lines.

Following the discussion in section 3.3.1, the density of points where the singularity

lines cross a plane is half of the corresponding spatial density. For C lines this is very close

to that calculated paraxially, although for C lines crossing a plane, n is not necessarily

perpendicular to this plane.

4.7 Discussion and Conclusions

In this chapter, we have discussed the natural polarization singularities in vector wave-

fields, which are geometrically the singularities of polarization ellipses. These are therefore

the singularities of light fields when polarization plays a role, and are also the singular-

ities of the electric or magnetic field (in free space). We have indicated that a possible
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singularity structure involving the two fields is E + iH (equation (4.4.2)), although this

too has problems (the position of the singularities is time dependent, even in monochro-

matic fields), and we make no claim that this is the final framework for singularities in

electromagnetic waves.

By comparison with dislocations, the study experimentally of polarization singular-

ities in optical waves is still in its infancy, and it is possible that future experimental

observations will lead to new theoretical understanding.

The local geometric structure of polarization singularities is not as well understood as

that of phase singularities. A set of questions which naturally arise here are the corre-

sponding in vector fields to the morphologies of the phase singularity in the polarization

scalar ϕ : its anisotropy ellipse, its twist and twirl, etc. The singular vector structure is

richer than for scalars, such as the phenomenon of index switching (of both C and L lines).

Scalar fields do have polarization singularities in them as well, those of the gradient

∇ψ (polarization singularities are not prohibited by the fact that this field is curl-free).

We have seen that the L singularities in ∇ψ are important in dislocation reconnection,

as shall be developed in the next chapter. Can more dislocation geometry be described

using polarization singularities? We shall see in the next chapter that C lines appear for

twirling loops, but there is more still to be understood.

Although the formalism of the earlier chapters is new in places, the real significance

of this work is in the statistical calculations of singularity densities in sections 4.5, 4.6.

With the methods employed in this thesis, however, it does not seem to be possible to go

further than just the density calculations, which were difficult enough. The richer vector

structure means that there are more possible quantities to average; as well as those of

the last chapter (speed, curvature, etc), the density of index switching points is another

obvious calculation that may be made (unfortunately, these integrals involve quantities

in the exponent with powers higher than quadratic, and the usual gaussian integration

methods cannot be applied).



Chapter 5

The topology of twisted

wavefronts and knotted nothings

My soul is an entangled knot

Upon a liquid vortex wrought

By Intellect, in the unseen residing,

And thine doth like a convict sit,

With marlinspike untwisting it,

Only to find its knottiness abiding;

J. C. Maxwell, A Paradoxical Ode, 1878, in L. Campbell and W. Garnett, The life of

James Clerk Maxwell, Macmillan, London, 1882

So far, in three dimensions, only the local structure of dislocation lines has been consid-

ered, and in this chapter we shall explore global properties of dislocation lines, particularly

the case of closed loops. Using the notion of twist introduced and discussed in section 2.8,

we shall see how dislocation loops give rise to nontrivial and interesting topology, both of

the phase surfaces (wavefronts), and in their knotting and linking. The first section 5.1 is a

general discussion, concerned only with the topology of closed nodal lines in complex scalar

wavefields, not involving any wave equation directly (as with most of the material of chap-

ter 2). Much work concerning the topology of closed phase singularity loops has been done

by Winfree and collaborators [WS83a, WS83b, WS83c, WS84, WWS85, Win87, Win95];

the relevant mathematical theory is that of fibred spaces [ST80, Sei80].

The remainder of the chapter is concerned with the details of a particular construc-

133
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tion of torus knots and links in the nodal lines of solutions of the Helmholtz equation,

introduced in [BD01a], and explained in section 5.2. The construction is applied to Bessel

beams in section 5.3, to polynomial waves in 5.4, and to paraxial waves (both paraxial

polynomial and Laguerre-Gauss beams) in 5.5, where the construction is illustrated by

explicit calculations for the trefoil knot and Hopf (simple) link. After the conclusions,

there are two appendical sections, 5.7, where the different types of wave beam are defined,

and 5.8, which explains the (not insurmountable) difficulties with the knot construction

for paraxial waves. Unlike vortex knots in fluid dynamics [Kel67, Kel69, Mof69, RSB99],

dislocation knots can be untied, by the mechanism of reconnection explained in section

2.6; the dissolution of polynomial knots is discussed in sections 5.4, 5.5.

5.1 Twisted loops and dislocation threading

The crucial result of this section is what we call the ‘twisted loop’ theorem, discussed

in various forms and cases by Winfree and collaborators (see references above). It was

rediscovered in the present context by Dennis [Den00] in an attempt to understand the

topological nature of screw dislocations (such as (2.8.1)): in particular, is it possible for

such a dislocation, with a uniform phase twist, to be a closed loop? The problem may

be understood more clearly by considering the phase surface for any phase χ mod π in

the neighbourhood of the singular line, which shall be referred to as the χ-ribbon (the

dislocation is on the axis of this ribbon, as in figure (5.1)).

For a closed dislocation loop, each χ-ribbon must be closed, and since the field is con-

tinuous, the total number of 2π twists about the ribbon axis must be a signed integer. The

sign of this screw number agrees with the sign of the phase helicoid twist defined in (2.8.2),

negative for a left-handed helicoid, positive for a right-handed helicoid. Topologically, it is

the linking number of the edges of the ribbon (see, for example [Ada94] page 18), with di-

rections given by the direction of topological current for the dislocation on the ribbon axis.

This is illustrated in figure (5.1). The number cannot be a half-integer (such as a Möbius

band), because the phase surface is a zero contour of the function u(χ) = ξ cosχ+ η sinχ,

and separates regions in space where the function u(χ) is positive from regions where it is

negative.

The geometry of twisted closed ribbons and their linking number Lk is described by
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Figure 5.1: Two phase ribbons, with the sign of screw number given by the linking number

of the ribbon edges (the dislocation on the axis is a dotted line). The left hand ribbon is

twisted in a left-handed sense, and the linking number of the ribbon edges is −1 in this

case. The loop on the right is twisted in a right-handed sense, and the linking number of

its edges is +1.

the Calugareanu-White-Fuller theorem, which states that

Lk = Wr +
∫

Tw, (5.1.1)

where
∫

Tw is the integral over the loop (with respect to arclength) of the local twist

(2.8.2), and Wr is the writhe of the dislocation curve (this theorem is described in more

detail in [BF71, Han98a] and [Ada94] section 7.1). The writhe is a global measure of

the departure from planarity of the curve, and we do not consider it further (it is zero if

the curve is planar). Both Wr and
∫

Tw change if the ribbon’s configuration is adjusted

(isotopic transformation), but the linking number Lk is a topological invariant of the

curve. Any of the various twist averages Twχ, Twφ, σ, Twtw can be used in (5.1.1), since

the appropriate averaging integral (in χ, φ, etc) commutes with the arc length integral.

All of the phase ribbons must twist the same number of times; otherwise one of the

surfaces crosses another on the dislocation, and as it does so the vorticity ω will vanish.

This happens on a dislocation generically at a reconnection, and therefore does not apply

to a single loop. Lk, which we shall henceforward call the screw number, is therefore

unambiguously defined for the dislocation.
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We are now in a position to state the twisted loop theorem (see also [WS83b, WWS85,

Win87, BD01a]):

Theorem [The twisted loop theorem] The screw number m of a closed, strength

1 dislocation loop is equal to minus the dislocation strength threading the loop (in a right

hand sense with respect to the loop).

The proof is as follows: let the dislocation loop be L and consider a closed curve C

just inside L, with the same orientation as the dislocation. Around the dislocation, each

phase helicoid mod 2π crosses C m times, and the phase at C changes by −2πm (the

sign coming from the screw sense; consider figure 5.1). This is the dislocation strength

threading C, ie

−m =
1
2π

∮

C
dχ

= dislocation strength threading C, by (1.2.4). (5.1.2)

QED

This result is remarkable, and supports the philosophy in chapter 1 that singularities

organise the phase structure of the field; in this case, the strength of the singularities

threading a loop is related to how the phase twists around the loop. The local structure

if the singularity is therefore playing a direct role in the field topology.

Much care needs to be taken as to precisely what signs and topologies are really

allowed; the discussion in [BD01a] appendix B may appear slightly confusing, since the

screw number defined there is actually minus the screw number m defined here as the

linking number of the edges of the phase ribbon. Possible confusion increases when one

looks at the topology of the phase surfaces (continuing the ribbon out from near the

dislocation); [WS83b], figure 7 shows an optical illusion masquerading as a possible phase

surface, and give more sources for confusion.

The twisted ribbon nature of the phase contours near the dislocation has consequences

for the global topology of the phase surface. With experimentation,1 the only way one can

connect up a twisted, two-sided ribbon is with one half-twisted bridge, as in figure (5.2).

Each phase surface of a twisted dislocation must have such a bridge, and all the bridges

must cross each other within the loop - this is an alternative proof of the theorem. The

1I used the ‘poor topologist’s standby’ of paper and plasticine for topological experiments; Winfree and

Strogatz [WS83a, WS83b] used dental wax.
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Figure 5.2: The two-sided twisted ribbon is ‘closed up’ with a half-twisted bridge. This

surface is topologically equivalent (homeomorphic) to a torus with a point removed.

resulting surface, with a bit of visualisation or experimentation, is topologically equivalent

to a surface of genus 1, that can be embedded nontrivially on a torus (ie a surface of

genus at least 1). In fact, as discussed by [Ada94], a twisted ribbon cannot be embedded

on a sphere, but only on a torus or other high-genus surface. The reader unfamiliar with

topology can find more details of these concepts and terms in [Ada94, FG82].

The twisted loop theorem can be generalised to incorporate the possibility that the

screw loop may be (nongenerically) of strength higher than 1, say n. The screw number

m is the general case by (5.1.2), equal to the dislocation strength threading the loop; now

each phase contour is n ribbons crossing at the dislocation (as discussed in section 2.3),

which twists 2πm/n times around the loop. The twisted loop theorem for high-strength

loops is the main implement for making the knot structures of section 5.2. In [BD01a],

the screw number is defined differently, as the number of rotations of the dislocation core

around the loop, and is quantised in units of 1/n.

The threading dislocations themselves may be closed loops. Assuming that there is

only one (possibly degenerate) dislocation A threading the loop L, if A is a closed loop,

then A,L are linked, and A has a screw number −n equal to minus the strength of L :

each loop’s strength is equal to the other’s screw number.

A further generalisation of the twisted loop theorem is that the loop L may be knotted
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(and not necessarily threaded), the consequences for which are discussed by [WS83c].

Any knot can mathematically be constructed from several unknotted loops that undergo

reconnections of the type described in section 2.6. An analogous construction may be

used to make knotted vortices in fluid dynamics [Mof69, MR92], and is topologically

equivalent to the Seifert algorithm [Sei80, Ada94], which constructs a surface with the

knot as boundary. For phase singularities, the knot is effectively threading itself, inducing

a screw number by virtue of its knottiness alone, and any wavefront is a Seifert surface

for the knot. [WS83c] apply the Calugareanu-White-Fuller theorem on a projection of

the trefoil knot to find that the screw number of the trefoil knot is ∓3 (negative for a

right-handed trefoil knot, positive for left-handed).

We now turn to the wave equation to show that a closed screw dislocated wave is

possible. Working in cylindrical coordinates (R, φ, z), we wish to construct a wave ψ with

a closed circular loop in the z = 0 plane, centred at the origin with radius R0. For now,

we wish the loop to have strength 1. We also want a strength m dislocation up the axis

(R = 0), and shall assume, for simplicity, that m > 0. Throughout this chapter we shall

only work with monochromatic waves, where once and for all we set wavenumber k = 1.

It is easily verified [Den00] that the wave

ψ = (R exp(iφ))m exp(iz)((R2 −R2
0) + 2i(m + 1)z) (5.1.3)

satisfies the requirements, and solves the Helmholtz equation (1.5.2). If m = 0, there is

no twist in the dislocation loop, and any constant φ section is the double edge dislocation

(2.1.10). Even if m 6= 0, the screw loop is edge-like in the sense described before; the overall

wave propagation direction is in the z-direction (due to the exp(iz) factor in (5.1.3)),

perpendicular to the twisted loop. Each of the different twist measures of (2.8) give

−m/R0 as the local twist for this dislocation, which becomes −m on integrating by arc

length, as expected.

From the discussion above, for m = 1, one expects that a phase contour of (5.1.3)

should be topologically equivalent to a torus. Figure (5.3) shows such a phase contour

from two different perspectives. A simple triangulation argument shows that this surface

(truncated as in the figure) is homeomorphic to the surface shown in (5.2).

Since the surface must contain an infinite straight dislocation line up the z-axis, it

cannot be a compact surface (such a surface, like the standard torus, is closed with finite

area). It is a ‘noncompact torus’ (just as the plane is a ‘noncompact sphere’, as utilised by
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Figure 5.3: A phase surface of the twisted wave (5.1.3) near the closed loop (the black

line), shown from two different directions.

stereographic projection, with a point ‘at ∞’). Note that, unlike a compact torus, there is

no way of distinguishing the two sides of the surface (5.3) (that is, the inside and outside

of the surface, where Reψ exp(−iχ) is positive and negative, are on an equal footing).

Figure (5.4) shows the phase surface (5.3) with its phase conjugate, which is the same

surface rotated by π/2 about the axis.

It has not been possible, using solutions of the wave equation, to close the infinite

dislocation line to a loop to make two linked rings; it is easy to construct complex func-

tions with linked zero lines by multiplying together two functions, each containing one

of the required nodal lines (this was done by [Fre00], who shows one compact toroidal

phase surface in figure 7, but does not observe that its conjugate is noncompact). This

non-wave construction can be used to construct more elaborate configurations, such as

borromean rings [CBR98], but our attention shall be limited to what is possible with the

wave equation.

With appropriate choice of R0, such as R0 = 1, the core of the looped dislocation in

(5.1.3) is elliptical, with major semiaxis in the R-direction, minor in the z-direction. If

m 6= 0, there is a net phase twirl twχ (defined in equation (2.8.10)); the phase lines twist

m times around the core ellipse. The geometric twirl twφ is zero here, as the ellipse does

not rotate with respect to parallel transport along the dislocation. It is readily verified

that there are 2m (degenerate) C lines in ∇ψ up the z-axis, coinciding with the strength

m threading dislocation. This is to be expected: around the looped dislocation, the phase
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Figure 5.4: Two conjugate phase surfaces of the twisted wave (5.1.3) near the closed loop,

intersecting on the twisted dislocation lop, and also up the axis.
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of the polarization scalar ϕ ≡ ∇ψ · ∇ψ changes by 4π. If m = 0, there is a single L line

threading the loop (we saw this in sections 2.5, 2.6). We shall not investigate the intriguing

implications of this here, but observe that a polarization scalar for the polarization scalar

may be defined by ∇ϕ · ∇ϕ, which describes the topological twirl of the C lines in ∇ψ;

there is a hierarchy of singularities in the field, organizing the topological structure of

closed singular loops in the field.

5.2 A construction for knotted dislocations in the wave equa-

tion

The remainder of this chapter shall be concerned with a particular construction, explained

fully in [BD01a], which generalises (5.1.3), and in which knotted and linked dislocations

exist. Not every knot or link is possible, only the class of torus knots and torus links, for

which the trefoil knot and Hopf link (simple link) are the simplest nontrivial examples;

they are knots and links that can be embedded, without crossing, on a torus. Knots such

as the figure-8 knot and links such as the borromean rings are not torus knots [Ada94],

and are not possible with this construction. Also, the knots and links must be threaded,

and so do not have the characteristic screw number for the knot, as discussed in section

5.1. The term knot shall be used to refer either to a knot or link. Unless otherwise

stated, cylindrical coordinates (R, φ, z) are used, and all waves are monochromatic with

wavenumber k = 1.

The degenerate structure to be constructed is shown in figure (5.5), consisting of a

strength m dislocation Am along the z-axis (R = 0) and a circular loop Ln of strength n

with radius R0 in the z = 0 plane, centred on the origin. For convenience, it is assumed that

m,n > 0, and appropriate generalisation for negative values is obvious. The topological

current of Lm is taken to be left-handed with respect to the sense of Am, as in figure

(5.5). This ensures that the topological charge of Ln in the (R, z) plane for φ = 0 is

positive, and implies that the helicoid structure local to Ln is right-handed. The wave

(5.1.3) is a particular example for n = 1. The screw number of Ln is therefore −m, and the

core rotates 2πm/n around Ln in a right-handed sense, in the direction of the topological

current of Ln. Both Am and Ln are degenerate structures, sensitive to perturbation, under

which they unfold: Am to an m-stranded helix, Ln to a knotted or linked configuration,

as shall be described.
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Am

Ln

phase change

phase change

2mπ

2nπ

Figure 5.5: Unstable strength m axial dislocation threading unstable strength n dislocation

loop Ln (in particular, note the direction of topological current in Ln).
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An unperturbed wave ψ0 with dislocations Am, Ln must have the following local struc-

ture, as required by section 2.3. Near Am, where K is a (complex) constant,

ψ0 ≈ KRm exp(imφ). (5.2.1)

Near Ln, where K± are complex constants with |K+| > |K−|, the local structure is (cf

(2.3.7), (5.1.3))

ψ0 ≈ (K+(R−R0 + iz)n + K−(R−R0 − iz)n) exp(imφ). (5.2.2)

In (5.1.3), it is easily shown that K± = ((R + R0)± 2(m + 1))/2, which is constant when

R ≈ R0. With these two restrictions, the resulting unperturbed wave has the form

ψ0(r) = f(R, z) exp(imφ), (5.2.3)

and Lm can be constructed by imposing conditions on the φ-independent function f, and

all further φ-dependence shall be omitted unless necessary. From (5.2.1), for Am to be

present, ψ0 must satisfy the m + 1 conditions

∂p
Rψ0(0, z) = 0 0 ≤ p ≤ m− 1,

∂m
R ψ0(0, z) 6= 0, (5.2.4)

and from (5.2.2), the n(n + 1)/2 conditions

∂q
R∂p−q

z ψ0(R0, 0) = 0, 0 ≤ q ≤ p, 0 ≤ p ≤ n− 1

∂q
R∂n−q

z ψ0(R0, 0) 6= 0, 0 ≤ q ≤ n. (5.2.5)

There are n(n+1)/2 conditions on Ln, rather than the n−1 conditions one might naively

assume, because not only do we require, in the (R, z) plane, the coalescence of n strength

1 dislocations, but also n− 1 phase saddles, to keep the Poincaré index of the degenerate

point 1 (this was described in section 2.3). There are not as many explicit conditions

on Am as Ln because some of the conditions are hidden by the circular symmetry of the

cylindrical coordinate system (ϕ is singular when R = 0). In the (R, z) plane, around a

positive circuit enclosing the point (R0, 0), the phase changes by 2πn, so for each phase χ

(mod 2π) the phase star has n phase lines emerging from it. By the generalised twisted

loop theorem, the star rotates m/n times as φ increases from 0 to 2π (in the opposite

direction to the topological current of Ln). We now perturb ψ0 by adding a weak wave
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a b c

d fe

Figure 5.6: Phase contours modulo 2π, in the (R, z) plane. (a),(b),(c) are for a section of

unfolded L1, L2, L3, (d) stable unfolded strength 2, (e) unstable unfolded strength 3, (f)

stable unfolded strength 3. Note in particular the saddle in (d), two of whose phase lines

separate the two dislocations, the phase lines joining them.

ψp, which does not contain any dislocations itself in the region of interest (such as a plane

wave travelling in the z-direction). The total wave is now (where ε is a small positive

numerical parameter)

ψ(r) = ψ0(r) + εψp(r). (5.2.6)

Upon perturbation, the axial dislocation Am unfolds to an m-stranded helix. The un-

folding for Ln is more complicated. In the (R, z) plane, the degenerate Ln point explodes

into n dislocation points and n − 1 saddles (which may remain degenerate if the pertur-

bation ψp has certain symmetries, as in figure (5.6)). Before perturbation, the phase star

in this plane rotated m/n times, and after perturbation the dislocations are n strands,

which (as is justified below) rotate in the same way that Ln did.

Since the perturbing wave is small, the pattern of phase lines (mod 2π) in the (R, z)

plane, far enough from the point (R0, 0), is unchanged after the perturbation (since values

far enough from the zero are unaffected by the small εψp). Now, since each of the unfolded

dislocations has the same sign, there must be a particular phase line separating the two

dislocations and not ending on either of them. The existence of such a contour is clear

from continuity arguments, as is the fact that one of the saddles in the unfolding lies on

this phase line (the structure is that of figure (5.6d)). Consider the phase χ(φ) of one of
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these saddles, as φ increases (as with the dislocations, the saddle locus line may not join

up with itself in a 2π circuit of φ). If the phase of χ(φ) does not change by a multiple

of 2π, then it is clear that the asymptotic contour must also turn m/n times, with the

rest of the asymptotic pattern. It is shown in [BD01a] appendix C that this condition

is satisfied provided ψp does not itself contain dislocations threading Ln. The dislocation

phase stars, being separated by the saddle contour, must themselves turn m/n times. The

‘saddle paddle’ thus convects the unfolded dislocation pattern, which rotates by 2πm/n in

an azimuthal circuit. If m and n are coprime, the m unfolded dislocation strands cannot

be m separate loops, because each dislocation has rotated a noninteger number of times.

It is not difficult to see from the above that the unfolded strands of Ln form an (m, n)

torus knot [Ada94], the simplest of which are the (3,2) trefoil knot (whose handedness is

the product of signs of m and n). If n = 1 as in (5.1.3), the perturbed dislocation is a closed

helix. If m and n share a common factor N but are not equal, so that (m,n) = N(m0, n0),

then Ln unfolds to N identical linked loops, each of which is an (m0, n0) torus knot. The

simplest such link is therefore the (2, 2) torus knot, mathematically known as the Hopf

link. The simplest linked knots are the (6,4) torus knot, corresponding to two linked

trefoils. The unfolded structures of the torus knot and Hopf link threaded by helices is

shown in figure (5.7).

Note that, although the construction gives torus knots, the ‘torus’ is not a phase

surface, and as discussed in section 5.1, a knot’s phase surface is usually its Seifert surface.

Moreover, since the Am helix threads the knot itself, the screw number σ of the threaded

knot is the knot’s characteristic screw number κ minus the dislocation strength threading

the loop, in this case κ− σ, which is 0 for the trefoil here.

If ψp is cylindrically symmetric (independent of φ) then, for small ε, the zeros of ψ(r)

of (5.2.6) can be found explicitly. Firstly, in the neighbourhood of Ln, ψp is a constant, ie

BL ≡ ψp(R0, 0). (5.2.7)

We shall work in polar coordinates (ρ, γ) in the (R, z) plane, defined by

R−R0 + iz = ρ exp iγ. (5.2.8)

Therefore, from (5.2.2), (5.2.6), the dislocations satisfy

K+ρn exp(inγ) + K−ρn exp(−inγ) = −εBL exp(−imφ). (5.2.9)
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a b

Figure 5.7: Stable unfoldings of figure (5.5): (a) the trefoil knot (m,n) = (3, 2); (b) the

Hopf link (m,n) = (2, 2).

As φ increases by 2π, the entire argument changes by −2πm, so (recalling that |K+| >

|K−|) γ, and indeed, the entire pattern, rotates through −2πn/m; each dislocation strand

rotates in a left-handed sense as φ increases, by n/m turns. In n azimuthal circuits (φ

changing by 2πn) the dislocation strand matches with its starting point, for the first time

if m,n are coprime, confirming the torus knot structure (with obvious extension if m,n

are not coprime). On each azimuthal section, the dislocation points lie on a circle of radius

ρ = O(ε1/n), and the union of all these circles (for each φ) gives the torus on which the

knot is wound, the coordinates on the torus given by angles φ, γ.

In the neighbourhood of Am, the perturbing wave takes on the form

BA(z) ≡ ψp(0, z). (5.2.10)

Since ψp must be a solution of the wave equation, it must vary with z if it is to be

independent of φ; for instance, the plane wave exp(iz) satisfies the wave equation, and has

a phase uniformly increasing with z. Using (5.2.1), the m unfolded axial dislocations lie

on the axial tube with (variable) radius

R(z) = ε1/m|BA(z)/K|. (5.2.11)
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Note that the phase of K is also z-dependent in general. The azimuthal position of the m

helical strands are

φj(z) =
arg(BA(z)/K)

m
+

2πj

m
, 1 ≤ j ≤ m. (5.2.12)

Since BA must vary with z, (at least in phase), the strands rotate, in a right handed sense

if the argument of BA increases with respect to z. This is the case in figure (5.7).

If BA(z) vanishes for certain z values, then Am unfolds to an m-stranded chain rather

than a helix, by (5.2.11); this is the case when one applies the construction here to the

electron wavefunctions in atomic hydrogen, as described by [Ber01b].

In the next section, we shall show how this construction can be used in practice, by

finding explicit solutions of Bessel beams with nodal lines in the form of the trefoil knot

and Hopf link.

5.3 Bessel knots

The remainder of this chapter is concerned with the implementation of the construction

in the previous section to various types of wave beams. The conventions and definitions

of these wave beams is described in section 5.7. The Bessel beams (5.7.3) are a convenient

set of beam solutions, optically realisable experimentally with lasers [Dur87, DMJE87],

which satisfy the Helmholtz equation. They possess the required (5.2.1) structure (the

(5.2.2) structure is found by choosing an appropriate superposition of the solutions). It is

shown in section 5.8 that it is impossible to find a high-strength dislocation transverse to a

paraxial beam, which means that there is no way that (5.2.2) can be satisfied for a paraxial

solution. However, knots may be constructed in paraxial beams (such as Laguerre-Gauss

beams), but this shall not be until section 5.5.

In terms of (5.2.3), each Bessel beam solution (5.7.3), labelled by the order m of the

Bessel function and its transverse wavenumber κ, is

fmκ = Jm(κR) exp(iz
√

1− κ2). (5.3.1)

The transverse wavenumber κ cannot be greater than the total wavenumber 1, and 0 ≤
κ ≤ 1. The Bessel beams automatically have the correct structure to satisfy (5.2.4), and

in order to have the structure (5.2.2), different transverse wavenumbers κl must be chosen
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such that the sum

f(R, z) =
n(n+1)/2∑

l=1

alfmκl
(R, z). (5.3.2)

with real constants al. For calculational simplicity, we can choose κ1 to be equal to 1, and

set a1 = 1 without loss of generality. A fixed choice of the other κl is then made, and the

other al and R0 are adjusted until the n(n+1)/2 conditions of (5.2.5) are satisfied, creating

the desired loop Ln. (Although the nodes of the Bessel beams (5.7.3) are degenerate

cylinders at the zeros of Jm, superpositions such as (5.3.2) are sufficiently generic off the

axis to have line zeros.) We find values of κl, al explicitly for the (3,2) trefoil knot and

the (2,2) Hopf link. Since n = 2 in both cases, the loop L2 requires the superposition of

three Bessel functions Jm (m is 3 or 2), satisfying the three conditions (5.2.5), and making

two dislocations and a saddle coalesce in an azimuthal section. The radial wavevector

components κl are chosen to be

κ1 = 1, κ2 =
1
3
, κ3 =

2
3
. (5.3.3)

These were chosen so that the zeros of the different Jm(κlR) were as far from each other

as possible, making it easier to find appropriate al. For the trefoil, there are now three

equations to solve,

f(R0, 0) = J3(R0) + a2J3(R0/3) + a3J3(2R0/3) = 0,

∂Rf(R0, 0) = J ′3(R0) +
1
3
a2J

′
3(R0/3) +

2
3
a3J

′
3(2R0/3) = 0,

∂zf(R0, 0) =
√

8
3

a2J3(R0/3) +
√

5
3

a3J3(2R0/3) = 0. (5.3.4)

For the link, the Bessel indices 3 are replaced by 2, but otherwise the three conditions

are the same. The three equations (5.3.4) can easily be solved numerically, and for sim-

plicity the lowest two zeros of the Bessel superposition are chosen to coincide; the values

of the parameters are

a2 = 10.0302, a3 = −3.18960, R0 = 5.44992 ((3,2) trefoil knot)

a2 = 4.73341, a3 = −2.70176, R0 = 4.32636 ((2,2) Hopf link)
. (5.3.5)

We have therefore constructed functions satisfying the conditions (5.2.4), (5.2.5), to make

the degenerate dislocations Am, Ln.

Since the perturbing beam ψp cannot have any dislocations within Ln, the J0 beam

with κ = 1/4 is chosen, which is independent of φ,

ψp(R, z) = J0(R/4) exp(i
√

15z/4). (5.3.6)
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Figure 5.8: Density plots of the wave intensity for the Bessel superposition constructed in

the text, with ε = 0.02, in the planes z = 0 ((a),(c)) and φ = 0 mod π ((b),(d)). Figures

(a),(b) show the (3,2) trefoil knot, (c),(d) the Hopf link. These are sections of the full

wave whose knot structures are shown in figure (5.7).
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Figure (5.8) shows intensity sections of the total perturbed wave for the two cases.

For R > R0, the intensity grows very rapidly, implying that experimental observation of

knots using these solutions will be very difficult: a very high sensitivity near the dark

places of the beam would be required, so that the entire knot structure does not look like

a widening of the dark core, without any contrast picking out the knot structure.

Of course, as we are well aware, light is a vector disturbance, and, especially when

paraxial waves are not being used, we cannot assume that the longitudinal component

vanishes. Since the vector field must be divergenceless, it is easy to calculate the longitu-

dinal field explicitly. One finds that its zeros are not in the same places as the transverse

field. In lasers, therefore, they are not true zeros (although the longitudinal part tends to

zero as the wave becomes more paraxial, when the values of κl ¿ 1 in (5.3.2)). It makes

sense, however, to discuss phase singularities in the transverse component of the beam.

On the subject of experiments, it is perhaps worthwhile to point out that the knot

construction (particularly (5.2.1)) requires beams with a factor exp(imφ), which are often

studied because the phase vortex structure gives rise to orbital angular momentum in the

beam (see, for example, [ABSW92, SDAP97, APB99]). This is fortunate, because there

is (hopefully) sufficient experimental expertise to physically realise the knot construction.

However, it does not seem likely that there is any deeper connection between knots in

such beams and their orbital angular momentum, but perhaps a sufficiently imaginative

experiment may combine the two properties.

5.4 Knotting and linking in polynomial Helmholtz waves

The construction for knotted and linked dislocations, explained in section 5.2 and im-

plemented for the Bessel beams (solving the Helmholtz beam equation (5.7.1)), rely on

constructing the degenerate dislocations Am, Ln in an initial wave ψ0, then perturbing

them with an undislocated wave ψp. Although the knotted configuration is structurally

stable, the construction clearly only works provided the perturbation parameter ε in (5.2.6)

is sufficiently small. If R(z) in (5.2.11) exceeds R0, then the helical Am strands meet the

knotting Ln strands, and reconnection events, discussed in section 2.6, take place. ε was

called a in [BD01b], and the discussion here follows the arguments of this paper.

The model used to demonstrate this reconnection in action is the family of polynomial

Helmholtz waves gHmt(R, z) (listed in table 5.1). The analogue of (5.3.2) for polynomial
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waves is

f(R, z) =
n(n+1)/2∑

t=0

atgHmt(R, z). (5.4.1)

As before, the real at are chosen such that the degenerate ring Ln is present. For the

perturbation, the simplest choice (in beam form) of perturbing wave ψp is simply the

plane wave in the z-direction

ψp = 1 = gH00. (5.4.2)

The perturbed beam is therefore (cf (5.2.6))

ψ(r) = exp(imφ)f(R, z) + ε (5.4.3)

The perturbation is therefore simply a (changeable) constant.

We are interested in what happens when ε becomes large; in particular, what happens

when the strands of the knot reconnect with the threading helix. This occurs, as explained

in 2.6, when the dislocations intersect L lines of ∇ψ, which occur where the real vorticity

vector field

N = Im∇ψ∗ ∧ ψ (5.4.4)

vanishes (N = 2ω here). Since the perturbation (5.4.2) is independent of r, the position

of the L lines does not change as ε is varied, and it suffices to find the values of ε for which

the dislocations intersect the stationary L line. This L line is stationary only for the beam

solution, and is ε-dependent in the proper wave solution, when the beam is multiplied

through by exp(iz). It is used here as a calculational trick to locate the reconnection

points; the dislocations have the same positions in the beam and the wave functions.

We first examine the trefoil case, for which, as with the Bessel trefoil, n = 2, and t

values of 0, 1, 2 are used in (5.4.1). An easy calculation, using the values of gHmt in table

(5.1) for m = 3, shows that the choice

a0,knot = 400, a1,knot = −40, a2,knot = 1, R0,knot =
√

20 (5.4.5)

satisfies (5.2.5); the overall factor is chosen such that the term with the highest power of

R in the superposition (5.4.1) is 1. Explicitly, the unfolded, knotted beam is

ψH,knot(R, z) = exp(3iφ)R3
(
(R2 − 20)2 − 80z2 + 20iz(R2 − 20)

)
+ ε. (5.4.6)

Figure (5.9a) shows the trefoil when ε ≈ 0; note that the unfolded axial strands are at

a changeable distance to the axis, which by (5.2.10) is proportional to 1/|5 − z2 − 5iz|.
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The positions of the L lines can be found by finding the zeros of (5.4.4) with the ψ above,

requiring the simultaneous zeros of

NR = −480R5z
[
3(R2 − 20)2 + 160z2

]
,

Nφ = −40R5(7R2 − 60)
[
(R2 − 20)2 + 80z2

]
,

Nz = 6R4
[
(R2 − 20)3(7R2 − 60) + 1200z2(R2 − 20)(R2 − 12)

]
, (5.4.7)

which are the loci with (R, z) coordinates

(0, z), (
√

20, 0),

(√
60
7

, 0

)
. (5.4.8)

On the z axis and the ring (
√

20, 0), ψ = ε, so the first two L lines correspond to the birth

at ε = 0 of the knot and its threading dislocations. On the ring (
√

60/7, 0), (5.4.6) gives

ψH,knot

(√
60
7

, φ, 0

)
=

768000
343

√
15
7

exp(3iφ) + ε. (5.4.9)

The critical value of ε, εcrit, at which the axial threads meet the knot and reconnect, occurs

for

εcrit =
768000

343

√
15
7

= 3277.66, Rcrit =

√
60
7

, φcrit =
(

π

3
, π,

5π

3

)
, zcrit = 0.

(5.4.10)

Figures (5.9a-d) show the sequence through εcrit; three simultaneous reconnections (of

the type described in section 2.6) take place at εcrit (they are not generically simultaneous,

as can be demonstrated if, for example, ε depends on cartesian coordinates ε = ε0 + εxx+

εyy). Note also how, as ε approaches εcrit, the threading dislocations distort, in preparation

for the reconnection which requires the meeting dislocations to be locally coplanar and

cotangent.

The construction of the Hopf link is identical to the trefoil case described above, and

is explained in detail in [BD01b]. Its parameters in the superposition (5.4.1) are

a0,link = 144, a1,link = −24, a2,link = 1, R0,link =
√

12, (5.4.11)

giving the beam

ψH,link = exp(2iφ)R2
(
(R2 − 12)− 48z2 + 16iz(R2 − 12)

)
+ ε. (5.4.12)

which has L lines with (R, z) loci

(0, z), (
√

12, 0), (2, 0), (5.4.13)
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a

b

c

d

Figure 5.9: Destruction of the trefoil knot in the polynomial Helmholtz wave (5.4.6), as

ε increases through (a)-(d). At (c), ε = εcrit, (5.4.10), and the three reconnection events

are indicated by arrows.
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the third of which being the L line at which the two reconnection takes place, with pa-

rameter critical values

εcrit = 256, Rcrit = 2, φcrit =
(

π

2
,
3π

2

)
, zcrit = 0. (5.4.14)

The creation and destruction of the link as ε changes is shown in figure (5.10). Note that

the values of εcrit appear very large; this is an artefact of the values of at, R0 chosen for

mathematical simplicity. For instance, if a0,knot were 1 instead of 400, εcrit = 8.194, and

if R0 were rescaled to a smaller value εcrit would drop further.

5.5 Knots and links in paraxial waves

The reader has already been directed to section 5.8, where it is shown that it is impossible

to find a paraxial wave with a loop Ln with n > 1. This problem is not insurmount-

able; although we cannot create the degenerate Ln structure, we can impose slightly less

restrictive conditions which still, on unfolding, give torus knots and links, although the

change in topology is different from that described in the previous section. For ease of

analysis, the polynomial paraxial waves tabulated in table 5.2 shall be used to describe

the structure, and the section concludes with appropriate choices of parameter giving the

trefoil and Hopf link in Laguerre-Gauss beams.

Although the recovery of the knot construction for paraxial waves was missed at first,2

it is hardly surprising that knots can still be made: between (5.7.1) and (5.7.4) there

is only one term different, ∂2
zψ. One can treat this as a perturbing term to interpolate

between Helmholtz and paraxial solutions, and if the knot perturbation parameter ε is

numerically larger than this, the knot survives, as shall be demonstrated; alternatively

stated, ‘knot space is bigger than paraxially prohibited space’.

Solutions of the paraxial wave equation automatically have the exp(iz) factor removed,

so, as with Helmholtz polynomial waves, the knot perturbation can take place with ψp

being the plane wave in z, which is just the constant 1. By analogy with (5.4.1), the

unperturbed wave is a superposition of paraxial polynomial waves gPmt from table 5.2,

f(R, z) =
n(n+1)/2∑

t=0

atgPmt(R, z), (5.5.1)

2It was found almost by accident, from a misunderstanding between the theorists (Michael Berry and

myself) and experimentalists Johannes Courtial and Miles Padgett, who were trying to implement the

Bessel construction experimentally.
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a

b

c

d

Figure 5.10: Destruction of the Hopf link in the polynomial Helmholtz wave (5.4.12), as ε

increases through (a)-(d). At (c), ε = εcrit, (5.4.14), and the two reconnection events are

indicated by arrows.
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which automatically satisfy the Am conditions (5.2.4), but not the Ln conditions (5.2.5).

Because the paraxial case is more complex than the Helmholtz, we shall work with the

very simplest knot example, which is the Hopf link.

In this case, (5.5.1) becomes

flink(R, z) = a0(gP20 + αgP21 + βgP22), (5.5.2)

and the L2 conditions (5.2.5) are

f(R0, 0) = 0, ∂Rf(R0, 0) = 0, ∂zf(R0, 0) = 0. (5.5.3)

It is impossible for these three conditions to be met simultaneously, but we examine the

case when only two (the first and one other) are satisfied. If f and fR vanish at (R0, 0)

then α = −2/R2
0, β = α2/4. It has an unstable strength 0 dislocation where L2 ring ought

to be at (R0, 0), and two strength 1 loops at

(R, z) =

(√
3

2
R0,± R2

0

16
√

3

)
. (5.5.4)

These are separated in z, and we shall see that the twist structure of the beam is sufficient

for reconnection processes to make two linked rings from these.

The other possibility (f, fz = 0 at (R0, 0)) has two loops, a degenerate strength 1 loop

coalesced with a saddle at (R0, 0), and another strength 1 loop at (
√

5/3R0, 0). These are

separated in R but not z, and they do not make a link with ψp = 1 (although it might be

possible with a different perturbing function).

Therefore we choose a0 = 1/β, α = −2/R2
0, β = α2/4, and the resulting unperturbed

wave is

f(R, z) = a0R
2((R2 −R2

0)− 48z2 + 4iz(4R2 −R2
0)). (5.5.5)

Since only two out of the three conditions (5.5.3) are satisfied, but we added three waves,

there is an overall degree of freedom (expressed by the fact that R0 is not fixed in (5.5.5),

although R and z scale differently with respect to R0). For reason of comparison with

the Helmholtz case, a value of R0 =
√

12 is chosen. The perturbed wave is therefore (cf

(5.4.12))

ψP,link = exp(2iφ)R2((R2 − 12)− 48z2 + 16iz(R2 − 9)) + ε. (5.5.6)

The only difference between ψP,link and ψH,link is the final numerical coefficient - 9 instead

of 12 - but this is sufficient to change the structure from a degenerate strength 2 dislocation
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to the two rings at (3,±1/4) and null ring at (
√

12, 0). As ε increases from 0, the null ring

unfolds to two thin crescent-shaped loops lying close to the z = 0 plane, as in figure

(5.11a).

The reconnection geometry is again provided by the L lines, which once again are

independent of ε. They are the zeros of the N vector field (5.4.4), which has cylindrical

components

NR = −64R4z
[
5R4 − 72R2 + 216 + 144z2

]
,

Nφ = −192R3
[
(R2 − 4)(R2 − 9)(R2 − 12) + 48z2(R2 − 3)

]
,

Nz = 4R3[3(R2 − 12)3(R2 − 4) + 240z2(72− 18R2 + R4) + 2304z4]. (5.5.7)

The L lines are at the (R, z) positions

(R, z) = (0, z), (
√

12, 0), (2, 0), (Rcrit1,±zcrit1). (5.5.8)

The first three of these are the same as for the paraxial case (5.5.8), respectively the

degenerate axial dislocation, the null ring where the crescents appear, and the third to

play a similar role as before. There are two further L loops with no Helmholtz counterpart,

where

Rcrit1 =
√

2 + 4
√

2 cos µ ≈ 3.15637,

zcrit1 =
1
6

√
−43 + 52

√
7 cos µ− 70 cos 2µ ≈ 0.0187059,

with µ =
1
3

(
π − arccos

47
28
√

7

)
. (5.5.9)

The link is created when the two strength 1 dislocation rings (5.5.4) meet the two

crescents which appeared at the null ring (
√

12, 0), (four reconnection events) when

εcrit1 = 37.8161, φcrit1 = 65.31◦ (5.5.10)

Two of the reconnections involve the upper ring, at +zcrit1, φcrit1 and π +φcrit1. The other

two involve the lower ring, at −zcrit1,−φcrit1 and π−φcrit1. The sequence of configurations

of formation of the link, as ε increases, is shown in figures (5.11a-d). The mechanism

is more complicated, but also more general, than the unfolding of Ln, and this method

was inadvertently discovered. The specific details, or how this construction may be im-

plemented generally by an analogue of the Ln conditions (5.2.5), have yet to be worked

out. The method described can be easily generalised for other cases where n = 2 (such
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a

d

b

c

Figure 5.11: Creation of the Hopf link in the polynomial paraxial wave (5.5.6), as ε

increases through (a)-(d). In (c), the loop is created by four reconnection events, where

ε = εcrit1 (5.5.10).
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e

g

f

h

Figure 5.12: The destruction of the Hopf link (5.5.6), continuing the sequence of increasing

ε from the previous figure. In (g), there are two reconnection events, where ε = εcrit

(5.4.14).
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as the trefoil) even when there is no simple immediate paraxial analogue, as shall be seen

with Laguerre-Gauss beams. If the paraxial Bessel solutions are used, the trefoil knot and

Hopf link are formed by the same process.

After the link has been created, (ε > εcrit1), the dislocation topology is the same for

paraxial as for Helmholtz waves; the link is eventually destroyed by reconnection with the

threading dislocations; the second pair of critical events occurs at the same values of the

parameters (5.4.14) as in the Helmholtz case, and are shown in figures (5.12e-h).

For the trefoil knot, the radius R0 of
√

20 is again chosen to agree with the Helmholtz

case, giving the paraxial analogue of (5.4.6),

ψP,knot = exp(3iφ)R3[(R2 − 20)2 − 80z2 + 20iz(R2 − 16)] + ε. (5.5.11)

The positions of the L lines are the same as in (5.4.8), with an additional two at (R, z) =

(Rcrit1,±zcrit1). The critical parameter values of the six reconnections are at

Rcrit1 = 4

√
5(1 + 5 cosµ)

21
≈ 4.160528,

zcrit1 =

√
500(2 cosµ− cos 2µ)− 701

147
≈ 0.191897,

with µ =
1
3

(
π − arccos

2194
3125

)
. (5.5.12)

Three reconnections take place with the upper ring, at +zcrit1, φcrit1, φcrit1 ± 2π/3; the

others with the lower ring at −zcrit1, −φcrit1, φcrit1 ± 2π/3. The reconnection with the

threading dislocations takes place with the same parameters as before.

To make the link with Laguerre-Gauss beams (5.7.6), one applies the same procedure

as above, involving the wave (with perturbation ε),

ψ = ψLG20 − 6
7
ψLG21 +

2
7
ψLG22 + ε, (5.5.13)

The link is made by exactly the same mechanism as the paraxial polynomial wave. The

four reconnection events creating the link (as ε increases) are

εcrit1 = 0.003370651, Rcrit1 = 0.883533,

zcrit1 = ±0.0263448, φcrit1 = ±69.41◦ and ∓ 110.59◦. (5.5.14)

There are four destruction events (since there are two L lines when the threading strands

meet the linking strands), at

εcrit2 = 0.017968, Rcrit2 = 0.535649,

zcrit2 = ±0.0388719, φcrit2 = ±108.05◦ and ∓ 71.95◦. (5.5.15)
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The knot exists for the wave

ψ = ψLG30 − 8
13

ψLG31 +
2
13

ψLG32 + ε, (5.5.16)

which is created at the six events with parameters

εcrit1 = 0.000972409, Rcrit1 = 0.913606,

zcrit1 = ±0.0146031, φcrit1 = ∓74.71◦,±45.29◦,±165.29◦, (5.5.17)

and destroyed at the six reconnections where

εcrit2 = 0.00573333, Rcrit1 = 0.624702,

zcrit1 = ±0.0143240, φcrit1 = ∓53.58◦,±66.42◦,±186.42◦, (5.5.18)

The Laguerre-Gauss beams have a different normalisation to the paraxial waves, and the

values εcrit of the critical events are correspondingly smaller.

5.6 Discussion and Conclusions

We have seen that dislocation loops, in three dimensions, have a rich topology, by virtue

of the phase structure they organise. The quantisation of twist has imporant implications,

some of which we have explored. However, the corresponding case for twirl has yet to be

penetrated; it is likely that this will lead to new understanding of dislocation topology,

from the fact that the dislocation is a closed loop in the ∇ψ field, which encloses C and L

lines.

Although we have explored in detail one particular construction for knotted disloca-

tions in the wave equation, we have barely scratched the surface of possibilities of more

general dislocation knots. For instance, is there an alternative construction for non-torus

knots, such as the figure-8 knot or the borromean rings? Is it possible to find knotted

dislocations in solutions to the wave equation where the knots are unthreaded? Also, it

is possible that there are connections between knotted dislocations (as current vortices)

and knotted vortices in hydrodynamics [Mof69, MR92, RSB99], and possibly the helicity

invariant, used the fluid dynamical study of knots, might play a role in knotted dislocation

theory.

The knot construction naively applied fails for paraxial waves, but may be recovered.

It is not clear what the appropriate generalisation of (5.2.5) should be for a knot with

arbitrary n, and further investigation would lead to a deeper understanding of paraxiality.
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The constructions here ought to be realisable experimentally, with details for construc-

tion of the Hopf link and trefoil knot given explicitly for Bessel and Laguerre-Gauss beams.

This is obviously a challenge to experimentalists. The obvious first experimental candidate

is an optical one involving lasers, and the beams we have used are easily manipulated in

laser optics (of course, at the knot, there may be a small longitudinal component of the

electromagnetic vector wave). However, as we have already discussed, there is possibly a

problem with these particular constructions, because the intensity grows very quickly with

radius R beyond the knot. This is possibly because, for mathematical simplicity, the first

two radial zeros of the unperturbed beam were chosen to coincide; the growth of intensity

may be less if higher radial zeros were chosen to coincide. Feedback from experimentalists

working on a knot realisation could resolve this question.

The knot reconnection studied here is a good example of the general dislocation recon-

nection described in section 2.6, and the topology can be studied further. As an offshoot

of this, as the azimuth φ of the plane is varied, dislocation points in the (R, z) plane

are annihilated and created (this is especially obvious in figure (5.11)). Preliminary in-

vestigation shows some reactions of the form (2.2.5), others of the form (2.2.6). Using

the functions here, the relationship between dislocation points in the plane and (curved,

twisted) dislocations in space is ripe for further investigation.

As indicated in the discussion to chapter 3, there are a range of questions about the

knottedness of dislocations in random waves, whose answer will require different techniques

than those used in this thesis to be solved.

5.7 Appendix: Wave beams: Bessel, polynomial and parax-

ial

The wavefields used in the construction of knots and links are different from the isotropic

random waves used elsewhere in this thesis; they are all monochromatic (with wavenumber

k = 1), and have some form of cylindrical symmetry, possibly with degenerate infinite long

straight dislocations up the z-axis. They also all have a factor exp(ikzz) (for appropriate

kz); it is the presence of this factor, along with cylindrical symmetry, that we justify use of

the term ‘beam’ (although beams with cartesian symmetry exist, such as Hermite-Gauss

beams, they are not considered here). We shall say that a wave ψ in the form ψ exp(−iz)

is in beam form, and in this section, waves in beam form shall be denoted ψ̃. All of the
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waves considered in [BD01b] were in beam form. Solutions of the paraxial wave equation

(1.5.5) are naturally in beam form, and it is to compare the subtleties of the different

solutions to paraxial and nonparaxial equations that we use this representation.

Since only monochromatic waves are considered, the relevant waves ψH satisfy the

three-dimensional Helmholtz equation (1.5.2) with k = 1. Therefore the corresponding

beams ψ̃H = ψH exp(−iz) satisfy the equation

∇2
⊥ψ̃H + ∂2

z ψ̃H + 2i∂zψ̃H, (5.7.1)

where ∇2
⊥ is the transverse laplacian (see (1.5.4)). Cylindrical coordinates are used

throughout this section. In beam form, a plane wave travelling in the z-direction is just a

constant.

A convenient and realisable set of beams are the set of Bessel beams ψB,mκ, which as

solutions of the Helmholtz equation are written

ψB,mκ = Jm(κR) exp(imφ) exp
(
iz

√
1− κ2

)
, (5.7.2)

where Jm is the Bessel function of first kind, of order m ≥ 0 [AS65]. As solutions of the

beam equation (5.7.1), the Bessel beams have the form

ψ̃B,mκ = Jm(κR) exp(imφ) exp
(
iz

(√
1− κ2 − 1

))
. (5.7.3)

κ is the transverse wavenumber (in units of wavenumber k = 1) and obviously (for a

nonevanescent wave) 0 ≤ κ ≤ 1; if κ = 0, then ψB,m0 is a plane wave if m = 0, and

zero otherwise. κ = 1 indicates that the wave propagation is completely transverse.

Although used in (5.3.3) for numerical convenience, this is not easily physically realisable;

most beams in optics have κ ¿ 1, and in this case the Helmholtz beam equation (5.7.1)

becomes the paraxial wave equation (1.5.5) with k = 1,

∇2
⊥ψP + 2i∂zψP = 0; (5.7.4)

this is valid in the paraxial approximation. There are subtle differences between non-

paraxial and paraxial waves, as the next appendix shows. More understanding of what

the paraxial approximation means can be gained by finding the paraxial analogue of the

Bessel beams (5.7.3); since κ is small, the factor of z in the exponential approximates to

−κ2/2, which is exactly the Bessel solution of (5.7.4):

Jm(κR) exp(imφ) exp(−izκ2/2). (5.7.5)
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As an approximation to (5.7.3), this expression is clearly only valid if κ is small; certainly

the beam with κ = 1 is rather nonparaxial. Note that, if 2i∂zψP is subtracted from

each side of (5.7.4), the equation has the same form as the time-dependent Schrödinger

equation in the plane (where z plays the role of time t), and all of the paraxial physics of

this chapter can be given a quantum interpretation in 2 + 1 spacetime [BD01b].

Frequently in the study of optical vortices in beams, the set of paraxial solutions known

as Laguerre-Gauss modes [ABSW92] are frequently used. They have the form

ψLG,mn =
(

w(−z)
w(z)

)n exp(−R2/2w(z))
w(z)m+1

Rm exp(imφ)Lm
n

(
R2

|w(z)|2
)

, (5.7.6)

where Lm
n denotes the associated Laguerre polynomial [AS65], and

w(z) = 1 + iz. (5.7.7)

These formulae apply for beams with waist equal to 1; others are possible by rescaling R

and z appropriately. The form of the Laguerre-Gauss beams (5.7.6) given here are slightly

different from those given elsewhere (for instance [ABSW92, APB99]), but certainly satisfy

(5.7.4).

With dislocations, we are normally only concerned with local properties of waves in

the vicinity of the singularity, and global properties of the solution are unimportant. This

leads to simpler algebra (for instance the simple forms (1.2.5), (2.8.1) exhibit dislocations

without the complications in equations like (5.7.6)). To this end, Nye [Nye98] constructed

families of so-called polynomial waves, waves that satisfy the wave equation, that in beam

form may be polynomials in R and z. They are the polynomial generalisations of the

simple linear times exponential waves (like (1.2.5), (2.8.1)) first used to study dislocations

[NB74].

We are interested in waves with phase-cylindrical symmetry, where the only φ depen-

dence is a factor of exp(imφ); by inspection, Nye [Nye98] constructed a set of cylindrical

solutions to the Helmholtz equation for m = 0, which were generalised for any (integer)

m by [Den00]. Their use was justified as being local Taylor expansions of waves whose

global behaviour would be different (since polynomials diverge for large values of their

variables). In fact, they can be constructed exactly by Taylor expanding in κ the Bessel

beams (5.7.3). Expanding the Helmholtz beams (5.7.3), one finds in κ2n the term

ψHmn = Rm exp(imφ)gHmn(R, z), (5.7.8)
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n = 0 1

n = 1 R2 + 2i(m + 1)z

n = 2 R4 − 4(m + 2)(m + 1)z2 + 4i(m + 2)z(R2 − (m + 1))

n = 3 R6 − 12(m + 3)(m + 2)z2(R2 − 2(m + 1)z)

+2i(m + 3)z(3R4 − 2(m + 2)(3R2 + 2(m + 1)(z2 − 3)))

Table 5.1: Polynomials gHmn from equation (5.7.8), associated with the κ expansion of

the Helmholtz Bessel beams (5.7.3).

n = 0 1

n = 1 R2 + 2i(m + 1)z

n = 2 R4 − 4(m + 2)(m + 1)z2 + 4i(m + 2)zR2

n = 3 R6 − 12(m + 3)(m + 2)z2R2

+2i(m + 3)z(3R4 − 4(m + 1)(m + 2)z2)

Table 5.2: Polynomials gPmn, associated with the κ expansion of the paraxial Bessel beams

(5.7.5). Note the slight differences with the corresponding polynomials gHmn in table (5.1).

where gHmn(R, z) is a polynomial in R and z. The first few gHmn are listed in table (5.1)

(with appropriate choice of overall numerical factors). Similarly, expanding the paraxial

beams (5.7.5), one finds polynomials gPmn in the same way, which are listed in table (5.2).

Expanding in κ is the opposite of the familiar geometrical (or semiclassical) expansion

in 1/k, appropriate in geometrical optics for short waves (large wavenumber). Here, where

we are examining the wavelength-level structures of waves, the reciprocal expansion is used,

furthering the duality, discussed in the Introduction, between dislocations as singularities

in wave optics, and caustics in geometrical optics (whose properties are best studied using

geometrical expansions).

5.8 Appendix: The paraxial prohibition against high strength

dislocations

The following is a proof of the statement that it is impossible for any solution to the

paraxial wave equation (1.5.5), (5.7.4) to have a dislocation with a high strength (>

1) dislocation perpendicular to the propagation direction. It is rare to find restrictions

of dislocation morphology in a wave equation, although the high-order structure (2.3.7)



166 The topology of twisted wavefronts and knotted nothings

is another example. Physically, the anisotropy between the transverse and longitudinal

directions is too much for a high strength dislocation to be possible.

Any loop enclosing the z-axis, of whatever shape, must have at least two points where

its direction is perpendicular to the z-axis (in particular, the components of the tangent

vector T must be periodic around the loop, with mean zero, so each must pass through 0

at least twice). Thus paraxial loops of strength n, |n| > 1 are not possible if the cartesian

paraxial equation

∂2
xψ + ∂2

yψ + 2i∂zψ = 0 (5.8.1)

forbids a strength n dislocation perpendicular to the z-direction.

Coordinates may be chosen so that, at the point of perpendicularity, the dislocation

passes through the origin in the y-direction, so the y variation is slower than that in x

and z, and the term ∂2
yψ in (5.8.1) is dominated by the other two. In the (x, z) plane, ψ

therefore satisfies

∂2
xψ + 2i∂zψ = 0, (5.8.2)

equivalent to the Schrödinger equation in one dimension. The anisotropy between x and

z shows that there is no solution proportional to (x2 + z2)n/2, and, by (5.2.5), (2.3.10),

for a strength n dislocation, not only must all derivatives ∂j
x∂p−j

z ψ of order p < n vanish,

but also must all derivatives ∂j
x∂n−j

z ψ not vanish. However, (5.8.2) shows that any ∂z may

be replaced by ∂2
x (ignoring factors), so that these two sets of conditions may be satisfied

simultaneously; if the derivatives of order less than n vanish, then at least one higher

derivative with respect to x must vanish too, spoiling the construction.

The prohibition is very subtle, and may be illustrated by the replacement of
√

1− κ2−1

with −κ2/2 in the Bessel beams (5.7.3), (5.7.5), in the attempt to make a degenerate ring

L2 in the knot construction. One finds that another singularity with strength opposite

those in the loop has appeared and combined with them, producing a cancellation, making

a degenerate strength 1 object. The paraxial polynomial case was similar, where there was

a degenerate strength 0 loop at (
√

12, 0). These unwanted guests are paraxially inevitable,

and even tend to appear for Helmholtz waves as the transverse wavenumber κ decreases,

making the numerical solution of sets of equations like (5.3.4) more difficult.



Chapter 6

Singularities in tensor waves: a

spinor approach

‘When the cube and the things together

Are equal to some discrete number,

[To solve x3 + cx + d,]

Find two other numbers differing in this one.

Then you will keep this as a habit

That their product should always be equal

Exactly to the cube of a third of the things.

[Find u, v such that u− v = d, uv = (c/3)3.]

The remainder then as a general rule

Of their cube roots subtracted

Will be equal to your principal thing.’

[Then x = 3
√

u− 3
√

v.]

Tartaglia’s poem explaining the solution of the cubic equation to Cardano [1539], quoted

in Fauvel and Gray, eds, The History of Mathematics: A Reader, Macmillan, 1987

In this chapter a formalism is outlined in which the generic polarization singularities

of complex vector fields, described in chapter 4, appear naturally as singularities in the

geometric description of spin 1 spinors. The generalisations of these spin singularities exist

in fields of any spin s > 1/2, in particular, spin 2 fields, that may represent gravitational

or (tensorial) elastic waves. These generalised spin singularities are still called C lines and

167
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L lines, and are generic in three dimensions with codimension 2, and there are qualitative

differences between two and three dimensional fields. The layout of the chapter is as

follows: the machinery for looking for spin singularities is described further in section 6.1,

spin 1/2 spinor geometry is reviewed in 6.2, and arbitrary spin, and its relation to the

Majorana sphere, in section 6.3. The paraxial case is discussed in 6.4, and C,L lines in

three dimensional spin fields in sections 6.5, 6.6. The interpretation of spin singularities

in vector waves is given in section 6.7, and for spin 2 waves in 6.8. There is an appendical

section on the tensor representation of spherical harmonics. The reader is warned that

the notation used in this chapter differs significantly in places from that used elsewhere in

the thesis.

At a late stage in the writing up of this work, it was realised that there are certain

mathematical parallels between the spin geometry explained here (particularly for spin 2,

the singularities in tensor wavefields, the understanding of which is the main motivation

for this work) and that used in certain classes of solution of the Einstein field equations, the

so-called Petrov classification [Syn64]. However, it is unlikely that this subject is familiar

to many readers (even those who have got as far as this chapter), and the material is

presented more or less as originally intended. The work on this topic is not finished, and

is presented in its incomplete state.

6.1 Motivation and introduction

We have discussed at length the geometric properties of phase singularities in complex

scalar wavefields, and also saw in chapter 4 that in complex vector waves, the relevant

singularities are those of polarization, where the polarization ellipse of the field becomes

circular or linear, and the natural orthogonal frame associated with the ellipse is singular.

The generalisation of the notion of polarization and its singularities is possible through

the realisation that the fundamental kinds of physical quantity (scalars, vectors, tensors,

etc) can be written as representations (via spherical harmonics) of the group of three-

dimensional rotations SO(3), and more generally spinors (of integer spin), which are

representations of the group of 2 × 2 special unitary transformations SU(2). Although

examples of physical waves discussed here are all of integer spin, we shall develop a gen-

eral theory of spin singularities (that is, singularities for spinors of spin s > 1/2), and only

(coherent) states of pure spin s are considered (not mixed states).
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Although much of the exposition has a quantum mechanical flavour and formalism

(such as the use of the term ‘spin’ itself), we emphasise that the theory described is general,

and the formalism is used because of its familiarity to physicists; much of the mathematics

of spinors, tensors and representations grew out of quantum mechanical problems (as in,

for instance, [Wig59]).

The primary conceptual object used here to describe polarization of spin s and its

singularities is the Majorana sphere representation [Maj32], a generalisation of the Rie-

mann sphere for spin 1/2, discussed briefly in section A.3. The Majorana representation

is a unique canonical decomposition of a given spin state of spin s into n ≡ 2s unordered

spin 1/2 states (that is, unit vectors on the Riemann sphere); thus, up to amplitude and

phase, a complex vector (spin 1) is described by two unit vectors, a traceless symmetric

complex matrix (spin 2) by four, with rotations R of the state in space corresponding to

rigid rotations of the Majorana sphere.

The description appears to have been used first by Majorana in 1932 [Maj32] to de-

scribe probabilities of transition between quantum states of atoms in magnetic fields (al-

though its full generality does not appear to have been appreciated in that area [Mec58]).

It seems to have been Synge who coined the term ‘principal normal directions’ in [Syn58]

for the directions of the spinors in the Majorana decomposition of the electromagnetic

vector V = E + iH (4.4.2), and this was later used by Penrose [Pen60, PR84b] to give

a spin interpretation of the Petrov classification [KSMH80] of spin 2 gravitational fields.

Penrose later popularised the Majorana picture for quantum states in [Pen89, Pen94], 1

which has earned more of a following in recent years [Leb91, Han98b]. The Majorana

sphere formulation is not intrinsically different from the more usual algebraic formulation

of spin in terms of eigenfunctions of spin operators and spherical harmonics, but does not

appear to admit of a simple description of the addition of angular momentum (facilitated

by Clebsch-Gordan coefficients in the algebraic formulation). Geometrically, the Majo-

rana sphere is more appealing, with no axis (such as the z-axis) needing to be chosen, and

rotations act directly.

The mathematics of this chapter is more abstract and subtle than that of preceding

chapters, and several notational conventions are adopted in this chapter.

• The summation convention, where repeated indices are summed over all values in
1In these books, he does not mention the significant role played by the Majorana sphere in general

relativity, which was one of the reasons why this literature was missed.
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that index, is used unless otherwise stated.

• Position in configuration space (the space of the field of spinors) is denoted by the

vector x = (x1, x2) (two dimensions) or x = (x1, x2, x3) (three dimensions), with

coordinate indices in lowercase roman i, j, etc. Cartesian tensors are thus written

gij , etc. Only matrices acting on real space (not spin space) are in bold face.

• Spinors in spin space are written in Dirac’s bra-ket notation, with |ψs〉 representing

a state with spin s (and the subscript is usually omitted). |ζ〉 is used when the spin

is 1/2. The spin labels m = −s, . . . s labelling basis vectors in the spin space are

here usually given lowercase greek labels µ, ν, where µ = m + s; the µ represents

0, 1, . . . , 2s, and |ψ〉 is decomposed (employing the summation convention)

|ψs〉 = ψµ|µ〉, (6.1.1)

where each ψµ is a complex number, the µth spin coefficient. When writing vectors

in the 2s + 1-dimensional spin space, square brackets are used, and |ψ〉 is rewritten

[ψ2s, . . . , ψ0].

• Following spinor convention, the two components of a spin 1/2 spinor |ζ〉 = [ζ1, ζ0]

have subscripts labelled by uppercase roman, A,B, etc.

6.2 Spinor geometry: flags, rotations and time-reversal

In this section we shall review various aspects of the geometry and algebra of spin 1/2

spinors (hereafter called elementary or atomic spinors), that are needed in later sections.

The details are easily found in mathematics textbooks (for example [Wig59, Cor53, LL77,

PR84a, Nee97]), but may not be particularly familiar to readers here (sufficiently unfa-

miliar to be relegated to an appendix). No reference to spinor fields will be made in this

section. The elementary spinors are all taken to be normalised, 〈ζ|ζ〉 = 1.

At the heart of spinor geometry is the relation between complex two-dimensional vec-

tors and real three-dimensional vectors, or, more accurately, between the Lie groups SU(2)

and SO(3). The natural group map between the two Lie groups SU(2) −→ SO(3) is 2 → 1,

with ±u 7→ o for u ∈ SU(2), o ∈ SO(3); this ambiguity of sign is important when consid-

ering half integer (fermionic) spins.
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In section A.3, an elementary two-state spinor is related to a point in the complex

plane including ∞ by (A.3.7), and so can be written as a unit vector u(ζ) by stereographic

projection (A.4.2). Therefore, with spherical polar angles θ, φ,

|ζ〉 = |ζ(θ, φ)〉 =


ζ1

ζ0


 =


cos θ/2 exp(−iφ/2)

sin θ/2 exp(iφ/2)


 , (6.2.1)

and in the complex plane

z = z(ζ) =
ζ0

ζ1
= tan θ/2 exp(iφ). (6.2.2)

Thus, up to a phase, the spinor [ 1
0 ] points in the +x3 direction (at the north pole, spin

up), corresponding to the origin of the complex plane and is denoted | ↑〉. The spinor [ 0
1 ]

points towards the south pole (spin down) and is denoted | ↓〉. It stereographically projects

to ∞. Other authors (such as [PR84a]) project from the north, rather than the south pole,

but we find the sense in which orientation is preserved preferable.

The arguments of the spinor in (6.2.1) are such that arg(ζ0ζ1) = 0, and is clearly

normalised:

〈ζ|ζ〉 = ζ∗AζA = |ζ0|2 + |ζ1|2 = 1. (6.2.3)

The normalisation and phase condition imply that for the atomic spinor (6.2.1), stereo-

graphic projection is a 1-1 correspondence. In quantum mechanics, the direction (θ, φ) of

the spinor gives the direction (in space) of the quantum spin.

A natural question to ask is whether multiplying the spinor by a phase exp(−iχ/2) has

any geometric significance. In fact it does; the spinor is said to represent a flag [PR84a],

a unit vector (spherical angles (θ, φ) the ‘flagpole’) and a direction (‘flag direction’) χ

perpendicular to the flagpole. The flagpole is given by the unit vector u(ζ). The spinor in

(6.2.1) is therefore modified:

|ζ〉 = |ζ(χ, θ, φ)〉 =


cos θ/2 exp(−i(φ + χ)/2)

sin θ/2 exp(i(φ− χ)/2)


 . (6.2.4)

where the flag phase χ of the spinor is defined in general by − arg ζ0ζ1. The normalised

flag spinor has three angle parameters χ, θ, φ. It is the first column of the unitary matrix

R = R(χ, θ, φ) =


cos θ/2 exp(−i(φ + χ)/2) − sin θ/2 exp(−i(φ− χ)/2)

sin θ/2 exp(i(φ− χ)/2) cos θ/2 exp(i(φ + χ)/2)


 , (6.2.5)
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which represents, under the homomorphism SU(2)−→SO(3), rotation by the three Euler

angles (rotate by χ about x3, then by θ about −x2, then by φ about x3; see, for example,

[Alt86]). Any element of SU(2) may be written in the form (6.2.5), just as any rotation

may be written in terms of Euler angles (the three parameters being angles is what makes

this Lie group compact). Another way of writing a general unitary transformation in

spinor space, equivalent to a three-dimensional rotation, is the rotation by angle τ about

an axis with (unit) direction n,

R(τ,n) = 1 cos τ/2− iσ · n sin τ/2 = exp(−iτσ · n/2), (6.2.6)

where 1 is the 2×2 identity matrix and σ is the vector of Pauli matrices defined in (A.4.4)

[Alt86]. Although this second representation may be more aesthetically pleasing [Fra88],

we shall usually use the Euler angle representation. The flag spinor (6.2.4) therefore

represents a rotation, and |ζ(χ, θ, φ)〉 = R(χ, θ, φ)| ↑〉. Since R represents a rigid rotation,

the spinor |ζ̃〉 representing the antipodal point on the sphere to |ζ〉 is easy to find, being

the result of the operation of R on | ↓〉 :

|ζ̃〉 = |ζ̃(χ, θ, φ)〉 = R(χ, θ, φ)| ↓〉 =


− sin θ/2 exp(−i(φ− χ)/2)

cos θ/2 exp(i(φ + χ)/2)


 . (6.2.7)

The fact that |ζ̃〉 is antipodal to |ζ〉 is easily verified from the substitution

|ζ̃〉 = |ζ(−χ± π, π − θ, φ± π)〉. (6.2.8)

The ±π terms here correspond to an overall sign ambiguity in |ζ̃〉. We shall treat it as

fixed by (6.2.7). The antipodal state therefore has the sense of χ reversed. The spinor |ζ̃〉
shall be called the dual of the spinor |ζ〉.

Rewriting R in terms of its Cayley-Klein parameters α, β [Alt86], its action on an

arbitrary spinor |ζ〉 gives another spinor:

R|ζ〉 =


α∗ −β∗

β α





ζ1

ζ0


 =


α∗ζ1 − β∗ζ0

βζ1 + αζ0


 , (6.2.9)

inducing a special unitary Möbius transformation on z = ζ0/ζ1 [Nee97],

z → αζ0 + βζ1

α∗ζ1 − β∗ζ0
=

αz + β

α∗ − β∗z
. (6.2.10)

The effect on z of taking the antipodal map z(ζ) → z(ζ̃) ≡ z̃ is to conjugate, multiply by

−1 and reciprocate (ie z̃ = −1/z∗).



6.2 Spinor geometry: flags, rotations and time-reversal 173

The fundamental bilinear form on spinors is the antisymmetric product [PR84a, Cor53],

written

εABζAζ ′B = ζ0ζ
′
1 − ζ1ζ

′
0, (6.2.11)

with εAB the antisymmetric symbol [ 0 1−1 0 ]. This form is easily seen to be invariant with

respect to rotations by R,

εABRACζCRBDζ ′D = (αζ0 + βζ1)(−β∗ζ ′0 + α∗ζ ′1)− (−β∗ζ0 + α∗ζ1)(αζ ′0 + βζ ′1)

= (|α|2 + |β|2)ζ0ζ
′
1 − (|α|2 + |β|2)ζ1ζ

′
0

= εABζAζ ′B. (6.2.12)

This invariance means that the antisymmetric product (hereafter called the spinor

product, to distinguish from the inner product) has a geometric meaning, explained by

[PR84a] pages 59-61 - its modulus is simply the sine of half the angle between the two

flagpoles, the phase is half the sum of the two flag phases with respect to the geodesic line

on the sphere joining the two flags, as shown in figure (6.1). The flag angles are measured

with respect to the orientation imposed on the geodesic by the direction of the spinor

product (from ζ to ζ ′ in (6.2.11)). If the order in the product were reversed, then π would

be added to (or subtracted from) each flag angle, changing the phase by π, as expected

from the antisymmetry of the spinor product. Obviously the spinor product of a spinor

with itself is zero, and the product with its dual is 1. If each spinor in the product (6.2.11)

is multiplied by a phase exp(iγ), the phase of the spinor product changes by exp(2iγ). The

spinor product is crucial for defining C lines in the spinor formulation.

The usual hermitian inner product (the Hilbert space inner product, where the first

term is conjugated) is clearly invariant with respect to rotations, by unitarity of R :

〈ζ|R†R|ζ ′〉 = 〈ζ|ζ ′〉 = ζ∗0ζ ′0 + ζ∗1ζ1. (6.2.13)

The modulus of the inner product is the cosine of half the angle between the two flagpoles,

and the phase is half of the difference between the angles the flags make with the geodesic.

If the order of the spinors in the product is reversed, the phase becomes the negative of

its previous value (the inner product is hermitian, so changing the order is equivalent to

conjugating). The inner product of the spinor with itself is 1, and is zero with its dual,

〈ζ|ζ̃〉 = 0. (6.2.14)
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ζ

ζ'
α'

α

Figure 6.1: Calculating the phase of the spinor product εABζAζ ′B. The directions of the

flags are α, α′ with respect to to the geodesic line joining the two spinors (represented here

as a straight line), directed by the order of the product.

Using the inner product, it is possible to write the spinor product in bra-ket notation, as

the matrix element of the time reversal operator T̂ [Wig59, Sak94], defined

T̂ ≡ Ĉ†iσ2, (6.2.15)

where σ2 is the second Pauli spin matrix (A.4.4), Ĉ is the (right-acting) charge conjugation

operator and operator notation •̂ is used for Ĉ, T̂ since conjugation cannot be written as

a matrix. The adjoint indicates that conjugation acts to the left. The bra is therefore

doubly conjugated, and iσ2 is simply the antisymmetric εAB, ie

〈ζ|T̂ |ζ ′〉 = 〈ζ|Ĉ†iσ2|ζ ′〉

= 〈ζ∗|

 0 1

−1 0


 |ζ ′〉

= ζ0ζ
′
1 − ζ1ζ

′
0. (6.2.16)

The time reversal operator is antiunitary (T̂ T̂ † = −1), and enables the operation of taking

the dual to be put into operator form

|ζ̃〉 = Ĉ†T̂ |ζ〉
= iσ2|ζ〉. (6.2.17)

This shows that, for instance, the spinor product between two spinors is minus that be-

tween their duals. The definition of T̂ comes from the CPT theorem of quantum field
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theory [SW64], which states that the operations of charge conjugation Ĉ, parity reversal

iσ2 and time reversal leave a state invariant.

6.3 The Majorana representation of spin and polarization

Mathematically, the spinor algebra of the last section (in particular the use of unitary ro-

tation matrices) is a realisation of the two-dimensional irreducible representation of the ro-

tation group SO(3) generated by the Pauli matrices [Car66]. In fact, there is an irreducible

representation for every dimension, familiar from quantum mechanics as the appropriate

algebra for spin s, where the dimension of the representation is n + 1 = 2s + 1 (from

now on, n ≡ 2s). The conventional choice for the spin matrices S(n) = (S(n)
1 , S

(n)
2 , S

(n)
3 )

is for S
(n)
3 to be diagonal, and S

(n)
1 , S

(n)
2 constructed from linear combinations of ladder

operators acting on S
(n)
3 [VMK88].

The n+1-dimensional complex vector space on which these matrices act is called spin

space (spin-s space). Generalising the basis | ↑〉, | ↓〉 for atomic spinors, spin-s space has a

basis

|↑↑ · · · ↑︸ ︷︷ ︸
n

〉, |↑↑ · · · ↑︸ ︷︷ ︸
n−1

↓〉, . . . , | ↑ ↓↓ · · · ↓︸ ︷︷ ︸
n−1

〉, |↓↓ · · · ↓︸ ︷︷ ︸
n

〉, (6.3.1)

orthonormal with respect to the usual inner product. The basis is symmetrised with

respect to all possible orderings of ↑, ↓; as stated in 6.1, notation is simplified by relabelling

the basis spinors

|µ〉 ≡ |↑ · · · ↑︸ ︷︷ ︸
µ

↓ · · · ↓︸ ︷︷ ︸
n−µ

〉. (6.3.2)

A general spinor of spin s, |ψ〉 (assumed normalised), is written in components (with

summation convention, with µ labels running from 0 to n)

|ψ〉 = ψµ|µ〉. (6.3.3)

The ↑, ↓ atomic spinors in |µ〉 (6.3.2) are formally indistinguishable, and spin-s space is

mathematically the symmetric product of n copies of spin-1/2 space. It can be shown

[FLS63b, Sak94] that a rotation of a |µ〉 state is effectively a rotation of the n + 1 atomic

spinors {| ↑〉, | ↓〉} of which |µ〉 is comprised, giving rise to the spin s rotation operator (in

obvious generalisation of (6.2.6))

R(n)(τ,n) = exp(−iτS(n) · n). (6.3.4)
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The procedure for finding this matrix using Euler angles is very involved; the χ (and φ)

matrices are easily found from (6.3.4) to be exp(−iχS
(n)
3 ) but the θ one is tricky, and

its construction is described very clearly in [FLS63b] chapter 18, using (implicitly) the

Clebsch-Gordan coefficients of group theory.

The time reversal operator similarly generalises to high spin [Wig59, Sak94],

T̂ (n) = Ĉ†i exp(−iπS
(n)
2 ), (6.3.5)

which may also be written in terms of spin 1/2 σ2 operations on the elementary spinor

components of |µ〉. Therefore

Ĉ†T̂ |µ〉 = i2µ−n|n− µ〉 (6.3.6)

Up to a complex constant, all ↑ in |µ〉 become ↓, and vice versa. The generalised spinor

product is therefore (removing an overall factor i−n)

〈ψ|T̂ |ψ〉 =
n∑

µ=0

(−1)µψn−µψµ, (6.3.7)

which is invariant under rotations (6.3.4).

A geometric representation of an arbitrary |ψ〉 state is provided by the Majorana repre-

sentation [Maj32, Pen94], which is now described. The basis of the spin space {|0〉, . . . |n〉}
may be rewritten as a basis of monomials in an indeterminate −z,

|µ〉 → (−1)µ

(
n

µ

)1/2

zµ. (6.3.8)

The binomial factor
(
n
µ

)1/2 is present because |µ〉 is a symmetric product of µ ↑ and n−µ

↓ atomic spinors, and is required for normalisation. Therefore, associated with any |ψ〉 is

a Majorana polynomial p(ψ),

p(ψ) = (−1)nψnzn + (−1)n−1√nψn−1z
n−1 + · · ·+ ψ0

=
n∑

µ=0

(−1)µ

(
n

µ

)1/2

ψµzµ. (6.3.9)

If z is regarded as a complex variable, this polynomial has n complex roots by the funda-

mental theorem of algebra, and is factorised,

p(ψ) = ψn

n∏

µ=1

(zµ − z), (6.3.10)



6.3 The Majorana representation of spin and polarization 177

where the index label µ is used rather than µ when the index runs from 1 to n. The

complex values of the roots, as solutions to the equation

p(ψ) = 0, (6.3.11)

are unaffected by the multiplication of |ψ〉 by any nonzero complex number, and so are

invariant up to overall amplitude and phase. This was also the case with the polarization

ellipse representation for complex vectors in chapter 4. All of the spin s polarization

information is contained within the set of n complex roots {z1, . . . , zn}, which are the

coordinates of a point in complex projective space [Ati01].

Geometrically, each root zµ can be stereographically projected to a unit vector uµ with

angles θµ, φµ associated with a (flagless) atomic spinor |ζµ〉,

zµ → |ζµ〉 =


cos θµ/2 exp(−iφµ/2)

sin θµ/2 exp(iφµ/2)


 . (6.3.12)

Any spinor |ψ〉 can therefore be decomposed into n atomic spinors |ζµ〉, unlabelled

since the roots zµ of the polynomial cannot be labelled (and may be permuted about a

closed loop in parameter space). Geometrically, the spinor is described by the n root

vectors uµ; these are usually called principal normal directions in spinor theory [Syn58,

PR84a, PR84b]. It is readily verified that the configuration of n vectors rigidly rotates

under the corresponding spatial rotation matrix when the spinor |ψ〉 is rotated, and so

provides a physical picture of the spinor independent of the choice of coordinates. The

mathematical proof of these claims is given in [PR84a] page 162. This representation of

spin is called the Majorana sphere (because the unit vectors can be thought of as n = 2s

points on a unit sphere), and for spin s the Majorana sphere is denoted Mn.

The Majorana sphere is a generalisation of the Riemann sphere for an atomic spinor

|ζ〉, whose Majorana polynomial is linear,

ζ0 − ζ1z = 0. (6.3.13)

The solution of (6.3.13) is (6.2.2), and it was for this reason that −z was used rather than

+z in the monomials (6.3.8). ([Pen94] used the opposite convention.)

The Majorana polynomial is always considered to be of order n; if ψn = 0, it is

understood that there is a root at ∞ (with root spinor | ↓〉), with possibly repeated root

there if ψn−1 = 0, ψn−2 = 0, etc as well. In particular, this is the case for the Majorana
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sphere representation of each basis spinor |µ〉, related up to a constant to the monomial zµ.

This has µ roots at 0 and n−µ roots at ∞, so on the Majorana sphere has µ root spinors

| ↑〉, and n − µ root spinors | ↓〉. The behaviour of the root vectors is quite complicated

when two spin states are added, since the roots of the sum of Majorana polynomials is

nonlinearly related to the roots of the summands.

Equation (6.3.13) shows that the Majorana sphere M1 is the same as the Riemann

sphere introduced in A.3 for spin 1/2; its connection to the Poincaré sphere and paraxial

waves is described in section 6.4. M2 is equivalent to the nonparaxial polarization ellipse,

as described by [Han98d], and is discussed in 6.7, and M4 is used to describe linear

gravitational (and elastic) waves in section 6.8.

The Majorana polynomial (6.3.9) may be written in terms of the components of the

root spinors |ζµ〉,
p(ψ) = κ

n∏

µ=1

(ζµ,0 − ζµ,1z), (6.3.14)

where κ is a real constant ensuring that the state |ψ〉 associated with (6.3.14) remains

normalised. The phase, 1
2

∑
µ φµ + arg ψn, is distributed arbitrarily amongst the n root

spinors as flags.

The dual polynomial p̃(ψ) = p(ψ̃), whose roots are antipodal to those of p(ψ), is

p̃(ψ) =
n∑

µ=0

(
n

µ

)1/2

ψ∗n−µzµ (6.3.15)

(each coefficient ψµ in (6.3.9) is replaced by (−1)µψ∗n−µ) confirming that the operator Ĉ†T̂

in (6.3.6) dualises the spinor |ψ〉, ie

p̃(ψ) = p(Ĉ†T̂ |ψ〉). (6.3.16)

The generalised spinor product (6.3.7) therefore is once again the inner product of a state

with its dual.

This section is concluded with reference to a result of Hannay [Han98b], which gives

the expectation value 〈S〉 of the spin operator geometrically in terms of the root vectors

uµ. It is a complicated formula ([Han98b] equation (21) has a small typographical error),

involving the sum over permutations of the root vectors. In the case of spin 1, with root

vectors u1,u2, it reduces to the simple form [Han98d]

〈S〉 =
2(u1 + u2)
3 + u1 · u2

(6.3.17)

which will be compared with S defined in (4.4.10) in section 6.7.
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6.4 Plane waves and paraxial spin fields

It is a general result from relativistic field theory and the representation theory of the

inhomogeneous Lorentz group (Poincaré group), that for a plane wave with wavevector k

corresponding to a massless particle, choosing k = (0, 0, k), only components of the basis

states |0〉, |n〉 can be nonzero. The result was first proved by Wigner [Wig39]. For spins 1

and 2, this condition is equivalent to transverseness; in the language of section 6.10, with

cartesian coordinates i, j = 1, 2, 3,

∂iEi = 0,

∂ihij = 0, (6.4.1)

This is because the only space dependence of a plane wave is the factor exp(ikixi), and so

kiEi = 0,

kihij = 0. (6.4.2)

This is only satisfied by the states |0〉, |n〉, which follows explicitly for s = 1, 2 from the

forms given in 6.10. The conditions (6.4.1) hold for general superpositions of plane waves

(such a superposition of vector waves was used in chapter 4). All wavefields we consider

shall have this property. Such transverse fields correspond to massless particles [Wig39,

BW48]; all of the fields’ Fourier components are superpositions of helicity eigenstates.

In this section we shall examine the generalisation to higher spin of the paraxial vector

wavefields of section 4.2. We begin by examining transverse plane waves more closely.

In paraxial fields, the propagation direction is fixed, and, by transverseness, there are

only two basis states the spin vector may be in; |ψ〉 is effectively two-dimensional (in the

paraxial approximation):

|ψ〉 = ψ0|0〉+ ψn|n〉 =


ψn

ψ0


 . (6.4.3)

In this way a spinor plane wave with well-defined propagation direction behaves like it has

spin 1/2; this is exactly the relation between the Poincaré sphere of A.4 and the Riemann

sphere of A.3.

A plane wave is right circularly polarized if ψ0 in (6.4.3) is 0, and left circularly polarized

if ψn = 0. The wave is linearly polarized if |ψ0| = |ψn| = 1/
√

2, with azimuthal angle of

polarization dependent on the difference in arguments. The rotation operator about the
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axis defined by k by an angle τ, on the two-dimensional helicity space defined by (6.4.3)

is

R(τ,k) =


exp(−isτ) 0

0 exp(isτ)


 , (6.4.4)

since the 3-spin operator S
(n)
3 = diag[s, . . . ,−s]. Any rotation around the propagation

direction by 2π/s leaves a plane wave of spin s invariant, and states of linear polarization

are orthogonal if related by a rotation by π/2s. For s = 1 this gives the familiar vector

behaviour.

The relation between the Riemann and Poincaré spheres, and more generally Riemann

and Majorana spheres, comes from writing the spinor [ ψn

ψ0
] on the Poincaré sphere with

spherical angles θP , φP (cf (A.4.2))

ψ0

ψn
= tan θP /2 exp(iφP ) (6.4.5)

The Majorana description of this state is similar but not identical, with Majorana poly-

nomial

p(ψ) = ψ0 + (−1)nψnzn, (6.4.6)

with n roots

zµ = −
(

ψ0

ψn

)1/n

exp(iπ(1 + 2µ)/n) (6.4.7)

The roots all have the same modulus |ψ0/ψn|1/n, with arguments equally spaced. They

therefore form a regular polygon with n vertices (n-gon), centred at the origin of the

complex plane. On the Majorana sphere, the n root vectors lie equally spaced on a

common line of latitude defined by the polar angle θM , which together with the azimuth

angles φM,µ = φM + 2µπ/n are related to the Poincaré sphere angles θP , φP ,

tan θP /2 = tann θM/2

φP = nφM . (6.4.8)

For circularly polarized states, all roots are at 0 or∞, and all root vectors coincide at either

the north or south pole (they are simply |n〉, |0〉). Polygons in the northern hemisphere

correspond to right-handed polarization (with Stokes parameter from the Poincaré sphere

s3 > 0), and equivalently for the southern hemisphere. The polygons of linearly polarized

states lie on the equator of the Majorana sphere, and an axial rotation by 2π/s just

permutes the root vectors, not changing the state.
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The above equations show that the Majorana representation of a state is the nth root of

its Poincaré sphere representation (taking roots of the complex number z). The Poincaré

sphere thus generalised to arbitrary spin shares the appealing properties of the Poincaré

sphere (eg antipodal states are orthogonal), and agrees nicely with the Majorana repre-

sentation (whose use becomes necessary for three dimensional fields). It also illustrates

features of high spin states not present for spin 1 - a general three dimensional spin state

(with roots at arbitrary positions) is not, in general, expressible as a plane wave, even

given the freedom of choice of propagation direction. For instance, the state | ↑↑↓〉 has

two roots at the north pole and one at the south pole; it is not an equilateral triangle

for any normal direction. Spin 1 is an exception, since any two root vectors form a 2-gon

with propagation direction in the direction of the vector sum, and three dimensional spin

1 fields are made up of ellipses, just as they are in the paraxial case. This does not hold

for higher spins, the geometry of whose generic states is much more complicated for three

dimensions than two.

Similarly, a linearly polarized state (represented by an equatorial n-gon, or more gen-

erally, root vectors equally spaced on a great circle) does not correspond, except for spin 1,

to any spin basis vector |µ〉 for any axis; a 2-gon with vectors antipodal corresponds to the

state |1〉 about the direction in which the vectors lie. The result is that, although paraxial

spin s singularities (yet to be defined) correspond closely to their spin 1 analogues, the

relationship between two and three dimensional spin singularities is rather different.

Paraxial spin s fields are very much like the paraxial vector fields of section 4.2. The

paraxial field is defined, in comparison with (6.4.3), where x = (x1, x2),

|ψP(x)〉 =


ψPn(x)

ψP0(x)


 = ψP0(x)|0〉+ ψPn(x)|n〉, (6.4.9)

mathematically identical to (4.2.1) in a circular basis. The components ψP0, ψPn individ-

ually satisfy some wave equation, as in chapter 4.

There are therefore left and right handed C points, L lines and disclination points

(where Re[exp(−iχ)(ψP,0 − ψP,n,−i(ψP,0 + ψP,n))] vanishes for phase χ) in paraxial high

spin fields. The C points, from the n-fold symmetry of plane waves, are of index ±1/n =

±1/2s : it is likely that the lemon, star and monstar have some natural geometric in-

terpretation for general spin, and most other properties generalise directly. The paraxial

random wave model of 4.5 used the Poincaré sphere in constructing a random superpo-

sition of plane waves, as easily in a circular as cartesian basis. Obviously, the statistical
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distribution of polarizations on the Poincaré sphere is independent of the spin of the wave,

so the results of the statistical densities of C points, L lines and disclinations of 4.5 apply

to paraxial waves of any spin.

The case for nonparaxial spin fields is entirely different, and the remainder of this

chapter is devoted to a description of their nature.

6.5 C lines in three dimensional spin fields

We now generalise the codimension 2 C and L singularities of 4.3 to arbitrary fields of spin

s > 1/2, using the Majorana description of spin states. The fields considered initially are

spinor functions of space and possibly time |ψ(x, t)〉, the components of which satisfy some

wave equation. Such fields can be made from superpositions of infinitely many transverse

plane waves, with arbitrary (random) directions, polarizations and phases. As well as

identifying the singularities, we shall find natural functions of |ψ(x)〉 that vanish on the

singularities, as found for the vector singularities of chapter 4.

C lines for spin 1 were simply places where the polarization was circular; that is, the

two root vectors coincide. The codimensionality is expressible in terms of the spherical

coordinates (θ1, φ1), (θ2, φ2) of the two root vectors, as on a C line for spin 1 the following

two conditions hold

θ1 = θ2, φ1 = φ2. (6.5.1)

For an arbitrary spin s state, there are n ≡ 2s unit vectors with coordinates (θµ, φµ),

µ = 1, . . . , n on the Majorana sphere. Clearly, if s > 1, circular polarization requires all of

these to be equal. This has more conditions than just the two we want for line structures

in space (there are 2(n− 1)). However, if (6.5.1) is naively generalised so that only two of

the n root vectors coincide,

θµ = θν , φµ = φν , µ 6= ν, µ, ν ∈ {1, . . . , n}, (6.5.2)

there are only two requirements, so (6.5.2) ought to be satisfied along lines. Although

there are n(n − 1)/2 different possibilities of different roots coalescing, since the roots

cannot be globally labelled, all such different possibilities are identified.

The two conditions of (6.5.2) show that such generalised C lines (C for Coalescent roots

or Coincident root vectors) occur with codimension two, and are lines in space (although,

of course, the direction in which the root vectors coincide is independent of the direction



6.5 C lines in three dimensional spin fields 183

of the C line). In a small loop in space around the C line the root vectors which coincide

are permuted. It is easy to verify that this is the case with spin 1; the polarization ellipse

around the singularity rotates by π, being index 1/2. This implies that generalised C

lines have index 1/2, rather than index 1/n (which is the case for generalised paraxial C

points).

The index 1/2 nature may be understood further by considering what happens to the

two coinciding vectors in a transverse neighbourhood to the C line; their positions may

be expressed by the line element connecting them, which is necessarily undirected since

the root vectors cannot be labelled. The line disappears at the singularity, and the line

element rotates by ±π in a small loop around the singularity, as is usual with line fields,

and may have a lemon, star or monstar pattern.

A state on the Majorana sphere is mathematically defined as the symmetric product

of n copies of the sphere S2, which is equivalent to the direct product of n spheres factored

by the group of permutations on n objects Σn, ie

∏
n

symS2 '
(∏

n

S2

)
/Σn, (6.5.3)

reflecting the fact that the root vectors cannot be labelled. Traversing a closed loop in

x space, the n vectors may be permuted. Now, we have seen that two root vectors are

permuted around a C line; clearly if the circuit does not thread any C lines, it may

be smoothly (homotopically) contracted to a point without the roots coalescing, ie the

roots may be labelled unambiguously, and no permutation has taken place. Therefore,

generically, the C lines are the generators of the permutations; any permutation can be

broken down into 2-cycles (two element permutations), although the 2-cycle decomposition

of a more general permutation is not unique. The C lines are therefore the singularities of

labelling the root vectors, and the roots in a singularity-free simply-connected volume of

space may be unambiguously labelled.

In the language of topological defects in condensed matter (section 1.4), the permu-

tation group acts like the fundamental group in order parameter space (that is, different

loops in space correspond to different group elements). For any n > 2, the permutation

group Σn is nonabelian, and the relevant abelian group of singularity indices is the group

of cosets (which is abelian) [Mer79]; for permutation groups this is always the two element

group Σ2, so all C lines are topologically identified. The crossings of C lines are com-

plicated, and the geometry depends whether three or four roots coincide at the crossing
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point; more work needs to be done here to understand the morphology correctly.

One expects the significance of C lines to decrease as spins of higher s are considered,

and the role of individual root vectors is less. However, due to the increasing number of

real freedoms of such fields (2n polarization freedoms), it is inevitable that a structure of

only codimension 2 should be insensitive to many of the geometrical details.

It is desirable to express the complicated polarization structure using a complex scalar

(homogeneous in the components ψµ), which vanishes on C lines, generalising the polar-

ization scalar ϕ of (4.3.6). Such a scalar, if invariant with respect to rotations of the

Majorana sphere, would be a crude (two real parameter) description of the polarization

structure, but would detect, as phase singularities, the C singularity structure. In fact,

such a scalar exists.

The discriminant of a polynomial p =
∑n

µ=0 aµzµ is defined to be the product of

squares of the differences of the roots,

(−1)n(n−1)/2
∏

1≤µ<ν≤n

(zµ − zν)2. (6.5.4)

It is clearly invariant with respect to permutations of the root labels. It can be found in

terms of the coefficients aµ using a variety of techniques, including that of the bezoutian

matrix B(p) of the polynomial [Meh89]. We modify the definition slightly in order to make

the discriminant D homogeneous:

D(p) = a2(n−1)
n (−1)n(n−1)/2

∏

1≤µ<ν≤n

(zµ − zν)2. (6.5.5)

The degrees of the summands in D are 2(n− 1) (that is, a ‘2n− 2’-ic form). Note that

each root zµ appears 2(n− 1) times in the product (6.5.5) (it appears twice with each of

the other n− 1 roots).

Since the discriminant is zero if and only if roots coincide, it generically vanishes

exactly on C lines, and, in general, is a complex scalar, homogeneous in the field variables.

It is a suitable polarization scalar, provided it can be shown to be invariant with respect

to rotation of the Majorana sphere (equivalent to passive coordinate transformations).

The discriminant of a spin field |ψ〉 = ψµ|µ〉 is the scalar field (using (6.3.10), (6.5.5)),

ϕ(x) = D(p(ψ(x))) = ψ2(n−1)
n

∏

1≤µ<ν≤n

(zµ − zν)2. (6.5.6)
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Since each root zµ can be written in terms of its corresponding atomic spinor, zµ = ζµ0/ζµ1,

ϕ may be rewritten

ϕ =
ψ

2(n−1)
n∏

µ ζ
2(n−1)
µ1

∏

µ<ν

(ζµ0ζν1 − ζν0ζµ1)2. (6.5.7)

The difference between each pair of roots is now the spinor product (6.2.11) between the

root spinors |ζµ〉, |ζν〉, and is invariant under rotations by (6.2.12), and the factor outside

the product is equal to κ in (6.3.14). ϕ is a complex scalar invariant of |ψ〉, and is written

more transparently

ϕ = κ2(n−1)
∏

µ<ν

〈ζµ|T̂ |ζν〉2 (6.5.8)

ϕ is homogeneous in the components of the spinor, and the factor of κ2(n−1) shows that,

if |ψ〉 is multiplied by a phase exp(iχ), ϕ changes by 2(n− 1) times that phase (exp(2iχ)

in the case of s = 1). We shall see in section 6.7 that for spin 1, the two definitions for ϕ

are the same.

So far, no general geometric interpretation of ϕ for arbitrary spinors has been found.

However, the nature of the singularity and its relation to ϕ can be described in terms of

the root spinors. As with vectors, although the polarization geometry is invariant with

respect to global phase (gauge) transformations, ϕ is dependent on the phase of the field;

the phase can be globally transformed arbitrarily anywhere except where it is singular.

The phase of the spinor can be considered as being distributed as flag phases amongst the

n atomic spinors. If two flagpoles coincide, their spinor product is zero, and the phase,

defined graphically in figure (6.1), cannot be defined. This is the case whatever the phase

distribution amongst the atomic flags, so C lines are flag singularities of the root vectors.

6.6 L lines in three dimensional spin fields

With the same assumptions as the previous section, we now investigate how L lines in

three dimensions are generalised for high spin. As with generalised C lines, there are too

many restrictions (too high a codimension) for genuine linear polarization states to occur

generically for s > 1 (fixing all of the root vectors to lie on an arbitrary equatorial n-gon

would have codimension 2n− 3).

We can look for relevant pairwise conditions for the root spinors to satisfy, as in the

previous section. Since, for spin 1, L lines have the two root vectors antipodal on the
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Majorana sphere, we impose this as the generalised L condition: an L singularity is a

locus where any two of the Majorana root vectors are antipodal, or

uµ = −uν , µ 6= ν, µ, ν ∈ {1, . . . , n}. (6.6.1)

Equivalently, using the polar angles of the root vectors,

θµ = π − θν , φµ = φν + π, µ 6= ν, µ, ν ∈ {1, . . . , n}. (6.6.2)

These two conditions show that L singularities (two root vectors coLlinear with origin)

have codimension 2, as desired.

As with the spin 1 case, L lines have index 1, as can be seen from the local behaviour

of the vector v = uµ +uν where µ, ν locally label the root vectors which are antipodal on

the L line. v clearly vanishes there, and being a vector, its field zeros have integer index,

generically ±1. v is parallel to N of (4.3.4).

Since L lines have nothing to do with roots coinciding, L lines appear to be unrelated

to permutation of the root vectors, and appear to be less interesting than C lines for

general spin. As with C lines, L lines may cross, but in general the sets of antipodal root

vectors are disjoint (unless there is also a C line crossing). As with C lines, the physical

singularity is related to the fact that there is no unique geodesic between antipodal atomic

spinors, and their inner product vanishes.

By analogy with (6.5.8), recalling that the inner product is invariant with respect to

rotations (6.2.13) and zero for antipodal atomic spinors (6.2.14), we can define a real

positive scalar invariant field

λ = ρ
∏

µ,ν

〈ζµ|ζν〉. (6.6.3)

(ρ acts like κ in (6.5.8)). This form is of degree 2n, as it includes terms in the product

where µ = ν. λ may be rewritten in terms of the Majorana polynomial roots,

λ =
∏

µ,ν

(ζ∗µ0ζν0 + ζ∗µ1ζν1) =


∏

µ,ν

ζ∗µ0ζν1


∏

µ,ν

(
zν +

1
z∗µ

)
(6.6.4)

which is the resultant R(p, p̃) [Meh89] of the Majorana polynomial p(ψ) and its dual p̃(ψ),

defined in (6.3.15).

Unlike ϕ in (6.5.8), λ in (6.6.4) is real and positive. In the spin 1 case, we shall see that

it is equal to N ·N with N as defined previously in (4.3.4), but a general geometric inter-

pretation of λ has yet to be found. It is likely that it is some composite of a geometrically

simpler object (like N ·N).
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Before the discussion of arbitrary spin is concluded, we briefly consider the possibil-

ity that certain other geometrical configurations of the Majorana root vectors may give

interesting singular structures not present for s = 1. An example might be three root

vectors lying on an equilateral triangle, which would happen with codimension 2. Such

configurations indeed would occur generically, but it is hard to see how their presence

could be detected using scalars as simple as ϕ and λ, which are the natural bilinear forms

on atomic spinors.

6.7 The Majorana interpretation for vector waves

Everything that has been said concerning generalised C and L lines, when s = 1, reduces

to the formalism already discussed in section 4.3 for vector waves. Firstly, the configura-

tion of the two Majorana root vectors u1,u2 has a simple interpretation in terms of the

polarization ellipse (due to Hannay [Han98d]), which is demonstrated here using angular

momentum.

The expectation of angular momentum S, in units of ~, was stated in (6.3.17) to be

2(u1 +u2)/(3+u1 ·u2). If the angle between the u1 and u2 is 2θ, (so each vector subtends

an angle θ with the bisector), which is the angle θM for a plane wave defined above (6.4.8),

then

|S| = 4 cos θ

3 + cos 2θ
=

2 cos θ

1 + cos2 θ
. (6.7.1)

Now, recalling (4.4.10), and using the notation of chapter 4,

|S| = 2|p ∧ q|
p2 + q2

=
2p0q0

p2
0 + q2

0

, (6.7.2)

where p0,q0 are orthogonal by appropriate choice of phase. If p0 is the major semiaxis,

q0 the minor, then (6.7.2) can be rewritten

|S| = 2q0/p0

1 + q2
0/p2

0

, (6.7.3)

then, equating (6.7.1), (6.7.3), the polarization ellipse has eccentricity ε,

ε = sin θ. (6.7.4)

The geometry of this result is shown in figure (6.2).

In particular, (6.7.4) reproduces the fact that |S| = 1 for circular polarization, and 0

for linear polarization. The Majorana sphere M2 therefore provides a parameterisation
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N

u1 u2

θ

Figure 6.2: The geometric significance of equation (6.7.4): the projections of the two

root vectors u1,u2 into the equatorial plane normal to their bisector are the foci for the

polarization ellipse with major semiaxis 1.

for normalised, phaseless, oriented ellipses in space, just as the Poincaré sphere provides

one for the plane.

The two definitions for ϕ (equations (4.3.6), (6.5.8)) are equivalent. The homogeneous

discriminant of a quadratic equation is well known; with the Majorana binomial factor,

the discriminant is

ϕ = ψ2
1 − 2ψ0ψ2, (6.7.5)

equivalent to the quadratic form with matrix
[

0 0 −1
0 1 0−1 0 0

]
. The unitary transformation be-

tween cartesian and spherical bases is constructed in 6.10. If the ψ components in (6.7.5)

are transformed to components of E = (E1, E2, E3), ϕ becomes

ϕ = E2
3 − 2

1√
2
(−E1 − iE2)

1√
2
(E1 − iE2)

= E2
1 + E2

2 + E2
3 , (6.7.6)

agreeing with (4.3.6), corresponding to the quadratic form matrix
(

1 0 0
0 1 0
0 0 1

)
.

Similarly, λ in (6.6.3) is proportional to N ·N, with N = p ∧ q (4.3.4).

The connection between complex vectors and spin 1/2 spinors was taken advantage

in forms reminiscent to those here at the very beginning of spinor theory; Cartan [Car66]
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notices the 1-1 relation between a spin 1/2 spinor and a null vector E (E·E = 0); the spin 1

spinor’s coincident roots are mathematically equivalent to an atomic spinor. Synge [Syn58]

(apparently independent of Majorana) also realised some of the geometry here in relation

to the electromagnetic vector V = E + iH (4.4.2), and coined the term principal null

directions for the root vectors. As discussed in 4.4, the interpretation of the singularities

for this field can be made in terms of Lorentz transformations, which are easily realised

on the Majorana sphere via Möbius transformations.

6.8 Polarization singularities in gravitational waves

In this section we indicate how the material from the previous sections may be used to find

the polarizations singularities in spin 2 waves, in particular (linearised) gravity waves. It

also suggests the appropriate polarization structure of elastic tensor waves (the connection

between the two having been investigated by Hayes [Hay84]).

The Majorana sphereM2 here is used to describe the polarization structure of complex

traceless 3 × 3 symmetric matrices (the relation via spherical harmonics is outlined in

section 6.10). As stated in the chapter introduction, it was realised too late that this

relationship is well-known in the theory of solutions of the general Einstein field equations

by classification of the Weyl tensor (equivalent to a traceless 3 × 3 symmetric complex

tensor) into the Petrov types [Syn64] and its relation to principal normal directions by

Penrose [Pen60, NP62, KSMH80, PR84b]. Assuming that most readers are unfamiliar

with this material, the exposition shall be presented briefly, as originally envisaged; no

references have been found in the literature to generic loci of codimension 2 where the

Weyl tensor has a different Petrov type (four independent root vectors corresponds to

type I in Petrov notation, two coalescent vectors to type II (or types 1, 2a in the notation

of [Syn64])). However, the discussion shall not be particularly complete, nor shall L lines

be investigated.

The usual starting point for studies of gravitational waves is the linearised Einstein

equations (see, for instance, [Sch85, MTW73]); where µ, ν temporarily label spacetime

indices, Tµν = 0 and

∇2gµν = ∂2
t gµν , (6.8.1)

so each component satisfies the time-dependent wave equation (1.5.1). Gravitational dis-

turbances to the otherwise flat metric are assumed small, and so differ only slightly from
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the standard Minkowski metric ηµν :

gµν = ηµν + hµν . (6.8.2)

hµν therefore satisfies (6.8.1), which is the standard relativistic wave equation for massless

fields of spin 2 [Wig39, Bar47, BW48]. The appropriate choice of (gravitational) gauge is

the so-called ‘transverse-traceless’ gauge [Sch85, MTW73], which chooses once and for all

a global time direction (since the metric is almost flat), and hµν becomes hij , with space

indices only, and satisfies

∂ihij = 0, (6.8.3)

as discussed at equation (6.4.1). It also is traceless,

hii = 0. (6.8.4)

We therefore have a rank 2 tensor analogue of the E field considered previously; hij can be

decomposed into a Fourier sum of plane waves. The two orthogonal linear polarizations

for a given propagation direction (we choose the 3-direction) are usually referred to as the

‘+’ and ‘×’ states, and have hij representations

e+ =




1 0 0

0 −1 0

0 0 0


 ,

e× =




0 1 0

1 0 0

0 0 0


 , (6.8.5)

and homogeneous plane waves with these polarizations are

h•ij = e•ij exp(i(kx3 − ωkt), (6.8.6)

where • = +,×. The effect of these two polarizations on a ring of test particles are shown

in [Sch85] figure (9.1).

Right (+) and left (−) circularly polarized plane waves are therefore

e± = ∓(e+ ± ie×) exp(ikx3 − ωkt). (6.8.7)

The inner product is defined as half the trace of the matrix product

h∗ · h′ = 1
2

trh∗h′ =
1
2
h∗ijh

′
ij . (6.8.8)
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An arbitrary sum of (complex) plane waves in arbitrary directions gives rise to a

traceless symmetric matrix field with complex elements, written (where all space, time

dependence is suppressed)

h =




U − V/
√

3 Z Y

Z −U − V/
√

3 X

Y X 2V/
√

3


 (6.8.9)

which is traceless and symmetric. This matrix is considered in 6.10, where it is expressed

in terms of a 5-dimensional vector with complex components {U, V, X, Y, Z}. It is related

to the components of the corresponding 2-spinor |ψ(h)〉 = [ψ4, ψ3, ψ2, ψ1, ψ0], where

h =
1√
2




ψ4 −
√

2
3ψ2 + ψ0 i(ψ4 − ψ0) ψ1 − ψ3

i(ψ4 − ψ0) −ψ4 −
√

2
3ψ2 − ψ0 −i(ψ1 + ψ3)

ψ1 − ψ3 −i(ψ1 + ψ3) 2
√

2
3ψ2


 . (6.8.10)

The Majorana polynomial p(h), by (6.3.9) is

p(h) = ψ4z
4 − 2ψ3z

3 +
√

6ψ2z
2 − 2ψ1z + ψ0. (6.8.11)

It has four roots, corresponding to the four root vectors of the Majorana sphere M4. The

polarization scalar ϕ is the discriminant of this polynomial, a form of degree 6, and is

given in terms of spin components ψ4, . . . , ψ0 and cartesian components U, . . . Z :

ϕ = −3ψ2
1ψ

2
2ψ

2
3 + 3

√
6ψ0ψ

3
2ψ

2
3 + 8ψ3

1ψ
3
3 − 9

√
6ψ0ψ1ψ2ψ

3
3 + 27/2ψ2

0ψ
4
3 + 3

√
6ψ2

1ψ
3
2ψ4

−18ψ0ψ
4
2ψ4 − 9

√
6ψ3

1ψ2ψ3ψ4 + 60ψ0ψ1ψ
2
2ψ3ψ4 + 3ψ0ψ

2
1ψ

2
3ψ4 − 8ψ3

0ψ
3
4

−18
√

6ψ2
0ψ2ψ

2
3ψ4 + 27/2ψ4

1ψ
2
4 − 18

√
6ψ0ψ

2
1ψ2ψ

2
4 + 24ψ2

0ψ
2
2ψ

2
4 + 24ψ2

0ψ1ψ3ψ
2
4

= −U6 + 6U4V 2 − 9U2V 4 − 3U4X2 + 9
√

3U3V X2 − 15U2V 2X2 − 3
√

3UV 3X2

+15/2U2 X4 − 9
√

3/2 UV X4 − 3/4V 2X4 −X6 − 3U4Y 2 − 9
√

3U3V Y 2

−15U2V 2Y 2 + 3
√

3UV 3Y 2 − 39/2U2X2Y 2 − 3/2V 2X2Y 2 − 3X4Y 2

+15/4U2Y 4 + 9
√

3/2UV Y 4 − 3/4 V 2Y 4 − 3X2Y 4 − Y 6 − 18
√

3U2V XY Z

+6
√

3V 3XY Z − 27UX3Y Z + 9
√

3V X3Y Z + 27UXY 3Z + 9
√

3V XY 3Z

−3U4Z2 + 12U2V 2Z2 − 9V 4Z2 − 6U2X2Z2 + 9
√

3UV X2Z2 − 15V 2X2Z2

−3X4Z2 − 6U2Y 2Z2 − 9
√

3UV Y 2Z2 − 15V 2Y 2Z2 + 21X2Y 2Z2 − 3Y 4Z2

−18
√

3V XY Z3 − 3U2Z4 + 6V 2Z4 − 3X2Z4 − 3Y 2Z4 − Z6. (6.8.12)



192 Singularities in tensor waves: a spinor approach

What does this mean for the tensor (6.8.9), (6.8.10)? For convenience, we work in the

spin basis, and write down the characteristic polynomial q(t) of h :

q(t) = det(hij − tδij)

= −t3 + 2 t ψ2
2 +

4
√

2ψ3
2

3
√

3
− 4 tψ1ψ3 − 4

√
2
3
ψ1ψ2ψ3 + 4ψ0ψ

2
3

+4 tψ0ψ4 + 4ψ2
1ψ4 − 8

√
2
3
ψ0ψ2ψ4

= −t3 + t
(
U2 + V 2 + X2 + Y 2 + Z2

)− 2U2 V√
3

+
2V 3

3
√

3
− U X2 +

V X2

√
3

+U Y 2 +
V Y 2

√
3

+ 2 X Y Z − 2V Z2

√
3

. (6.8.13)

The eigenvalues of hij (roots of (6.8.13)) sum to zero by tracelessness, and the discriminant

of the cubic q(t) is easily found to be exactly the same as ϕ, the discriminant of the quartic

polynomial p, up to a factor; C lines are places where the matrix h is degenerate.

It is very surprising that these two polynomials, the quartic Majorana polynomial p,

linear in the spin coefficients ψµ, and the cubic characteristic polynomial q, cubic in the

ψµ, share the same discriminant. Even more astonishing, however, is that the relationship

between the coefficients of p and q is exactly the same as those of Ferrari’s construction

of the solution to the quartic polynomial [Boy68] pages 286-287: in order to find the roots

of a quartic polynomial, one constructs a cubic polynomial whose solution is found by

the Cardan-Tartaglia formula, and then finds the roots of the quartic in terms of the

roots of the cubic. The (hitherto) purely algebraic method for solving quartic equations

therefore has a physical interpretation, where the two polynomials (6.8.11), (6.8.13) are

related by a purely geometric construction. Maybe a reason for the this analogy is that

the Ferrari method is indeed the only way a quartic and cubic polynomial may be related

(with respect to roots), and the physics of C lines requires this connection to be made.

The codimension of degeneracies of complex symmetric matrices is indeed 2, as may

be readily verified by considering the 2× 2 symmetric matrix ( α γ
γ β ), whose characteristic

polynomial has discriminant

(α + β)2 − 4(αβ − γ2) = (α− β)2 + 4γ2. (6.8.14)

If α, β, γ are complex, both of the complex summands on the right hand side of (6.8.14)

must vanish, as a normal phase singularity. If they are all real, degeneracies are still

codimension 2 since to be zero requires the vanishing of two squares. By comparison,

degeneracies of hermitian matrices have codimension 3 [Ber94c].
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The precise meaning of degeneracies in the h wavefield, in terms of its real part as

phase χ is varied,

h
(r)
ij = Rehij exp(−iχ) (6.8.15)

is not clear. Each of the real matrices h
(r)
ij is traceless, and if χ is changed by π, each of

its eigenvalues ti → −ti; so at any point there must be at leat two phases for which one

of the eigenvalues vanishes. These structures are highly complicated, and have yet to be

fully understood.

6.9 Discussion

Unfortunately, our explanation of tensor singularities finishes here; obviously much more

work needs to be done before the understanding of these objects reaches the level of vector

singularity understanding.

In this chapter, we have interpreted the vector polarization fields in terms of spin,

found the significance of C and L lines in these spin fields, and generalised to spin fields

with spin greater than 1, both for paraxial and nonparaxial fields. We have seen that

the paraxial spin singularities are equivalent to the paraxial vector singularities of section

4.2, including their statistical densities in isotropic random paraxial spin fields, which

are the same as those calculated in section 4.5. Questions as to the morphology of these

singularities (generalised C points having index 1/n) still remain, and no explicit examples

of these have been studied in any particular detail.

The C and L singularities of spin fields in three dimensions are not particularly well

understood. The topological nature of their interactions, the role of the permutation

group, the possibility of other sorts of singularity (maybe with codimension other than

2) are all subjects requiring further investigation. This probably will not increase our

understanding of spin 1 singularities, but may provide further tools in manipulating them.

We have only looked at C lines in spin 2 fields. These are topologically more interesting,

and more fundamental; the discriminant is a simpler and more fundamental object than

the resultant of a polynomial with its dual.

C and L lines in high spin fields may be subjected to statistical analysis, and the

random wave model of section 4.6 generalises directly, using the plane waves described in

section 6.4. The resulting random field has U, . . . , Z (equivalently ψ4, . . . , ψ0) as five inde-

pendent, identically distributed gaussians. However, the singularity density calculations
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are intractable; expression (6.8.12), and its vorticity, cannot be simplified further.

Although the newly discovered literature on Petrov types must be digested and un-

derstood, it is likely that the similarities cease at this point. The key to understanding

the singular nature of C lines in spin 2 fields is (6.8.15); as the phase varies the orthogo-

nal eigenframe varies, but how, geometrically, is it singular when h is degenerate? This

problem is quite difficult, but must be solved before the true singular geometry of tensor

singularities can be appreciated.

6.10 Appendix: Spherical harmonics in tensor bases

In this section we recall some elementary properties of the spherical harmonics Y m
l (θ, φ),

and relate them to tensors with ranks 1 and 2 for l = 1, 2. Unlike the rest of this chapter,

notation will be somewhat more conventional; the spin index m runs from −l to l (rather

than µ running from 0 to 2s = n), and cartesian indices are x, y, z; integers are reserved

for spin indices, and the axis of rotation is the z-axis. Square brackets are used for objects

in a spin basis, round for objects in a cartesian basis.

Spherical harmonics are simply an appropriate form (linear if l = 1, quadratic if l = 2)

of the unit polar vector u(θ, φ) = (cosφ sin θ, sinφ sin θ, cos θ); the tensors which make the

form are a basis with respect to the inner product.

The spin 1 spherical harmonics Y m
1 correspond to the vectors

E1 = − 1√
2




1

i

0


 , E0 =




0

0

1


 , E−1 =

1√
2




1

−i

0


 (6.10.1)

and, with the spherical harmonics given their usual definition [Mac27], for m = 1, 0,−1,

Y m
1 (θ, φ) =

√
3
4π

Em · u(θ, φ). (6.10.2)

The Em form an orthonormal basis with respect to the usual inner product, and transform

to the usual cartesian basis {(1, 0, 0), (0, 1, 0), (0, 0, 1)} by the unitary transformations (cf

(A.3.3))

M1,s→c =
1√
2



−1 0 1

−i 0 −i

0
√

2 0


 , M1,c→s =

1√
2



−1 i 1

0 0
√

2

1 i 0


 . (6.10.3)
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Note that E1 is the negative of the two dimensional right-handed circular vector defined

in (A.3.1); this is due to the conventions of spherical harmonics, constructed from raising

and lowering operators (the “Condon-Shortley convention” [Alt86]).

For l = 2 the cartesian objects are traceless symmetric matrices, of the form (6.8.9),

with inner product defined by (6.8.8). The matrices corresponding to the spherical har-

monics Y m
2 are found to be

h+2 =
1√
2




1 i 0

i −1 0

0 0 0


 , h+1 = − 1√

2




0 0 1

0 0 i

1 i 0


 , h0 =

√
1
3



−1 0 0

0 −1 0

0 0 2


 ,

h−1 =
1√
2




0 0 1

0 0 −i

1 −i 0


 , h−2 =

1√
2




1 −i 0

−i −1 0

0 0 0


 , (6.10.4)

and, for m = −2, . . . ,+2,

Y m
2 =

√
15
16π

u · hm · u. (6.10.5)

A spin 2 state h is specified by five parameters (see (6.8.9)), which is written as a five-

dimensional vector {U, V,X, Y, Z}, called cartesian because the basis states of this rep-

resentation are orthogonal with respect to the inner product (6.8.8). The relevant five-

dimensional unitary matrices transforming between cartesian and spherical bases are

M2, s→c =
1√
2




1 0 0 0 1

0 0
√

2 0 0

0 −i 0 −i 0

0 −1 0 1 0

i 0 0 0 −i




, M2, c→s =
1√
2




1 0 0 0 −i

0 0 i −1 0

0
√

2 0 0 0

0 0 i 1 0

1 0 0 0 i




.

(6.10.6)

Note that, as with spherical harmonics, the only states totally orthogonal to the z-

direction are those of ±m.
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Appendix A

The geometry of ellipses

‘We then have first to understand - we must start with something - we first

must know what an ellipse is.’

Richard Feynman, in Feynman’s lost lecture,, eds. Goodstein and Goodstein, Vintage,

1997

Since much of the material in this thesis is dependent on ellipse geometry (either from

the polarization ellipse of vector waves or the anisotropy ellipse of intensity describing the

phase squeezing around a dislocation core) this appendix summarises the basic properties

of ellipses in two and three dimensions that are used in the text.

A.1 Basic coordinate geometry

We shall start with coordinate geometry. An ellipse is defined to be the locus of points

(up to rotation and translation) with cartesian coordinates (x, y) satisfying the equation

x2

a2
+

y2

b2
= 1 (A.1.1)

where a, b are real and a > b ≥ 0. a is called the major semiaxis (or semimajor axis), and

the points (±a, 0) are the points on the ellipse furthest from the origin (and each other);

b is the minor semiaxis (or semiminor axis), and (0,±b) are the ellipse points closest to

the origin.

Equation (A.1.1) generalises the equation for a circle radius r, centre 0 (ie (x2+y2)/r2 =

1), so the ellipse is a circle if a = b. If b = 0 then y = 0 always and the ellipse is a line of

197
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f0

b
a

θε

Figure A.1: Ellipse coordinate geometry, showing the pythagorean relationship between

a, b, f and the eccentric angle θε.

length 2a on the x-axis. The traditional construction of the ellipse, as the locus of points

the sum L of whose distances from two points (foci) is always constant (easy to construct

with two pegs and a piece of string). If the foci have coordinates (±f, 0) (f is the focal

length), then, as shown in figure (A.1), L = 2a, and at (0,±b), there is a pythagorean

relationship between a, b, f :

a2 = b2 + f2. (A.1.2)

In this triangle, the angle θε opposite b is called the eccentric angle of the ellipse, and the

eccentricity ε of the ellipse is defined to be

ε ≡ f/a = cos θε =

√
1− b2

a2
. (A.1.3)

ε has values between 0 and 1 - ε = 0 implies that b = a and the ellipse is circular, whereas

ε = 1 implies b = 0, and the ellipse is linear.

Different authors, particularly in ellipsometry (eg [Woa00, Bar85]) use other parame-

ters to describe the degree of eccentricity of the ellipse, such as the ellipticity b/a = sin θε,

but here the eccentricity ε is used, which is 0 when the ellipse is circular (emphasising the

similarity between C points in ellipse fields and zeros in scalar fields).

Writing equation (A.1.1) in terms of plane polar coordinates (R, φ) leads to a para-

metric equation for the ellipse,

R(φ) =
ab√

b2 cos2 φ + a2 sin2 φ
. (A.1.4)

If the ellipse is rotated such that its major semiaxis makes an angle φ0 with the x-axis,
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(a)
 (b)
 (c)


Figure A.2: Generalised ellipses of equation (A.1.7): (a) n = 4, (b) n = 3, (c) n = 10.

the equation is

Rrot(φ) =
ab√

b2 cos2(φ− φ0) + a2 sin2(φ− φ0)
. (A.1.5)

Equation (A.1.4) can be integrated to give the area of the ellipse,

∫ 2π

0
dφR(φ)2 = πab, (A.1.6)

generalising the area of a circle, πr2. Note that the symmetry of the ellipse means that

R(φ) = R(−φ) = R(φ + π). Also note that the ellipse can be generalised to a family of

closed curves with an eccentricity parameter ε =
√

1− b2/a2, but with n lines of reflective

symmetry (spaced at π/n - an ellipse has two at right angles), with equation

Rn(φ) =
ab√

b2 cos2 nφ
2 + a2 sin2 nφ

2

. (A.1.7)

Some examples of generalised ellipses are shown in figure (A.2).

Another parameterisation of the ellipse is the locus traced out by the vector with

cartesian coordinates

W(χ) = (a cosχ,±b sinχ) (A.1.8)

as 0 ≤ χ ≤ 2π; such points satisfy equation (A.1.1), the sign giving the sense in which the

ellipse is traced out, anticlockwise for +, clockwise for −. The angle parameter χ is called

here the phase angle, since, up to a global rotation, this is the vector traced out by its

real part as phase χ is varied, as appears in various places throughout this thesis (and is

discussed in the following section). In the geometric context, χ is also called the auxiliary

angle, since it is the (polar) angle on the auxiliary circle of radius 2a circumscribing the

ellipse, as in figure (A.3). It is shown and discussed in section 2.3 that sectors of the

ellipse with equal intervals of χ have equal areas; this is one of the two ways that angular
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φ
χ

Figure A.3: The auxiliary circle, with phase angle χ and the corresponding polar angle φ.

momentum can be conserved on an elliptical orbit, the other of course being an inverse

square central force directed towards a focus. The relationship between the two types of

orbit is examined by [Nee97].

A.2 Ellipses and linear algebra

Equation (A.1.8) shows that ellipses may be easily described by vectors, as the image of

the circle U(χ) = (cosχ, sinχ) under a diagonal transformation

W(χ) =


a 0

0 ±b





cosχ

sinχ


 . (A.2.1)

This is in fact general for any real 2×2 real symmetric matrix M; MU traces out an ellipse

with semiaxes equal to the eigenvalues, the semiaxis directions given by the eigenvectors,

and the sign of the determinant determining the sense of rotation of the vector. It also

provides another way of finding the ellipse area πab. The hessian matrix of a real two

dimensional function describes the Gauss curvature ellipse, as discussed in section 1.2.

Throughout this section we shall normally be considering vectors in two dimensions, but

most of the results generalise in an obvious way to three dimensions.

For a complex two dimensional vector (X,Y real)

V = X + iY, (A.2.2)
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the real part traces out an ellipse as the phase is varied, ie

W(χ) = Re exp(−iχ)V = X cosχ + iY sinχ, (A.2.3)

generalising equation (A.1.8), since this holds even if X,Y are not orthogonal. If ε > 0,

there is always a phase χ0, where

V0 = exp(−iχ0)V

= (X cosχ0 + Y sinχ0) + i(Y cosχ0 −X sinχ0)

= X0 + iY0 (A.2.4)

such that X0 ·Y0 = 0, which occurs when

2X ·Y cos 2χ0 = (X2 − Y 2) sin 2χ0, (A.2.5)

that is, such that

tan 2χ0 =
2X ·Y

X2 − Y 2
. (A.2.6)

χ0 shall be referred to as the rectifying phase of the ellipse; it measures the phase discrep-

ancy between X,Y and the orthogonal semiaxis frame of the ellipse. It is singular (not

defined) if ε = 0, (ie X ·Y = 0, X2− Y 2 = 0,) and C points are therefore rectifying phase

singularities.

The original X,Y are interpreted geometrically as conjugate semiradii of the ellipse,

that is, the tangent to the ellipse at X is parallel to Y, and vice versa. This is easily seen

from equation (A.2.3), since the tangent to the ellipse at phase angle χ is in the direction

W′(χ) =
dW
dχ

= −X sinχ + Y cosχ (A.2.7)

so, at X, χ = 0 and W′ = Y as required (similarly at Y, χ = π/2 and W′ = −X). In

fact, any two phase vectors W(χ),W(χ+π/2) are conjugate semiradii, and are also phase

conjugates in the sense of section 2.1.

When the phase angle is not important, the ellipse can be considered as a contour of a

quadratic form, derived from the real symmetric matrix M =
(

1/a2 0

0 1/b2

)
in (A.1.1), and

more generally by rotating this in the plane. This interpretation is relevant when, as with

the hessian mentioned above, one wants to consider the contour shape of a surface in two

dimensions, such as ρ2 from (2.3.1), which is, in general,

ρ2 = constant + (R · ∇ξ)2 + (R · ∇η)2

= constant + RT (∇ξ ⊗∇ξ +∇η ⊗∇η)R. (A.2.8)
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The quadratic form ellipse has major and minor semiaxes interchanged from the phase

ellipse traced out by W in equation (A.2.1), and equation (A.2.8) makes it clear why:

in (A.2.1), X,Y, are vectors with units of length, whereas in (A.2.8) ∇ξ,∇η are forms

(contour normals) with dimensions of inverse length (see for example, [Sch80]).

Equation (A.2.8) gives a way of constructing an orthogonal basis in real n-dimensional

space (more democratic than the usual Gram-Schmidt orthogonalisation procedure), given

n linearly independent real vectors X1, . . . ,Xn. The real, symmetric n× n matrix

Mn =
n∑

j=1

Xj ⊗Xj (A.2.9)

gives the locus (when taken as an n-dimensional quadratic form) of an n-dimensional

ellipsoid on which X1, . . .Xn lie; the eigenvectors of Mn provide an orthogonal basis

(provided there are no degeneracies), and if n = 2, these are precisely X0,Y0 of equation

(A.2.4).

This result can also be used to find the mutual perpendicular, Z, to a set of n − 1

linearly independent vectors X1, . . .Xn−1 : it is the null eigendirection of the matrix

Mn,n−1 =
n−1∑

j=1

Xj ⊗Xj , (A.2.10)

and is equal to the vector given by the generalised cross product (where components of

the vectors Xj are written as superscripts, and εab...p is the general antisymmetric symbol)

Za = εab...pX
b
1 . . . Xp

n−1. (A.2.11)

In particular, if n = 3, and p + iq is a complex three dimensional vector (see equation

(4.3.1)), the flat ellipsoid (ie the ellipse) of the matrix

M3,2 = p⊗ p + q⊗ q (A.2.12)

has normal in direction p ∧ q.

The eigenvalues of M2 (and nonzero eigenvalues for M3,2, with appropriate replace-

ments of symbols), are given by

µ± =
1
2

(
X2 + Y 2 ±

√
(X2 + Y 2)2 − 4(X ∧Y)2

)
(A.2.13)
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and the eccentricity of the ellipse is

ε2 = 1− µ−
µ+

=
1

2(X ∧Y)2
(
X2 + Y 2 −

√
(X2 + Y 2)2 − 4(X ∧Y)2

)

×
√

(X2 + Y 2)2 − 4(X ∧Y)2. (A.2.14)

The eigenvectors corresponding to µ± can be found using χ0 from equations (A.2.4),

(A.2.6). The expressions are messy and complicated, and are not given here.

A.3 Ellipses and the complex projective line

Another way of encoding the information of a two dimensional phase ellipse (as in equation

(A.2.3)) is by using a circular instead of cartesian basis, with right and left handed circular

vectors are defined by

eR ≡ 1√
2
(ex + iey), (A.3.1)

eL ≡ 1√
2
(ex − iey). (A.3.2)

Note that the definition of eR used here is −1 times that used in chapter 6 (which comes

from symmetries of spherical harmonics). The basis transformation matrices are (in obvi-

ous notation)

M+→◦ =
1√
2


 1 1

−i i


 , M◦→+ =

1√
2


1 i

1 −i


 . (A.3.3)

Thus V in equation (A.2.2) may be rewritten in circular coordinates α+eR + α−eL

(α± complex), where

α± =
1√
2
(Vx ∓ iVy). (A.3.4)

In fact, [ α+
α− ] is an elementary spinor, discussed extensively in chapter 6, where different

notation is used because different conventions are. All complex vectors shall now be

assumed normalised (that is, |V| =
√
|α+|2 + |α−|2 = 1). The (normalised) ellipse is

traced out in the complex plane by associating eR with exp(iχ) and eL with exp(−iχ),

that is the locus of complex numbers

α+ exp(iχ) + α− exp(−iχ) (A.3.5)
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which trace out an ellipse about the origin. It can be shown [Nee97] that

a =
1√
2
(|α+|+ |α−|),

b =
1√
2
(|α+| − |α−|),

ε2 =
4|α+||α−|

(|α+|+ |α−|)2 ,

φ0 =
1
2
(arg α+ − arg α−), (A.3.6)

where the sign of b, as before, gives the sense of rotation of the ellipse, and φ0 is as in

equation (A.1.5). Four real parameters describe an ellipse, the real and imaginary parts

each of α± : these four freedoms correspond to overall size (equivalent to normalising),

angular orientation φ0, eccentricity ε, and phase (equivalent to χ0, the position on the

ellipse when χ = 0 in (A.3.5)). If we are only interested in the orientation and eccentricity,

the phase (which is the overall phase of the spinor [ α+
α− ]) is redundant, and these ellipse

geometry parameters can be described by one complex number (possibly ∞):

z =
α−
α+

, (A.3.7)

Note that equation (A.3.7) gives a bijective correspondence between all possible nor-

malised ellipses (of both handednesses) and the complex plane (including ∞). z = 0

corresponds to a righthanded circle; z = ∞ corresponds to a lefthanded circle. The circle

in the complex plane |z| = 1 corresponds to the linear ellipse with ε = 1, and argument

giving the possible orientations (mod π).

Since the complex coordinates α+, α− can be multiplied through by any complex num-

ber without changing the ratio α−/α+, the space of all such pairs is called the complex

projective space of dimension 1, or complex projective line (since it has only one complex

freedom). This generalises to n dimensional complex projective space when there are n+1

complex numbers whose ratios are invariant, and these are related to the various spaces of

spinors, as discussed in chapter 6. There are well-known connections between two dimen-

sional complex spaces and three dimensional real spaces (mainly due to the fact that the

universal covering group of the 3D rotation group SO(3) is the 2D unitary group SU(2),

[Nee97]). Advantage is taken of this to give a further geometrical description of ellipses in

the following section.



A.4 The Poincaré sphere and Stokes parameters 205

A.4 The Poincaré sphere and Stokes parameters

Given that the complex projective line is the complex plane including ∞, it is natural to

consider stereographic projection of z in equation (A.3.7) onto the unit sphere (from the

south pole), with polar angles (α, β), where

α = 2 arctan |z|, β = arg z, (A.4.1)

and

z = tanα/2 exp(iβ). (A.4.2)

This sphere is called the Riemann sphere in the theory of the complex projective line

[Nee97, Fra97], but when it parameterises (polarization) ellipses, it is called the Poincaré

sphere [Poi92]. Ellipses for the remainder shall be described using the language of polar-

ization. The Poincaré sphere is in 1-1 correspondence with the different possible states of

polarization ellipses in the plane (up to overall size and phase, as described previously).

By equations (A.3.6), (A.3.7), (A.4.1), the Poincaré sphere azimuth β is clearly φ0/2;

since an ellipse is symmetric with respect to a rotation by π, there is no redundancy here

(although it means that the space of the Poincaré sphere is not real space). The colatitude

angle α is related to the eccentricity by the same equations; if 0 ≤ α < π/2 (the ‘northern

hemisphere’), polarization is right handed, with circular polarization at the north pole. If

π/2 < α ≤ π (the ‘southern hemisphere’), the polarization is left handed, with circular

polarization at the south pole. Polarization is linear on the equator (α = π/2), and reflec-

tion in the equatorial plane (α → π − α) reverses the handedness of the polarization, but

does not otherwise change the ellipse. α and ε are related directly by

ε =
4 tanα/2

(1 + tanα/2)2
. (A.4.3)

A visualisation of the Poincaré sphere is shown in figure (A.4).

The spinor [α+, α−] = [cos α/2 exp(−iβ/2), sinα/2 exp(iβ/2)] has a convenient repre-

sentation in terms of the Riemann-Poincaré sphere, via a remarkable result attributed to

Archimedes (implicit whenever one integrates over the sphere, but stated explicitly here).

The spinor space can geometrically be represented by a cylinder, of height h = |α+| − 1/2

(recalling that the spinor is normalised), and azimuth β = 1/2(arg α+ − arg α−) (we are

not concerned about the phase singularities at h = ±1/2), which circumscribes the unit

Riemann sphere. Archimedes’ result is that any strip of the cylinder, of width ∆h around
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s1
2s

3s

Figure A.4: The Poincaré sphere, with cartesian axes (s1, s2, s3), indicating the polar

parameters for certain ellipses.



A.4 The Poincaré sphere and Stokes parameters 207

height h has equal area on the cylinder and on the sphere, as h = cosα, and the measure of

cosα is uniform on the sphere. Thus the natural Hilbert space measure (where α+, α− are

identically and independently distributed) corresponds to the natural geometric measure

on the Poincaré sphere; that is, statistically, sets on the Poincaré sphere of equal area are

equally likely, a fact used in the vector wave statistics of chapter 4.

The geometric interpretation of the Poincaré sphere is also implied (via the aforemen-

tioned connection between SU(2) and SO(3)) by the fact that, if s = (s1, s2, s3) is a (unit)

vector on the surface of the sphere, and σ is the 3-vector of Pauli spin matrices

(σ1, σ2, σ3) =





0 1

1 0


 ,


0 −i

i 0


 ,


1 0

0 −1





 , (A.4.4)

then a 2× 2 hermitian matrix H(s) is defined

H(s) =
1
2
s · σ =

1
2


 s3 s1 − is2

s1 + is2 −s3


 =

1
2


 cosα sinα exp(−iβ)

sinα exp(iβ) − cosα


 . (A.4.5)

If the spinor [ α+
α− ] represents a quantum mechanical state, then H is the hamiltonian for the

system (see [Ber87] for more details). H has eigenvalues ±1/2, with [ α+
α− ] the eigenspinor

for +1/2. More details of this geometry are discussed in chapter 6.

The cartesian coordinates of s can, as usual, be written in terms of the polar angles

α, β, and the complex number z, of equation (A.3.7) may be rewritten

z =
s1 + is2

1 + s3
. (A.4.6)

In terms of the original (not normalised) vector V = X + iY the four Stokes parameters

S0, S1, S2, S3 are defined

S0 = |V|2

S1 = |Vx|2 − |Vy|2 = X2
x −X2

y + Y 2
x − Y 2

y

S2 = V ∗
x Vy + V ∗

y Vx = 2(XxXy + YxYy)

S3 = −i(V ∗
x Vy − V ∗

y Vx) = 2(XxYy − YxXy) = 2X ∧Y (A.4.7)

and the components of s are the normalised Stokes parameters,

si =
Si

S0
, i = 1, 2, 3. (A.4.8)
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The vector s is called the Stokes vector. The eccentricity (A.2.14) can be rewritten in

terms of the Stokes parameters

ε2 =
2
S2

3

(
S0 −

√
S2

0 − S2
3

)√
S2

0 − S2
3

=
2
s2
3

(
1−

√
1− s2

3

) √
1− s2

3, (A.4.9)

implying that

s3 = ±2
√

1− ε2

2− ε2
. (A.4.10)

The the angle of the major semiaxis φ0 is

φ0 =
1
2

arctan
S2

S1
. (A.4.11)

The Stokes parameters are phase (gauge) invariant; multiplying the complex vector V by

any phase does not change the Stokes parameters (just as it does not change the ellipse).

Note that the Poincaré sphere is only good for describing the polarization of vectors

and ellipses in two dimensions (eg paraxial optical fields). The correct analogue of the

Poincaré sphere in three dimensions is the Majorana sphere M2, described in relation to

the Poincaré sphere in chapter 6.



Bibliography

[AA87] Y. Aharonov and J.S. Anandan. Phase change during a cyclic quantum

evolution. Phys.Rev.Lett., 58:1593–1596, 1987.

[AB59] Y. Aharonov and D. Bohm. Significance of electromagnetic potentials in

the quantum theory. Phys.Rev., 115:485–491, 1959.

[ABSW92] L. Allen, M. Beijersbergen, R.J.C. Spreeuw, and J.P. Woerdman. Orbital

angular momentum of light and the transformation of Laguerre-Gaussian

laser modes. Phys.Rev.A, 45:8185–8189, 1992.

[Ada94] C.C. Adams. The knot book. Freeman, San Francisco, CA, 1994.

[Adl81] R.J. Adler. The geometry of random fields. Wiley, 1981.

[Alt86] S.L. Altmann. Rotations, quaternions, and double groups. Oxford University

Press, 1986.

[APB99] L. Allen, M.J. Padgett, and M. Babiker. The orbital angular momentum of

light. Prog.Opt., 39:291–372, 1999.

[Arn86] V.I. Arnold. Catastrophe theory. Springer, 1986.

[Arn89] V.I. Arnold. Mathematical methods of classical mechanics. Springer, 2nd

edition, 1989.

[AS65] M. Abramowitz and I.A. Stegun, editors. Handbook of Mathematical Func-

tions. Dover, 1965.

[Ati01] M.F. Atiyah. The geometry of classical particles. In S.T. Yau, editor, Sur-

veys in Differential Geometry. International Press, Cambridge, MA, 2001.

209



210 BIBLIOGRAPHY

[Bar47] V. Bargmann. Irreducible unitary representations of the Lorentz group.

Ann.Math., 48:568–640, 1947.

[Bar85] R. Barakat. The statistical properties of partially polarized light. Opt.Act.,

32:295–312, 1985.

[Bar87] R. Barakat. Statistics of the Stokes parameters. J.Opt.Soc.Am.A, 4:1256–

1263, 1987.

[BBBBS00] I. Bialynicki-Birula, S. Bialynicka-Birula, and C. Sliwa. Motion of vortex

lines in quantum mechanics. Phys.Rev.A, 61(032110), 2000.

[BCL+80] M.V. Berry, R.G. Chambers, M.D. Large, C. Upstill, and J.C. Walmsley.

Wavefront dislocations in the Aharonov-Bohm effect and its water-wave

analogue. Eur.J.Phys., 1:154–162, 1980.

[BD00] M.V. Berry and M.R. Dennis. Phase singularities in isotropic random waves.

Proc.R.Soc.Lond.A, 456:2059–2079, 2000. (errata 456:3059).

[BD01a] M.V. Berry and M.R. Dennis. Knotted and linked singularities in monochro-

matic waves. Proc.R.Soc.Lond.A, 457:2251–2263, 2001.

[BD01b] M.V. Berry and M.R. Dennis. Knotting and unknotting of phase singu-

larities: Helmholtz waves, paraxial waves and waves in 2+1 dimensions.

J.Phys.A:Math.Gen., 34:8877–8888, 2001.

[BD01c] M.V. Berry and M.R. Dennis. Polarization singularities in isotropic random

vector waves. Proc.R.Soc.Lond.A, 457:141–155, 2001.

[Bea79] A.F. Beardon. Complex Analysis: The argument principle in analysis and

topology. Wiley, 1979.

[Ber77] M.V. Berry. Regular and irregular semiclassical wavefunctions.

J.Phys.A:Math.Gen., 10:2083–2091, 1977.

[Ber78] M.V. Berry. Disruption of wavefronts: statistics of dislocations in incoherent

Gaussian random waves. J.Phys.A:Math.Gen., 11:27–37, 1978.



BIBLIOGRAPHY 211

[Ber80] M.V. Berry. Some geometric aspects of wave motion: wavefront dislocations,

diffraction catastrophes, diffractals. In R. Osserman and A. Weinstein, edi-

tors, Geometry of the Laplace operator, Proc.Symp.App.Maths, pages 13–28.

AMS, 1980.

[Ber81] M.V. Berry. Singularities in waves and rays. In R. Balian, M. Kléman, and
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[Poi92] H. Poincaré. Théorie mathématique de la Lumière, volume 2. Georges Carré,
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