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Abstract

In this thesis, we investigate several aspects of the behaviour of liquid crystal
molecules near interfaces using computer simulation. We briefly discuss experiment,
theoretical and computer simulation studies of some of the liquid crystal interfaces.
We then describe three essentially independent research topics.

The first of these concerns extensive simulations of a liquid crystal formed by
long flexible molecules. We examined the bulk behaviour of the model and its
structure. Studies of a film of smectic liquid crystal surrounded by vapour were also
carried out. Extensive simulations were also done for a long-molecule /short-molecule
mixture, studies were then carried out to investigate the liquid-vapour interface of
the mixture.

Next, we report the results of large scale simulations of soft-spherocylinders
of two different lengths. We examined the bulk coexistence of the nematic and
isotropic phases of the model. Once the bulk coexistence behaviour was known,
properties of the nematic-isotropic interface were investigated. This was done by
fitting order parameter and density profiles to appropriate mathematical functions
and calculating the biaxial order parameter. We briefly discuss the ordering at the
interfaces and make attempts to calculate the surface tension.

Finally, in our third project, we study the effects of different surface topographies
on creating bistable nematic liquid crystal devices. This was carried out using a
model based on the discretisation of the free energy on a lattice. We use simulation
to find the lowest energy states and investigate if they are degenerate in energy.
We also test our model by studying the Frederiks transition and comparing with

analytical and other simulation results.
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Chapter 1

Introduction

1.1 Liquid Crystals

1.1.1 What are liquid crystals?

The liquid crystalline phase is an intermediate phase between the solid and liquid
phases. Liquid crystals have properties of both solids and liquids. A liquid crys-
tal can flow like an ordinary liquid, however other properties, such as birefringence
are reminiscent of the crystalline phase. This combination explains the name Liq-
uid crystal. Other names in use are mesophase (meaning intermediate phase) and
mesomorphic phase [1].

At the molecular level, liquid crystal molecules are non-spherical and elongated
(rod-like or disk-like), these molecules could be either rigid or flexible. An essential
characteristic is the presence of orientational order, with the positional order of the
centre of mass either absent or reduced. Roughly speaking, two classes of liquid
crystals can be distinguished: thermotropic and lyotropic liquid crystalline phases.
Single component systems that show mesomorphic behaviour in a definite tempera-
ture range are called thermotropic. Lyotropic liquid crystalline phases on the other
hand show mesomorphic behaviour when the concentration is varied. In this thesis,

we mainly address thermotropic liquid crystals. A liquid with no orientational or



positional ordering is known as an isotropic liquid. If it has orientational order-
ing but no positional ordering, i.e. the centres of mass of the molecules have three
translational degrees of freedom, it is known as a nematic liquid crystal as shown in
Figure 1.1(a). The smectic phases are characterised in addition by a positional order
in at least one dimension. The centres of the molecules are, on average, arranged in
equidistant planes forming a layer structure as shown in Figure 1.1(b). There are
many types of smectic phases. These differ in the orientation of the preferred direc-
tion of the molecules with respect to the layer normal (orthogonal and tilted smectic
phases). They also differ in the organisation of the centres of mass of the molecules
within the layers (e.g. cubic, hexagonal) [2]. If the molecules constituting these
phases are chiral, then the nematic and some of the smectic phases do not occur.
Instead, they are replaced by chiral versions of these phases with different physical
structures. For example, in a chiral nematic phase (also known as a cholesteric
phase)[3] the director rotates along a direction perpendicular to the direction of the

helical twist as shown in Figure 1.1(c). Chiral phases are not studied in this thesis.
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Figure 1.1: a) Nematic, b) Smectic and c) Cholesteric liquid crystals



1.1.2 Order in liquid crystals

The average alignment of the molecules with their long axes parallel to each other
leads to a preferred direction in space. One usually describes this local direction
of alignment by a unit vector n, called the director. Hence, the director gives the
direction of the preferred axis at each point in a sample. The states described by
n and -n are indistinguishable. To characterise the orientational order, two aspects
have to be taken into account: the local preferred direction n(r) and the amount of
ordering, i.e. the distribution of the long molecular axes around n.

The uniaxial nematic phase possesses a quadrupole-type symmetry and is char-
acterised by the order parameter (),s which is a symmetric traceless second-rank

tensor
1

Qus = v z]j (gﬁmﬁjﬁ - %@ﬁ) - S(%nang - %@5). (1.1)
The unit vectors u ares the orientational vectors of the molecules and d,4 is the
Kronecker delta function. The unit vector n is the director that specifies the pre-
ferred orientation of the primary molecular axes. The quantity S is the scalar order
parameter that characterises the degree of nematic ordering.

Smectic ordering in liquid crystals is usually characterised by the complex order
parameter p,e’. Here p, = (cos(k - r)) is the amplitude of the wave density. 1 is

the phase and k is the wave vector. This order parameter appears naturally in the

Fourier expansion of the one-particle density p(r).

1.1.3 Frank free energy

By considering the symmetry requirements of the nematic liquid crystal, Frank

derived the elastic free energy density [4]:
1
for =5 [Ki(V o) + Kp(n - (V x ))* + Ks(n x (V x n))°] (1.2)

where K, Ky and K3 are the Frank elastic coefficients [1, 4]. The three basic defor-

mations associated with the Frank elastic coefficients are shown in Figure 1.2. The



elastic constants have values of the order of 10~ Newtons and are measured from
experiments involving the competing effects of field alignment and wall alignment

on a sample.
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Figure 1.2: a) Splay: K7, b) Twist: K, and c¢) Bend: K3

1.2 Models

1.2.1 Introduction

Realistic intermolecular interaction potentials for mesogenic molecules can be very
complex and are generally unknown. At the same time molecular theories are often
based on simple model potentials. This is justified when the theory is used to
describe some general properties of liquid crystal phases that are not sensitive to the
details of the interaction. Model potentials are constructed in order to represent only
the qualitative mathematical form of the actual interaction energy in the simplest
possible way. Most of the popular model potentials correspond to the first few
terms of the full potential energy expansion. These generally are the two-body and

three-body interaction terms [5]. There also exist some special model potentials that



combine an attraction at large separation and repulsion at short distances. The most
popular potential of this kind is the Lennard-Jones potential and its generalisation
for anisotropic particles, the Gay-Berne potential [6]. Another class of models is
the lattice models, the most famous being the Lebwohl-Lasher model [7]. This class
of model is appropriate for studying the N-I transition when viewed as a rotational
order-disorder transition in an effective crystalline solid with all fluctuations ignored
8].

Below we give a brief description of the different type of model potentials used

in this thesis.

1.2.2 Non-bonded Potentials

The first of the non-bonded site to site potentials is the Lennard-Jones (LJ) poten-
tial. The famous 12-6 potential of Lennard-Jones provides a fair description of the
interaction between pairs of rare-gas atoms and also quasi-spherical molecules such

as CHy. The LJ potential is given by

O'-L-J 12 O'-L-J 6
oy s (%)~ (%) 13
ij ij

where o is the separation of the particles when U;; = 0, also known as the collision
diameter. € is the depth of the potential well at the minimum in U;; [9].

Another non-bonded potential based on the Gaussian overlap model is the Gay-
Berne potential (GB). The GB potential was modeled to give the best fit to the
pair potential for a molecule consisting of a linear array of four equidistant LJ
centres. The Gay-Berne potential is a phenomenological model that includes both
attractive and repulsive forces. The molecules in the GB system have translational

and orientational degrees of freedom. The GB potential is given by

UZP = e le(in, i) €, iy, 7))



12
[ (o)
X P
[ ri; — o(Q;, 4y, Fij) + 0g

o °l

0

— 1.4
(Tij —U(ﬁi7ﬁj7fz'j)+00> | 4

where o is the intermolecular separation at which the attractive and repulsive terms

cancel and is given as

1

f 1L 1 1)2 t L —1r-1)2)] 2
O—(ﬁzaﬁjafm) = 0y 1— K (I' u; +Ar 1-1]) (I' u; AI' IA].]) (15)

2 | 1+ x(q;-qy) 1 — x(; - )
The shape anisotropy parameter y is
K2 —1

= 1.6
X= 2 +1 (1.6)

where k = 0./0ss and o, is the separation when the molecules are end-to-end and
045 that when they are side-by-side.
The depth of the well is expressed as

E(ﬁj,ﬁj,f'ij) = Eoﬁy(fli,ﬁj)ﬁlu(fli,ﬁj,f‘) (17)
where
(8, 87) = (1= x*(0; - 0;)%) 2 (18)
and
/ oL+ 1 1)2 r 1 — 1 1)2
€ (0, 0y, 155) = 1_&{(r uz,jLAr 1}7) £ ul, - 1}]) } (1.9)
2 | 1+x(0;-y) 1—X'(4;-ay)
where the parameter x’ is related to the anisotropy in the well depth via
, 1— &%
(1.10)

T o)
where k' = €45/€c. is the ratio of well-depths for end-to-end and side-by-side.
In the above equations 4; and @; are the orientation vectors of two molecules,
r;; is the vector joining the two centres and r;; is the unit vector rTJ € and og are
scaling parameters [10, 11]. Figure 1.3 shows the GB potential for two GB units at

different orientations with respect to each other.
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Figure 1.3: GB-GB interactions: side by side and end to end using the GB param-

eters k = 3 and k' = 5.

The Kihara potential for spherocylinders is another non-bonded potential based
on the LJ potential. A spherocylinder can be thought of as the set of points that are
within a distance R from a line segment of length L. A sphere of radius R can be
drawn around every point on this line segment. The sphere contains all points that
are within a distance R. Hence, a spherocylinder can be considered as the volume
that is swept out by a sphere of radius R that is moved along a line segment of
length L.

Following the method of Allen et al [12] of calculating the distance of closest
approach of convex bodies, the interaction between two spherocylinders was calcu-
lated. Since a sphere can be drawn around each point on the line segments which
maps out the spherocylinder, these spheres can be used to calculate the interaction

between the two points of closest approach.

To calculate this interaction the repulsive form of the Lennard-Jones potential

was used



460 |:(SLM)12 - (%)6] + €o Sij S 260

Uij = .
0 Sij > 260

(1.11)

where S;; is the distance of closest approach, €, is the potential well depth and o is
the radius R of the sphere or spherocylinder [13]. Figure 1.4 show the behaviour of
the repulsive LJ potential.
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Figure 1.4: Repulsive Lennard-Jones Potential

1.2.3 Bonded potentials

Bonded potentials are used to model more realistic molecules by adding elastic bonds

and flexibility to the molecules. These properties are modeled by adding two, three

8



and four body interactions. The most common two-body interactions are the FENE
(the finitely extendable non-linear elastic) potential and the Harmonic potential.
The FENE potential has the following form
preve(y = § OO ) s R (1.12)
00 r > Ry
were k > 0 is the force constant and Ry is the maximum possible separation.

The force law of this spring is linear for small extensions, but will get stiffer and
stiffer as the spring is extended; furthermore the spring cannot be extended beyond
a separation Ry [14]. The FENE potential is normally combined with a repulsive
Lennard-Jones potential. This combination gives the behaviour of the harmonic
potential, since the force calculation for the FENE does not require taking a square
root, it is cheaper computationally than the harmonic potential.

The other most common two-body interaction potential is the harmonic poten-
tial. The harmonic potential has the following form

. 1
UHarmomc(r) — 5[((7” _ R0)2 (113)

where were K > 0 is the force constant and Ry is the equilibrium separation [15].
A three-body interaction or the bending potential is the potential for change in
bond angle, this allows bending of the molecules to occur. Changes in the bond
angle are modeled using the harmonic potential suggested by van der Ploeg and
Berendsen [16, 17] as follows
ki

Uy(6;) = 5(91' —07)? (1.14)

where 6; is the instantaneous C-C-C bond angle, #? is the equilibrium bond angle
and k; the force constant [18, 17].

Finally, the four-body interaction is modeled using a torsional potential. The
torsional (or dihedral) potential, initially proposed by Ryckaert and Bellemans [19]

has the following functional form



CO/kBK Cl/kBK CQ/ICBK Cg/kBK C4/]€BK C5/I€BK
1116 1462 -1578 -368 3156 -3788

Table 1.1: Torsional potential parameters where kg is the Boltzmann constant.

n=>5
Uitorsional(¢) — ch(COS(bi)n (115)
n=0
where the coefficients are given in Table 1.1 and ¢; is the dihedral angle [17].

Figure 1.5 shows the behaviour of the Ryckaert torsional potential with respect to

the dihedral angle.
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d/radians

Figure 1.5: Ryckaert torsional potential for the coefficients shown in Table 1.1.

1.2.4 Lattice models

The most famous of the lattice models is the Lebwohl-Lasher model. The Lebwohl-

Lasher model is the lattice version of the Maier-Saupe model of a nematic. The
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Hamiltonian of the model is defined as
H=-J)> P(5"3). (1.16)
<iyj>
P, is the second Legendre polynomial, §; is a unit vector parallel to the long axis
of the moleculer at site ¢ and J is the strength of the nematic coupling. Because
the molecules are fixed on the sites of a lattice, translational motion is absent.
Nevertheless the model has been useful in studying the I-N transition and has been
intensively investigated using Monte Carlo techniques [8].
Another type of lattice model, is due to Gruhn and Hess [20] and is described

later in this thesis.

1.3 Molecular Dynamics

1.3.1 Introduction

Molecular dynamics (MD) is a technique used to solve the classical equations of
motion for a system of N molecules/particles interacting via a potential U. This
potential is generally approximated by a pairwise interaction of the form U =
>2i 2j»i v2(ri;) The approximation gives a remarkably good description of liquid
properties.

The most fundamental equation of motion is the Lagrangian equation of motion

d (0L oL
—|=]—-|=—1|=0. 1.1
The use of the Lagrangian function £(r,#) = K — U in the equation above gives

m;7; = f; which is Newton’s equation of motion obtained by using K = Y, %mzrf
the kinetic energy and f; = —V,,L = —V,, U the force [21]. The Hamiltonian is

H(r,p) = X; 7p; — L(r, ). Here p; is the generalised momentum defined as p; = %.

Hamilton’s equations become

. Di

r,—=—
my;
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and

Computing the centre of mass trajectories involves solving a system of 6N first
order differential equations. Several algorithms exist that solve these equations of
motion. This thesis uses two of these algorithms: the Leapfrog algorithm and the
Velocity Verlet algorithm.

In the Leapfrog method, the stored quantities are the current positions r(¢)
and the current accelerations a(t) together with the mid-step velocities v(t — 36t).
The velocity equation v(t + 16t) = v(t — 16t) + dta(t) is implemented first so the
velocities leap over the coordinates. The current velocities can be calculated using
v(t) = 3[v(t 4 6t) + v(t — 6t)] which is necessary to calculate the energy at time
t. The next move then is to advance the positions ahead of the velocities using
r(t+6t) = r(t) + otv(t + 36t). Now the new accelerations can be calculated for the
new step [5]. This method is used in both the GBMEGA [22] and GBMOL [23] codes. The
code GBMEGA is a large-scale parallel code used to simulate a large number of single
type particles interacting through a pairwise potential at a constant temperature
and volume. The interacting potential is commonly the Gay-Berne potential. The
code GBMOL is a large-scale parallel code used to simulate hybrid atomistic model
built from combining Gay-Berne units with Lennard-Jones units.

The velocity Verlet algorithm is split up into two stages with a force evalua-
tion in between. The stored quantities are the current positions, velocities and
accelerations. Firstly, the new positions at time ¢ + §t¢ are calculated using r(t +
ot) = r(t) + 6tv(t) + $0t%a(t) then the velocities at mid-step are computed using
v(t+30t) = v(t)+36ta(t). The forces and accelerations are calculated at time ¢+ 4t.
Then, the velocity move is completed using v(t + 6t) = v(t + £6t) + 36ta(t + dt).
At this point, the kinetic energy at time t 4 dt is available and so is the potential

energy which was evaluated in the force loop [5].
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1.3.2 Special techniques
Constraint dynamics

Special techniques have been developed to handle the dynamics of a molecular sys-
tem in which certain arbitrarily selected degrees of freedom i.e. bond lengths, are
constrained, while others remain free to evolve under the influence of intermolecular
and intra-molecular forces. This approach in effect uses a set of undetermined mul-
tipliers to represent the magnitudes of forces directed along the bonds. These are
required to keep the bond lengths constant. The technique is to solve the equations
of motion for one time step in the absence of constraint forces, then, subsequently
determine their magnitudes and correct the atomic positions. There are several al-
gorithms that perform this task; the one used in this thesis is called SHAKE. The
SHAKE algorithm goes through the constraints one by one, cyclically, adjusting the
coordinates so as to satisfy each constraint in turn. The procedure is iterated until
all constraints are satisfied within a given tolerance [24]. The SHAKE algorithm is
used in the code GBMOL.

Constant temperature: Ad hoc rescaling

Ad hoc methods of temperature control involve amending the conventional molecular
dynamics algorithm, usually by rescaling the velocities at some stage, in an attempt
to constrain the total kinetic energy [25]. It has been shown that when rescaling is
performed at every time step, the method becomes equivalent to an algorithm for
solving the equation of Hoover, Ladd and Moran [26] and Evans [27].

The rescaling factor is usually of the form

A= <1+f—;(§—1>>% (1.18)

where 7 is the current kinetic temperature, 7' is the desired temperature, 6t is the
time step and t7 is a pre-set time constant. This will force the system towards the

desired temperature at a rate determined by ¢7, while slightly perturbing the forces
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on each molecule [28]. This thermostat is used in the code GBMEGA when performing
a simulation in the constant-NV'T ensemble. In the code, ¢ is set equal to the time
1

step 0t. This gives a scaling factor of A\ = (%)5

Constant temperature: Andersen’s thermostat [29]

In this method, atoms are selected randomly in each step, and their velocities are
replaced by values chosen randomly from a Maxwell-Boltzmann distribution corre-
sponding to a collision with an imaginary heat bath at the desired temperature.
The times between collision for an atom conform to a Poisson distribution, with a
collision rate that may be fixed [25]. Denote this rate by v. The probability that a
particle undergoes a stochastic collision in a time step 0t is vot [30].

Alternatively, the velocities of all the particles could be replaced at the same
time from values chosen randomly from the Maxwell-Boltzmann distribution. The
times of these interventions are equally spaced along the trajectory. This has the
advantage that normal Newtonian dynamics exist between the stochastic collisions
[25]. This is the thermostat used in the code GBMOL and is used in simulating a fluid

in the constant-NPT and constant-NV'T ensembles.

Constant pressure: Stochastic method

The stochastic constant pressure molecular dynamics method incorporates MC-like
box-size moves.

In constant pressure MD, the volume of a system of N particles fluctuates to
maintain the pressure at a constant. To describe such fluctuations, the volume of
the system can be thought of as a dynamical variable. We assume the system is in
a cubic box of length L = V%. The coordinates are now scaled by s; = L™ 'r;, for
1 =1,2,...,N. Using the Metropolis scheme, a new state n can be generated from

the old state o by making a random change in volume from V, to V,,. Once the new
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state has been produced the quantity 0 H is calculated,

§Hpy = 6Uny + P(Vy — V,) — NB~' In (%) (1.19)

dH,, is closely related to the enthalpy change in moving from state o to state n [28].
Moves are accepted with a probability equal to min(1,exp(—fH,,)). If the moves
are accepted, the coordinates are rescaled using the new volume. It has been shown
that it is more convenient in terms of computation to make random changes in In V'

rather than in V itself [28].

1.3.3 Parallelisation
Replicated data

The replicated data method is the most popular technique for parallel molecular
dynamics. This is due to the inherent simplicity of the method; often only minor
changes are required to convert a serial program into a parallel form. The essence of
the method is that each computer node runs the same MD program, undertaking the
same operations - with the exception of reading and writing to disk - up to the point
where a task can be carried out in parallel. At this point each node takes part of
the parallel task, and at the end of this task any data required by all nodes must be
passed and received in a communication step. In MD programs, the parallelisation is
mostly used in the evaluation of forces in the force loops [31]. A method is required
to allow the independent nodes to exchange data when needed. This is done by a
set of communication routines that are called from within the program to carry out
message passing tasks. The two most common set of routines are MPI (Message
Passing Interface) and PVM (Parallel Virtual Machine) both can be called from
FORTRAN or C code [31].

The code GBMOL [23] described and used in this work is a parallel replicated data
MD code that uses both MPI and PVM; the former was used on an SGI Origin 2000
and the latter on a Cray T3E.
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Domain Decomposition

Unlike replicated data methods, where all the data is copied to all the nodes, domain
decomposition methods involve distributing the data among the nodes. This is
done by partitioning the system into spatial domains. Each domain is assigned to a
node. In the case of MD, the simulation box is divided into cuboidal domains. The
positions and velocities of the particles in each domain are assigned to a node. Only
neighbouring nodes need to exchange data. This exchange of data is accomplished by
six communication steps, which transfer information in the +x,y, and z directions.
Each node updates data in its own domain and exports any particles that have
moved outside its domain to neighbouring nodes [32].

The code GBMEGA [22] used in this work is a domain decomposition parallel MD
code that uses both MPI and PVM and runs on the Cray T3E.

1.4 Monte Carlo

1.4.1 Introduction

The Monte Carlo method (MC), is an efficient technique for sampling from a multi-
dimensional probability distribution; it has applications in many fields. Here we give
a brief summary of this method in its simplest form applied to statistical mechanics.

The aim is to calculate ensemble averages such as

AW ep(-AUE) | 1,
At = T o BU@) Ny 2 4O (1.20)

Ny is increased until the ensemble average is estimated to the desired accuracy. At
realistic liquid densities this can be solved using a sample mean integration where
the random coordinates are chosen from a non-uniform distribution. This method
is called importance sampling. Importance sampling techniques choose random
numbers from a distribution which allows the function evaluation to be concentrated

in the regions of space that make important contributions to the integral [5]. A
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method is needed to generate a sequence of random states such that by the end of
the simulation each state has occurred with the appropriate probability. This can be
done by setting up what is known as a Markov chain. A Markov chain is a sequence

of trials that satisfy two conditions:

(a) The outcome of each trial belongs to a finite set of outcomes called phase

space.

(b) The outcome of each trial depends only on the outcome of the trial that im-

mediately preceeds it.

Since the simulations are of finite length, it is essential that the Markov chain sam-
ples a representative portion of phase space in a reasonable number of moves. One
method that gives a quicker convergence of the Markov chain is the Metropolis
method. The Metropolis method starts an MC move by picking an atom at random
and giving it a uniform random displacement along each of the coordinate direc-
tions. The maximum displacement is an adjustable parameter that controls the
convergence of the Markov chain. The next MC move is to determine the difference
in energy 6U between the old state and the new state. If the move is downhill in
energy (6U < 0) then the probability of the new state is greater than the old state
and the new state is accepted. If the move is uphill in energy (6U > 0) then the
move is accepted with a probability equal to the ratio of the two distributions. This
can be expressed as the Boltzmann factor of the energy difference exp(—£0U). To
accept a move with a probability of exp(—F0U), a random number is generated
uniformly between 0 and 1. The random number is compared with the Boltzmann
factor. If it is less then exp(—/3dU) the move is accepted. If the move is rejected,
the system remains in the old state, and the old configuration is recounted as a new
state in the chain [5, 30].

A common practice in MC simulation is to select the particles to move sequen-
tially rather than randomly. This cuts down on the amount of random number

generation and is an equally valid method. This is the approach taken in this work.
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1.4.2 Gibbs Ensemble Monte Carlo

Gibbs Ensemble Monte Carlo (GEMC) is a direct method to simulate a fluid at phase
equilibrium. Panagiotopoulos introduced the Gibbs ensemble as a combination of
NVT, NPT and pPT ensembles [33]. The method uses two basic simulation boxes
that are within two coexisting phases. The boxes are surrounded by the normal
periodic images and there is no attempt to simulate the interface between the phases
[5]. The technique uses three types of moves; one of these is the independent particle
displacements in each box which are made using the normal Metropolis algorithm.
There is a combined attempted volume move in which the volume of one box changes
by AV while the volume of the other box changes by —AV. The pressure in the
two boxes is equal but its precise value is not required in the algorithm. Only the
difference in pressure between the two phases is fixed (namely, AP = 0). Finally,
there is a combined attempted creation/destruction move, where a randomly chosen
particle is extracted from one box and placed at random in the other. The chemical
potential in the two boxes is equal but its precise value is not required. Only the
difference between the two phases is fixed (namely, Ay = 0). The total number of
particles and the total volume of the two boxes remain constant; that is the total
system is at constant NVT'. It can be shown that - in the thermodynamic limit -

the Gibbs ensemble is equivalent to the canonical ensemble [30].

1.4.3 Simulated annealing

Simulated annealing is a stochastic optimisation procedure which is widely applica-
ble and has often been applied in conjunction with the Metropolis algorithm [34, 28].
The trick is to statistically model the evolution of the physical system at a series of
temperatures that allow it to anneal into a state of high order and very low energy.
The process consists of first melting the system being optimised at a high effective
temperature, then lowering the temperature in slow stages until the system freezes

and no further changes occur. At each temperature the simulation must proceed long
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enough for the system to reach a steady state. Annealing, as implemented by the
Metropolis procedure differs from the iterative improvement in that the procedure
need not get stuck in local minima. The temperature in the iterative improvement
method always decreases while in simulated annealing, there is a probability that
the temperature would go up. Hence for simulated annealing, transitions out of a

local minimum are always possible at nonzero temperatures [35, 36].

1.5 Scope of this thesis

In this thesis, we investigate the behaviour of liquid crystals near interfaces using var-
ious models. We concentrate on three types of interfaces, namely, nematic-vapour,
nematic-isotropic and the effects of different solid surfaces on a nematic liquid crys-
tal. In Chapter 2 we describe the different physical properties of these interfaces
and some of the work done in this area. The remainder of the thesis describes our

work and scientific results, and is structured as follows:

e Chapter 3 concerns extensive simulations of a Gay-Berne/Lennard-Jones mod-
el of the form C7GBCT7 in pure bulk and mixed with C7GB fluids. Thin films

are also studied for the pure and mixed fluids.

e In Chapter 4 we report simulations of a nematic-isotropic film of a spherocylin-
der fluid. We measure density and order parameter profiles of the nematic-

isotropic interface for molecules oriented normal and parallel to the interface.

e Chapter 5 covers the effects of different shapes of solid surfaces in contact
with a nematic fluid, here a lattice model is used. We investigate bistability

in systems in contact with triangular and bigrated surfaces.

Finally, conclusions are drawn in Chapter 6.
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Chapter 2

Interfaces

2.1 Introduction

Dietrich [37] defines an interface as a structure that emerges when two phases of con-
densed matter are brought into spatial contact. This interface interpolates smoothly
between the bulk properties of the adjacent phases [37].

Liquid crystals - as described in Chapter 1 - are characterised by long ranged ori-
entational ordering and short ranged positional order (e.g. nematic liquid crystals).
Liquid crystalline interfaces are formed when a liquid crystal comes in contact with
a solid surface and liquid crystal molecules are anchored to the surface. Interfaces
may also occur when the liquid crystal forms a film surrounded by vapour or when
an ordered phase (nematic or smectic) comes into contact with an unordered phase
(isotropic). When the translational symmetry is broken by a surface, or sponta-
neously by an interface, the free energy of the system will depend on the direction
of the director. The molecules will adopt the orientation that minimises the free
energy, in particular, minimising the surface tension of the interface. This is known
as anchoring. The main focus in anchoring discussions is on the identification of
an anchoring angle. The anchoring angle is defined as the nematic director orien-

tation at the surface or interface relative to the surface normal, or to some other
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direction defined by the surface geometry, for example an ’easy axis’. An anchoring
angle normal to the surface is known as homeotropic anchoring while planar anchor-
ing describes anchoring in the plane of the surface or interface. All intermediate
anchoring orientations are classed as oblique [38], conic or tilted. A study of the
interface can therefore yield information on molecular interactions that are averaged
out in the bulk [39].

Other interesting phenomena include wetting and wetting transitions. Wetting
in liquid crystals is concerned with enhanced (or diminished) order near an interface.
Order in a liquid crystal depends on direction as well, but in wetting transitions it is
the magnitude of the surface order that undergoes a transition. Conversely in surface
orientational transitions, changes in magnitude of the surface order are frequently
ignored and all the concentration is on the major qualitative feature: the direction of
the surface order [40]. Two types of wetting can occur. The first is complete wetting
which occurs when the contact angle # = 0, as shown in Figure 2.1(a). Here the
solid substrate ~y is fully wet by the fluid 5. This complete wetting corresponds to a
film with a thickness that is much larger than microscopic lengths. The second type
of wetting is partial or incomplete wetting which occurs when the contact angle is
larger than zero [41], as shown in Figure 2.1(b). Here the a — 7y interface is partially
wet by the fluid #. In both cases the two phases # and v are in coexistence with
a third fluid a, with v being either a solid substrate - as in the figure - or another
fluid. Detailed reviews of wetting are presented by Sullivan and Telo da Gama [42]
and references within.

A lot of progress was made in the last decade on the studies of surfaces and
interfacial properties. Here three types of interfaces that are relevant to the work
presented in this thesis are reviewed. These are the nematic-vapour (N-V) inter-
face, the isotropic-nematic (I-N) interface and the nematic-solid surface interface.
Section 2.2 will review experimental, theoretical and simulation studies of the N-V
interface. The section after that, will review experimental, theoretical and simula-

tion studies of the I-N interface. Finally, Section 2.4 will briefly review some of the
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Figure 2.1: Relationship between wetting behaviour and contact angle. (a) Complete

wetting by phase 3, 8 =0, (b) Partial wetting by phase £ and 6 # 0

work done in investigating the nematic-solid interface and especially the effect of

the shape and topography of the surface on the bulk.

2.2 Nematic-Vapour Interfaces

2.2.1 Introduction

The nematic-vapour interface has been extensively studied both experimentally and
theoretically and more recently through simulation. The anchoring angle, also
known as the tilt angle - which is the preferred direction of the nematic molecules
relative to the interface - seems to vary with the nematogen and in general it is
different from the tilt angle of the I-N interface for the same system. Additional-
ly, these interfaces may exhibit structural changes including tilt angle (anchoring)

transitions and orientational disordering (wetting) transitions [39].

2.2.2 Experiments

Experimental studies of the nematic-vapour interface show a wealth of physical
behaviour. The results of these studies show that the anchoring alignment at the
nematic vapour interface can be either planar as found in PAA, homeotropic as for
cyano-biphenyls nCB (n=5,6,7,8) or oblique (i.e. at an angle between the two) as
observed in MBBA and EBBA. Oblique to homeotropic anchoring transitions were
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also observed experimentally for the liquid crystals MBBA and EBBA.

Bouchiat and Langevin-Cruchon in 1971 [43] were the first to measure the an-
choring angle. They did light reflection measurements on the nematic liquid crystals
PAA and MBBA. They found that PAA molecules lie in the plane of the free sur-
face. In 1972, Langevin [44] measured the surface tension of the nematic free surface
of PAA and MBBA. She used a high resolution spectrum analysis of the scattered
light from the free surface. She found the surface tension of PAA to be v =38 +4
dynes cm™!. Chiarelli, Faetti and Fronzoni [45] also measured the anchoring angle
f between the director and the vertical axis at the free surface of the nematic lig-
uid crystal PAA. To achieve better accuracy in their measurement Chiarelli et al
made certain improvements to the techniques of Bouchiat and Langevin-Cruchon.
They confirmed earlier results that PAA molecules lie parallel to the free surface i.e.
planar anchoring (6 = 90°).

Bouchiat and Langevin-Cruchon [43] applied the same techniques on the liquid
crystal MBBA and found that the anchoring angle of MBBA is tilted at an average
angle f ~ 75° from the surface. The actual angle varied slightly from 6 ~ 68° to
0 ~ 79° as the temperature increased towards the critical temperature 7T,. This
tilt was also observed by Gannon and Faber [46] for MBBA. The surface tension of
MBBA was later found by Langevin [44] to be v =~ 38 dynes cm~!. These results
were confirmed by Chiarelli, Faetti and Fronzoni [47] for MBBA. They also obtained
similar results for the liquid crystal EBBA. They found that a structural transition
occurs in MBBA and EBBA when the temperature reaches a critical point T, close
to the clearing temperature 7, of the nematic liquid crystal. Below T, they showed
that the angle  tends to zero as §# = C(T, —T)? where 8 ~ 0.5 and C'is a constant.
They compared their results with the results of theoretical models of the free surface
done by Parsons [48] and found good agreement.

Homeotropic anchoring was first observed experimentally in 1978 by Gannon
and Faber [46] who measured the surface tension of two cyanobiphenyls (5CB and

8CB) at temperatures near the nematic-isotropic transition temperature, using the
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Liquid Crystal | Anchoring Surface Tension
Molecule v (dynes cm™1)
PAA Planar [43, 45] 38 £ 4 [44]
MBBA | Oblique [43, 46, 47] 38 [44]
EBBA Oblique [43, 47] -
5CB Homeotropic [46, 49] | 28.1 £ 0.3 [46]
6CB Homeotropic [49] -
7CB Homeotropic [49] -
8CB Homeotropic [46, 49] | 26.2 £ 0.3 [46]

Table 2.1: Summary of experimental results for different liquid crystals at the

nematic-vapour interface

Wilhelmy plate method. They found the surface tension of 5CB to be v = 28.1+0.3
dyne cm™! and v = 26.2 4 0.3 dyne cm ! for 8CB. Observing thin films of 5CB and
8CB microscopically, Gannon and Faber observed a preferred orientation of the di-
rector adjacent to the free surface that was normal to the surface. Recently, Kasten
and Strobl [49] confirmed Gannon and Faber results when they studied the free sur-
face of a homologous series of low molecular weight liquid crystals (rCB, n=5,6,7,8)
by reflection ellipsometry. They found that the isotropic phase was completely wet
by a homeotropically aligned nematic film for n=6,7,8 and partially wet for n=>5.
They also found strong evidence of a thin surface layer possessing enhanced order on
top of the homeotropically aligned nematic bulk. For n=6,7,8 the layer was seen to
grow as the temperature approaches the nematic-isotropic transition temperature.

This was not the case for n=5, where no surface effects were observed.

2.2.3 Theory

Theoretically, all three anchoring orientations were predicted, as were orientation-

al and wetting transitions. In order to study these various anchoring angles and
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physical phenomena, different theoretical models and approaches were used. Pla-
nar anchoring was first predicted theoretically in the early studies of Parsons in
1976. Parsons [48] calculated the surface tension at the free surface of a nematic
liquid crystal. Parsons used the Fowler-Kirkwood-Buff approximation to estimate
the surface tension and a mean field approximation to the molecular pair distribu-
tion function. He found that for a model of molecules interacting with the van der
Waals interaction, the surface tension was at a minimum when the anchoring was
planar. Parsons then looked at the effects of the molecules having permanent dipoles
on the interface. He assumed that the dipoles were oriented along the long axis of
the molecules. From this, he observed that the dipole-dipole interaction enhanced
planar anchoring. Parsons indicated that if the permanent dipoles were off axis,
then the competing forces between the Van der Waals forces and the dipole-dipole
interaction might lead to oblique anchoring. Since the two order parameters associ-
ated with the two interactions have different temperature dependence, the tilt angle
should change with temperature.

More recently, Osipov and Hess [50] also predicted planar anchoring. They de-
rived general expressions for the free energy of the nematic liquid crystal in the in-
terfacial region using a density functional approach. They expressed the anisotropic
part of the surface tension and the coefficients of the Landau-de Gennes theory for
the nematic free surfaces in terms of the direct correlation functions. Osipov and
Hess found a preferred alignment parallel to the interface. They attributed this to
the contribution from the short ranged intermolecular interactions.

Homeotropic anchoring was first predicted by Telo da Gama and co-workers.
Telo da Gama [51] developed a mean field theory for interfacial properties of nemat-
ics. The model consists of spherical hard-core particles interacting via a long-range
attractive potential of the Maier-Saupe type. The model exhibits nematic, isotropic
and vapour phases; these phases coexist in pairs and coexist simultaneously at a
low temperature triple point. Telo da Gama obtained explicit phase diagrams of

the model which were found to be in good agreement with the experimental results.
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She also calculated order parameter and density profiles for both the nematic-vapour
and the nematic-isotropic interfaces. These were done for different anisotropic ra-
tios of the Maier-Saupe potential and for different temperatures. Telo da Gama
calculated the interfacial N-I surface tension and concluded that the model grossly
overestimated it. A missing feature of this model is a preferred orientation at the
interfaces. This is perhaps due to the lack of coupling between the orientational
and translational degrees of freedom in the potential. Thurtell, Telo da Gama and
Gubbins [52] corrected the problem by adding a coupling between the orientational
and the translational dependence of the potential. They found that, the preferred
orientation depended on the strength of this coupling, which in turn was governed
by a constant. This constant could be either positive which represents a prolate
molecule with an predicted planar anchoring, or it is negative which corresponds to
an oblate shaped molecule with a homeotropic anchoring at the interface. When
the constant is zero, the earlier results [51] are obtained where no preferred align-
ment was observed. A drawback of this theory is that oblique anchoring cannot be
explained.

Kimura and Nakano [53] calculated the surface tension in the mean field approx-
imation for a system of rod-like molecules interacting via an attractive as well as
repulsive hard core potential. They concluded that hard-core repulsions favour the
normal alignment of molecules at the free surface while the attractive interaction
favours planar anchoring. They attribute the temperature dependence of oblique
anchoring to the counterbalance between the effects of repulsion and attraction.

Tjipto-Margo and Sullivan [54] have used molecular perturbation methods to
derive an approximate free energy functional for nonuniform nematic liquids inter-
acting via the Gay-Berne potential. They simplified the free energy to a Landau-
de Gennes form and applied it to orientational alignment and nematic wetting at
the free isotropic liquid-vapour interface. Tjipto-Margo and Sullivan predicted a
preferred nematic alignment that was perpendicular to the interface. They also

found that the wetting by the nematic phase changed from complete to incomplete
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as the molecular elongation increased. This contradicts the findings of Kasten and
Strobl [49] whose experiments on the nCB series found partial wetting for 5CB and
full wetting for 6CB, 7CB and 8CB. Tjipto-Margo, Sen, Mederos and Sullivan [55]
extended and refined the earlier studies of Telo da Gama et al [51, 52]. By using
improved numerical techniques, they found that the theory does exhibit nematic
wetting, a feature that was absent from the earlier findings of Telo da Gama et al.
They managed to show that the observed non-monotonic variation of the liquid-
vapour surface tension with temperature - as observed experimentally by Gannon
and Faber [46] - was a direct consequence of the approach to complete nematic wet-
ting. More recently, Martin del Rio, Telo da Gama, de Miguel and Rull [56] applied
the generalised van der Waals theory to a model of liquid crystal that includes all
of the second-order terms in the spherical harmonic expansion of the anisotropic
intermolecular potential. They investigated the orientational order induced by each
term as well as the order resulting from the competition between the various terms
included in the potential. For appropriate choices of the relative strengths of the
spherical harmonic coefficients they showed that the theory could account for all the
orientational effects observed at nematic interfaces. They also managed to describe
qualitatively the molecular orientation at the interfaces of certain nematogens. They
found that a single set of coefficients can describe correctly the anchoring alignment
of the nCB series at both the N-V and the N-I interfaces. They obtained similar re-
sults that described the alignment of molecules at the interfaces of the liquid crystal
MBBA. They also observed biaxial behaviour at the interface when the anchoring is
planar at the N-I interface. Additionally, they have shown that temperature driven
orientational transitions, such as a first order transition from tilted to homeotropic
alignment, may occur in systems that are characterised by such interactions. This
is in contrast to experimental findings that show that this transition is second order
[47]. Martin del Rio et al found an orientational transition which they related to a
wetting transition at the nematic-vapour interface [57]. Their theory accounts for

the growth of the surface ordered layer that develops at the nematic-vapour inter-
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face as the temperature increases towards the triple point. This is in agreement
with experimental results obtained by Kasten and Strobl for 8CB [49].

Finally, Braun, Sluckin, Velasco and Mederos [38] predicted oblique anchoring
theoretically. They generalised earlier density functional theories of nematic in-
terfaces by adding an electrostatic quadrupole term to the orientationally coupled
hard-core Lennard-Jones potential. They applied the Fowler approximation to the
interface: this involves constraining the interfacial structure to a step function, thus
neglecting interfacial width and structure. Braun et al predicted oblique anchoring
at the nematic-vapour interface in agreement with experimental results of MBBA
[43]. They also predicted a second-order oblique to homeotropic anchoring transition

which was observed in the experiments of Chiarelli et al [47].

2.2.4 Simulation

There are a large number of studies of the liquid-vapour interface using simulation
of the Lennard-Jones model and numerous attempts have been made to calculate
the surface tension of argon (see for example Holcomb, Clancy and Zollweg [58] and
references therein). Later on, these attempts were extended to the Gay-Berne mod-
el to simulate the isotropic-liquid-vapour interface and finally the nematic-vapour
interface using the corresponding parametrization of the well known phase diagram
of the Gay-Berne model [59, 60].

This work was initially done by de Miguel, Rull, Chalam and Gubbins [61] using
Gibbs-ensemble Monte Carlo simulation to predict the liquid-vapour coexistence
of a Gay-Berne fluid. They used a molecular elongation of x = 3 and well-depth
ratio ¥ = 5. They also presented evidence of the existence of the vapour-isotropic-
solid triple point, but they were unable to see the vapour-isotropic-nematic triple
point predicted by Somoza and Tarazona [62] using the local density-functional
approximation. de Miguel et al did not simulate the actual interface or measure

any of the isotropic-nematic interfacial properties. A few years later Martin del Rio,
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de Miguel and Rull [63] simulated the liquid-vapour interface using the Gay-Berne
model with the above GB parameters. They used molecular dynamics (MD) in
the constant-NVT ensemble to study the system at different temperatures. For
each temperature; the density, orientation, energy and pressure tensor profiles were
obtained. Their density profiles fitted well to the hyperbolic tangent function and
their order parameter profiles show a perpendicular preferred orientation at the
interface at low temperature. Lowering the temperature even further showed the
formation of a smectic phase at one of the interfaces with a preferred orientation
parallel to the interface. Martin del Rio et ol indicated that the system may not
have reached equilibrium. Finally, they measured the surface tension and surface
thickness and observed an increase in the value of the surface tension as the system
approaches the vapour-isotropic-smectic triple point. Martin del Rio and de Miguel
[64] simulated the liquid-vapour interface of the Gay-Berne model for a range of
temperatures above and below the vapour-isotropic-nematic triple point. They used
a molecular elongation x = 3 and two values of the energy anisotropy parameter
(k' =1 and &’ = 1.25). Martin del Rio and de Miguel found that molecules in the
nematic phase oriented themselves parallel to the interface.

Emerson, Faetti and Zannoni [65] simulated the nematic-vapour interface for a
Gay-Berne (GB) liquid crystal using Monte Carlo. They used an energy anisotropy
parameter £’ = 1.25 to obtain a stable nematic film. This parameterization is known
to show evidence of nematic-vapour coexistence [63]. This was used instead of the
original GB parameterisation of " = 5. They left the other parameters unchanged.
Emerson et al observed a preferred orientational ordering that was planar to the
interface. They found no nematic wetting of the film in the isotropic phase. Mills,
Care, Neal and Cleaver [66] used molecular dynamics to simulate an unconfined
Gay-Berne film in equilibrium with its vapour. They used the parameterisation
k = 2.0, = 5.0, = 1.0 and v = 2.0. This is a much shorter molecule with
stronger exponents. Mills et al found stable nematic-vapour coexistence using Gibbs

ensemble Monte Carlo. They then simulated a nematic thin film sandwiched between
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two nematic-vapour interfaces. From the simulation, they observed a preferred
molecular alignment in the nematic film perpendicular to the interface. At slightly
higher temperatures, they observed a wetting of the nematic phase by the isotropic
phase. Finally, they evaluated the surface tension and compared it successfully
with theoretical predictions. As liquid crystal molecules are characterised by their
length anisotropy, models with short elongations (i.e. x = 2) seem unrealistic. This
indicated that there maybe another factor behind homeotropic anchoring at the

nematic-vapour interface observed by experiments.

2.2.5 Summary

Experimental results show that the anchoring alignment at the nematic-vapour in-
terface can be either planar as is the case for PAA[43, 45], homeotropic as for cyano-
biphenyls nCB (n=5,6,7,8)[46, 49] or oblique (i.e. at an angle between the two) as
observed in MBBA and EBBA [43, 46]. A second-order oblique to homeotropic
transition was observed for MBBA and EBBA [47]. Theoretically, planar anchoring
[48, 50], homeotropic anchoring [52, 53, 54] and oblique anchoring [38] have been
predicted. A second-order transition between oblique anchoring and homeotropic
anchoring was also predicted theoretically [38]. A few theories attempted to ex-
plain all types of anchoring for most of the different liquid crystal interfaces [53, 52]
. All simulations of the nematic vapour interface were done using the Gay-Berne
model. The original parameters x = 3 and ' = 5 did not give an N-V interface,
since the nematic phase is only stable for temperatures above the critical point[63].
The changing of the energy anisotropy parameter ' to x' = 1 and x' = 1.25 gave
planar anchoring [64, 65]. Homeotropic anchoring was observed for GB parameters
k = 20,6 = 5.0,u = 1.0 and v = 2.0 [66]; this is a very short and unrealistic
molecule. However, the potential is strongly attractive, which may be the cause of
homeotropic anchoring.

Oblique anchoring as observed in the nematic-vapour interface of MBBA and
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EBBA might be caused by quadrupole interactions [67, 38]. Other theoretical studies
have suggested that it might be the competition between hard-core repulsive forces
and attractive forces [53, 52| that are the drive behind oblique anchoring. To the
author’s knowledge, no studies of oblique anchoring using computer simulations have
been attempted. What drives the molecules to orient normal to the interface rather
than parallel is still not quite understood. Most of the theoretical and simulation
models of liquid crystals model the molecule as a rigid uniaxial particle. None of
the models take into account the flexible nature of liquid crystal molecules. This is
one of the objectives of this work: to investigate the effect of molecular flexibility
on the alignment of molecules at the nematic-vapour interface. This is described in

detail in Chapter 3.

2.3 Isotropic-Nematic Interfaces

2.3.1 Introduction

The isotropic-nematic interface is the simplest interface of nematogens, since for
all practical purposes the isotropic and nematic liquids are incompressible, so the
pressure is not an experimental parameter. Further more, due to the small differ-
ence between the isotropic and nematic densities at the transition, the density is not
believed to play an important role at the I-N interface [39]. An understanding of
the interfacial alignment in this simple inhomogeneous system presents some funda-
mental questions about which molecular features, if any, are necessary to produce a

certain type of anchoring.

2.3.2 Experiments

There is a lack of experimental data for non-polar mesogens. This makes it diffi-
cult to separate the roles of the steric and electrostatic interactions. For example

Langevin and Bouchiat [68] did light reflectivity measurements and found a tilt an-
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Liquid Crystal | Anchoring Surface Tension
Molecule Angle v (dynes cm ™)
MBBA Planar [68] | 2.3 +0.4 x 1072 [68]
nCB Oblique [69] -
Lyotropic Planar [70] 2.4 x 1072 [70]

Table 2.2: Summary of experimental results for different liquid crystals at the

isotropic-nematic interface

gle of /2, i.e. planar anchoring, for the liquid crystal MBBA. They also measured a
surface tension of v = (2.3+0.4) x 10~2dyne cm™". Faetti and Palleschi [69] studied
the properties of the isotropic-nematic interface of some members of the nCB series
using optical reflectometry. They found tilt angles that range between # = 48.5°
to # = 64.5° and interfacial thicknesses of the order of 400-700A. More recently,
Chen, Sato and Teramoto [70] measured the interfacial tension between coexisting
isotropic and nematic phases of a lyotropic polymer liquid crystal. A polarising
microscope observation revealed that the nematic in the vicinity of the interface is
aligned parallel to the interface. The measured value of the surface tension was

v = 0.024 dyne cm™!.

2.3.3 Theory

The work of Onsager [71] in 1949 was one of the earliest theoretical studies investigat-
ing isotropic-nematic phase transitions. Onsager developed a theory now known by
his name based on the minimisation of the free energy of the fluid. Onsager showed
that a system of rigid rodlike molecules interacting with each other through steric,
excluded-volume interactions can undergo a first-order phase transition from the
isotropic phase to the nematic phase and that the two phases can coexist. Twenty-
two years later, de Gennes [72] developed a theory based on the Landau expansion of

the free energy as a function of the order parameter tensor. Expressing the surface
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tension at the isotropic-nematic interface in terms of the free energy and calculating
its minimum, de Gennes predicted that the tilt angle at the interface can only have
two orientations: normal to the interface or at a planar orientation. More recently,
Telo da Gama [51] used a model consisting of a spherical hard core particle interact-
ing via a long-range attractive potential of the Maier-Saupe type. This model does
not exhibit any preferred orientation at the nematic-isotropic interface. This is due
to the lack of coupling between the orientational and translational degrees of free-
dom in the potential. Telo da Gama calculated order parameter and density profiles
and surface tension of the isotropic-nematic interface for different anisotropy ratios.
These calculations give poor surface tension estimates. The reader is directed to
Section 2.2 for a more detailed description.

As with experiments, different anchoring orientations were theoretically predict-
ed. Planar anchoring was first predicted theoretically by Doi and Kuzuu [73]. They
derived a theoretical estimate of the surface tension of the isotropic-nematic inter-
face of a hard rod solution using an approach that treated the interfacial thickness
on a macroscopic length scale. Using Onsager’s theory they found an interfacial
thickness of 0.638L gave a minimum in the surface tension and the surface tension
had a minimum of v = 0.257 kgT/(DL), where kp is the Boltzmann constant, T is
the temperature, L is the molecular length and D the molecular diameter. Kimura
and Nakano [74] calculated the surface tension of the isotropic-nematic interface in
a mean field approximation for a system of rod-like molecules interacting via an at-
tractive and hard-core repulsion. They found that the hard-core repulsion favors the
planar orientation at the I-N interface. They made no attempts to calculate the val-
ues of the surface tension. In two separate studies McMullen [75, 76] did calculations
on hard spherocylinders at the isotropic-nematic interface using phenomenological
methods. McMullen predicted tilt angles that were either parallel or normal to the
interface. Moore and McMullen later [77] investigated the isotropic-nematic inter-
face of hard spherocylinders in the square-gradient approximation. They found that

for spherocylinders of L/D > 10 the anchoring at the interface was planar, but
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predicted oblique anchoring for L/D < 10. The truncation of the theory at the level
of two-body interactions is only accurate in the limit L/D — oo, hence the tilt may
be an artefact of the approximation.

Chen and Noolandi [78] numerically solved the interfacial profile of the isotropic-
nematic interface of a rigid-rod system using a generalised Onsager model. They
found that the preferred tilt angle between the nematic director and the normal to
the interface was 6 = /2, i.e. planar anchoring. They also found that the interfacial
widths and positions on the density profiles were different from those of the order
parameter profiles. They found an offset between the two profiles to be ~ 0.5L
and the interfacial thickness to be approximately 1.5L for the planar orientation.
They deduced an interfacial tension of v = (0.183 4+ 0.002) kgT/(DL). Chen [79]
later did biaxiality calculations using the same approach. By defining the biaxial
order parameter as «(z) = 3(sin®6f(cos? ¢ — sin” ¢)),, where 6 and ¢ are the usual
spherical-polar angles. Chen saw a weak biaxial effect near the isotropic side of the
interface where the nematic ordering is relatively small. The width of the effect was
roughly 2L. Chen only examined two possible solutions for the tilt angle, one planar
(0 = 7/2) for which the surface tension was minimum, and the other homeotropic
(0 = 0) for which the surface tension was maximum.

Cui, Akcakir and Chen [80] investigated the behaviour of liquid crystalline poly-
mers in the interfacial region between the isotropic and nematic phases. They have
used a mean-field approximation on a system of semi-flexible polymers interacting
via an Onsager-type repulsive interaction. The density distribution of polymers
crossing the interface was computed using a spherical-harmonics expansion. The
interfacial tension was also calculated which was found to be consistent with the
results of a scaling argument. Cui et al found a preferred planar orientation of the
nematic at the interface with a surface tension of (0.221 + 0.002) kgT'/(Da), where
2a is the persistence length. They also found a significant biaxiality effect in the

interfacial region and a depletion in the density profile near the isotropic side of the

interface. More recently, Koch and Harlen [81] obtained density and order parame-
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ter profiles across the interface by minimising the free energy in the inhomogeneous
fluid using an approach that generalises Onsager’s classical theory to spatially in-
homogeneous hard rod solutions. They found a planar alignment at the interface
and an interfacial thickness of 0.431L. Their order parameter profile grows mono-
tonically from S = 0 in the isotropic phase to S = 0.847 in the nematic phase. The
rod concentration exhibits a non-monotonic behaviour: it has a minimum that is
smaller than the concentration in the isotropic phase. Koch and Harlen also calcu-
lated the surface tension which they found to be v = 0.316 kT /(DL). They found
that the biaxial nature of the rods’ orientation distribution had a significant effect
on the interface. Using a biaxial trial function reduced the surface tension by 19%
compared to that of a uniaxial trial function. None of the experimental studies on
the isotropic-nematic interface showed evidence of a non-monotonic behaviour of
the density.

Finally, Hotyst and Poniewierski [82] who studied a fluid of hard spherocylinders
using the Onsager model adapted to a nonuniform system observed oblique anchor-
ing. They added quadrupolar interactions to the potential and found a tilt of the
director at the interface of 7/3 and that there was no dependence of this tilt on the

length-to-width ratio L/D of the spherocylinder.

2.3.4 Simulation

To the author’s knowledge, there have been very few computer simulation studies
done to investigate the [-N interface. One such study, are the molecular dynamics
simulations of Bates and Zannoni [83]. They used the Gay-Berne model with length
to breadth ratio x = 3, well depth anisotropy ratio ' = 5 and energy exponents
i =1 and v = 3. The method they used to maintain the two bulk phases was to
have a temperature inhomogeneity between the two phases in the same box. That
is the nematic bulk phase is at a temperature slightly lower than the isotropic bulk

phase. As a consequence this system is not at equilibrium as there will be a constant
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heat flow from the high temperature region (isotropic) to the low temperature region
(nematic). Their system consisted of 12960 molecules in a box of dimensions 30 x
30 x 48 at T = 3.45 and T} = 3.60 and density p* = 0.3. They found that the
molecules tend to align parallel to the interface. They calculated the density and
order parameter profiles and found an offset between the profiles of 0.6L and an
interfacial thickness of 3.46L. No attempt was made to calculate the surface tension
or biaxiality effects.

Recently, Allen [84] investigated the nematic isotropic interface for hard ellipsoids
of revolution with molecular length a/b = 15 in the slab geometry, using Monte Carlo
simulations for various anchoring conditions at parallel confining walls. He compared
the results of the simulations with theoretical calculations using Onsager’s density
functional theory. Allen found a planar orientation at the interface. He found
evidence of biaxiality in the theory but this was barely detectable in the simulation
results. Allen found no sign of a minimum in the number density predicted by Koch
and Harlen [81] from the Onsager theory or from the simulations.

For completeness, we mention the simulation study of the isotropic-smectic A
(I-Sm A) interface done by Bates [85]. Bates repeated the earlier studies, using a
temperature inhomogeneity, on the isotropic-nematic interface [83] and extended it
to study the I-Sm A interface. This system was made of 14256 molecules in a box
of 30 x 30 x 96 at T¢,,, = 1.15 and T} = 1.20 and density p* = 0.162. He also
found a planar orientation of the director at the interface. A narrow layer of nematic

structure was observed between the smectic-A and isotropic phase.

2.3.5 Summary

As with the nematic-vapour interface, the isotropic-nematic interface shows differ-
ent anchoring alignment for different types of liquid crystals. Experiments show
that MBBA prefers planar anchoring [68] while some members of the nCB series

prefer oblique anchoring [69]. This seems to indicate that long range electrostatic
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interactions might be the drive behind oblique anchoring at the isotropic-nematic
interface since the nCB series have strong dipoles. No homeotropic anchoring was
observed in experimental studies of the isotropic-nematic interface. Theoretically,
earlier calculations of the surface tension showed that a minimum in the surface
tension occurred when the anchoring was either planar or homeotropic [72, 75, 76]
without any preference for one or the other. Most of the other theoretical studies
predicted planar anchoring [73, 74, 78, 80, 81] which is in agreement with exper-
imental results for MBBA. The exception is the work of Holyst and Poniewierski
[82] which shows oblique anchoring in agreement with the experimental results for
the nCB series. Both simulation studies found planar anchoring at the isotropic-
nematic interface [84]. No studies using simulation were done to investigate oblique
anchoring at the isotropic-nematic interface. There is some doubt that the temper-
ature inhomogeneity method [83] achieves thermodynamic equilibrium. Hence, an
investigation using molecular dynamics simulation of an isotropic-nematic interface
at equilibrium is needed. Such an investigation is attempted in this thesis using soft

spherocylinders as described in Chapter 4.

2.4 Solid Surface Effects

2.4.1 Introduction

When a liquid crystal fluid comes into contact with a solid substrate, several regions
can be identified. Far from the substrate, there is the bulk liquid crystal, with all
the molecules having the same mean orientation. Right at the surface, liquid crystal
molecules are in direct interaction with the substrate and have their orientational
distribution determined by this interaction. In between, there is a transition region
in which the molecular order evolves from that in the substrate to that in the bulk.
Just outside this region, the director has a given orientation which depends on the

structure of the interfacial region; this orientation is the anchoring direction of the
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liquid crystal at the surface [86, 87].

For a detailed review of the different aligning mechanisms and surface effects in
liquid crystals the reader is directed to read the review of B. Jérome [88].

A particular type of aligning mechanism that is of interest to this work is the case
of substrates having grooved surfaces. Shen et al [89, 90, 91] among others have in-
vestigated the nematic-substrate interface using optical second harmonic generation.
The method used yields detailed information about the orientation of the molecules:
mean tilt with respect to the surface normal and distribution of azimuthal orien-
tation in the plane of the surface. They found that on rubbed glass and some
chemically coated glass, the first monolayer of nematic molecules has an isotropic
distribution of azimuthal orientations. This means that the molecule-substrate in-
teractions are not responsible for the orientation of nematic liquid crystals parallel
to the rubbing direction. On such substrates, the orientation of the nematic phase
might come from the fact that this configuration minimises the elastic free energy
distortion of the nematic orientation induced by the presence of grooves created by
rubbing. With any other orientations, the molecules have to follow the topography
of the grooves and this creates distortion and requires some energy as found by

Berreman [92, 93] and Wolff [94] using the elastic distortion model.

2.4.2 Simulation

A few studies using off-lattice simulations of liquid crystal fluids constrained between
walls have been done to date. All of these studies looked at the substrate-liquid
crystal interaction and the effect of a particular type of potential on the bulk liquid
crystal. One of the first of these studies was the work of Chalam, Gubbins, de Miguel
and Rull. Chalam et al[95] studied a GB fluid confined between walls using constant-
NVT MD. They found that the wall forces oriented the molecules normal to the wall.
The molecule-substrate interaction used was separable - i.e. there was no coupling

between the orientational part and the spatial part of the interaction.
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Zhang, Chakrabarti, Mouritsen and Zuckermann [96] studied the GB model of
liquid crystals in the presence of a substrate surface using the hybrid Monte Carlo
method. They proposed a simple non-mean-field substrate-molecule potential to
describe the effects of rubbed polymer-coated substrates. This potential takes into
account the effects of the geometric shape of the GB molecules. Zhang et al showed
that the bulk pretilt angle is controlled by the surface through the orientation of the
adsorbed liquid crystal monolayer.

Stelzer, Galatola, Barbero and Longa [97] did MD simulations for liquid crystal
near solid surfaces. The bulk liquid crystal was modelled using the GB interaction.
The substrate-molecule interaction used was separable into a spatial part and an
orientation part. The spatial part, took the form of a Lennard-Jones potential with
a surface sinusoidally, modulated to give the effect of roughness. The orientational
part of the surface potential used was of the Rapini-Papoular type. The initial
configuration of Stelzer et al was set up by adding the two surfaces to an equilibrated
bulk nematic. They observed smectic-C ordering near the two rough surfaces. They
also observed a depletion in density at the smectic-nematic interface.

Wall and Cleaver [98] studied confined liquid crystal films using MD simulation.
Their model was a GB fluid confined between two substrates in a slab geometry.
The molecule-substrate interaction potential used is non-separable i.e. the angular
and spatial parts of the interaction are coupled. Wall and Cleaver investigated
the temperature dependence of the system and the effects of weak and moderate
molecule-substrate coupling strengths. They found that for both coupling strengths,
a well defined tilted molecular layer formed at each wall. The also found that the
surface layers appear to be the major influence on the onset of orientational order
in the central region of the bulk.

Allen [99] recently did molecular simulations of liquid crystal surface anchoring.
The liquid crystal was confined in the slab geometry with homeotropic anchoring.
The molecules were modelled as hard ellipsoids of revolution of elongation e = a/b =

15, where a is the length of the semi-major axis and b is the length of the two equal
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semi-minor axes. Monte Carlo simulations were carried out in the constant-NPT
ensemble. Allen obtained good agreement between simulation and calculations done
using Onsager theory for different anchoring angles.

There are even fewer studies of surface effects using lattice models. One such
model, is the model of Gruhn and Hess [20]. Gruhn and Hess used Monte Carlo
simulations to generate an equilibrium director field of a nematic liquid crystal in two
dimensions. They did not use any surface-liquid crystal interactions, but assumed a
strong anchoring and fixed the molecules near the flat surfaces to have homeotropic
or planar alignment. The model of Gruhn and Hess is discussed in further detail in
Chapter 5 of this thesis.

Newton and Spiller [100, 101] used the Gruhn and Hess two dimensional model
with different surface shapes to study the effects of the surfaces in producing bista-
bility in a nematic liquid crystal device. The surfaces they used were triangular
gratings of different triangular heights and symmetry, and surfaces obtained from
real scanning electron micrograph profiles. The initial configurational distributions
used were not random vectors on the surface of a sphere [5] as used by Gruhn and
Hess and the work presented in this thesis, but rather a random distribution on a
sector. This gave a number of possible initial configurations. Newton and Spiller
used four: a vertical sector and a horizontal sector each being positive (to the right
of the axis) and negative (to the left of the axis) these were designated: v,v—, h, h—.
For the symmetric triangular grating they found that the equilibrium state obtained
from the initial states v and v— were degenerate as were the ones obtained from the
states h and h—. They also found that the two sets were degenerate in energy at
a certain groove depth. This signified a bistable state. The asymmetric triangular
grating also showed degeneracy in energy, but in this case there were four separate
states. The states v bistable and h were degenerate for a particular groove depth as
were v— and h— for a higher groove depth. Newton and Spiller applied the same
technique to real grating profiles. They observed 3 stable states which they desig-
nated: vertical v, horizontal A and 7. The states differed slightly in energy with the
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v state being the lowest and the h being the highest with the 7 state being at an
energy level that is between the two. This system is obviously not a true tri-stable

state as the three states are not degenerate in energy.

2.4.3 Summary

Various studies of liquid crystals near solid surfaces, both on- and off-lattice have
been carried out. Almost all studies of the substrate-liquid crystal using off-lattice
simulation were of flat surfaces. The only exception was the work of Stelzer et al
[97]: the solid surface in this case was sinusoidally modulated along the z and y
direction. They did not observe any bistable states.

Lattice models of nematics near triangular gratings and real grating profiles show
evidence of bistability [100, 101] in two dimensions. As actual display devices are
three dimensional, it is of great interest to investigate stable states generated by
three dimensional surfaces and attempt to observe bistability in different surface

topographies. This has been attempted in this thesis as described in Chapter 5.
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Chapter 3

Studies using a Flexible Model

3.1 Introduction

One main feature of real liquid crystal molecules - which is often neglected in comput-
er simulation studies of nematic-vapour interfaces - is molecular flexibility. Flexible
alkyl chains are known to play a key role in determining mesophase stability [102]
and may even be the drive behind homeotropic alignment at the nematic-vapour
interface. Atomistic simulations include flexibility as they use potentials that follow
the exact structure of real molecules [102]. To the author’s knowledge no simula-
tion studies using an atomistic model have been used to study the nematic-vapour
interface. This is perhaps because of the extensive computational time and power
required to perform these studies [103]. To overcome this problem, a pseudo atom-
istic model is considered. This model should maintain molecular flexibility but not
all of the details of an atomistic model. The study presented in this thesis uses such
a model. A second reason for the absence of such studies is the great difficulty in
finding intermolecular potentials for which the bulk nematic phase is stable at suffi-
ciently low pressure and temperature to coexist with a vapour phase[64, 66]. More
frequently [61, 104, 59, 60] it transforms into a smectic or solid at temperatures

below the critical temperature 7,.

42



The model presented is a hybrid atomistic model consisting of a mesogenic core
linked to two flexible tails. The mesogenic core is represented by a Gay-Berne
(GB) site and each flexible tail is represented by an array of seven Lennard-Jones
(LJ) sites. This model is a variant of the model presented in an earlier study by
Wilson [102]. He used a hybrid atomistic model to investigate the phase behaviour
of liquid crystal dimers. His model consisted of two GB mesogens linked by a
flexible chain. This approach is similar to that employed by La Penna, Catalano and
Veracini [105] who simulated a single GB unit linked to a single alkyl chain. They
studied the effects of varying the chain length on the static and dynamic properties
of that system. La Penna et al found that qualitatively the model successfully
reproduced the static properties of real mesogenic molecules. Lyulin et al [106] used
this approach to analyse the structure and dynamics of a series of liquid crystalline
main chain polymers. The polymer model was composed of a series of GB mesogens
connected with each other through flexible alkyl spacers. The physical properties
of such a model were measured for different spacer lengths. Recently, McBride and
Wilson [107] used a model similar to the one presented in this thesis. Their model
consisted of a GB core mesogen with two alkyl chains of different lengths. They
studied the phase behaviour and bulk properties of their model and compared the
results with real liquid crystals.

Other possible applications of this kind of model based on a GB/LJ combination
is in forming banana and zigzag shaped molecules. These give rise to interesting
effects, such as tilted smectics, and under the influence of electric fields, flexoelectric
effects can occur.

The objective of this study is to investigate whether or not such a model forms a
nematic-vapour interface, and if so, to investigate the structure of the interface. In
particular, it would be of interest to discover how the nematic director is oriented

relative to the surface.
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3.2 The Model

3.2.1 Introduction

Molecules of the form shown in Figure 3.1 are known to form liquid crystals [108].
These two compounds provide impressive proof of the strong mesogenic character of
cyclohexane derivatives. The cyclohexane ring is one of the most important moieties
[109]. It differs from benzene by being more bulky in shape, having some flexibility
and being non-aromatic in character. This non-aromaticity causes a strong decrease
of intermolecular attraction relative to benzene derivatives, leading to materials with
a much lower packing fraction [109]. Experimental results show that the cyclohexane

and benzene derivatives of the form shown in Figure 3.1 form smectic phases [110,

111].
CrHys O< >—< >*C7H15
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Figure 3.1: Cyclohexane and Benzene Derivatives

3.2.2 Model Details

To model liquid crystalline molecules of the form shown in Figure 3.1, a hybrid atom-
istic model is constructed. This molecule consists of a Gay-Berne (GB) core, which
mimics the set of cyclohexane rings and is connected to two arrays of Lennard-Jones
(LJ) sites of equal lengths that represent the alkyl chains. A schematic diagram of
this model is shown in Figure 3.2. The bond lengths are fixed between the centres of

adjacent sites and the angles between the different parts of the tails are allowed to
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fluctuate around an equilibrium value. Figure 3.2 also shows a schematic diagram of
the single-tailed molecule which was used together with the longer molecule to form
a mixture. This type of liquid crystal molecule is widespread [108]. Compounds such
as nCB, nOCB and nOFBA are of this type [105]. The model studied by La Penna
et al [105] is also of this form. Mixtures of liquid crystal molecules are frequently
used in devices, because the range of stability of the nematic phase against crystal-
lization or smectic phase formation is extended relative to the stability range of the

individual components.

O L-JAtom
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GB Mesogen

C7GBC7

QG O

Figure 3.2: A schematic diagram of the C7-GB-C7 / C7-GB Model

Potential Details

The total potential energy of the system of the form
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was used to model the intra-molecular and the intermolecular contributions to the
interaction energy. Nyngies, Naihedrais, Nrs and Ngp are the number of angles, num-
ber of dihedral angles, number of Lennard-Jones sites and number of Gay-Berne
sites in the system respectively [102], U™ is a bend interaction of the harmonic
type, this term also includes additional GB angle terms that prevent free rotaion-
s of the GB sites about their centres. U/*"! i a torsional interaction of the
Ryckaert-Bellemans form [19], U/ is the LJ-LJ interaction and US” is the GB-GB
interaction. All of these interactions were described in Chapter 1 of this thesis. The
exception is the LJ-GB interaction Ui?‘]/GB which is based on the work of Cleaver

et al [112], who derived a generalised potential for two unlike GB particles.

Accordingly, for a rod-sphere interaction, the potential can be written as

[LIIGB 7

= 460LJ/GB [ELJ/GB(

i, ;)]

LJ/GB 12
99
X
7/GB = LJ/GB
rig — otIGB (1, 155) + 0y

S L7/GB 6
0
, =) e

ij — oG8 (0, 1) + o

The Gay-Berne potential variant used by de Miguel et al [113] was employed.
The values of the parameters are shown in Table 3.1. Here p and v are the po-
tential exponents, x is the length to breadth ratio and &’ is the well depth ratio.
Table 3.2 shows the values used for the particle diameters, well depths and spherical
potential cut-offs for the three pairwise interactions. The expansion coefficients for
the Ryckaert-Bellemans potential [19] are given in Table 1.1. The above parameter
values are the ones originally used by Wilson [102] to model dimers and recently by

McBride and Wilson [107] for the C7TGBC3 model.
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Table 3.1: Potential Parameters I: Ratios and exponents.

Parameter | GB-GB | GB-LJ | LJ-LJ
o (A) 4721 | 4.117 | 3.93
e/kp(K) | 406.51 | 171.08 | 47.0

rewr (A) | 18.884 | 16.4679 | 9.8075

Table 3.2: Potential Parameters II: Diameters, well depths and potential cut-offs.

3.3 Simulations

3.3.1 Introduction

All simulations used the parallel molecular dynamics (MD) simulation code GBMOL[23].
The bulk phases were studied in the isobaric-isothermal (N PT') ensemble using the
Andersen thermostat [29, 102] and implementing a Monte Carlo procedure to alter
the volume as described in Chapter 1. A zero pressure was maintained for all the run-
s. This is because we are seeking phases which coexist with the vapour; for the liquid
branch, the coexistence pressure will be effectively very close to zero. Due to the
attractive intermolecular forces, such zero-pressure states are indefinitely metastable
in periodic boundary conditions. The SHAKE procedure was used to fix the bond
length [114, 102, 107]. During the simulations, orientational and translational or-
dering of the Gay-Berne sites were monitored. This was done respectively through
the calculation of the orientational order parameter S, as described in Chapter 1,
the radial distribution function

g(r) = NGBP <N§:BN§:B(S I > (3.3)

i j#EL
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and its components g(r) and g(r, ), which were used to respectively monitor trans-
lational order parallel and perpendicular to the director [102]. To monitor smectic
ordering, the smectic order parameter, as described in Chapter 1, which is essentially

the structure factor

k) = <= 3 exlik- 1) 35)

S(k) = {|p(k)*) (3-4)
1

was calculated.

The liquid crystal-vapour simulations were done in the constant-NVT ensemble.
The temperature was maintained constant by using the same thermostat as before.
At the end of the simulation run, density, order parameter, director and structure

factor profiles are calculated.

Constant-NVE MD

To determine how well the parallel code GBMOL[23] conserved energy, and to de-
termine the ideal time-step, constant-NV E molecular dynamics simulations were
done. Figure 3.3 is a plot of energy fluctuations against time-step. The figure shows
that a time step of 4 fs conserves energy well. It is not quite understood why the
smallest time step produced a larger fluctuation, it is possible that the system had
not reached proper equilibrium and that different degrees of freedom were at dif-
ferent temperatures. Similar constant-NV E runs were done to determine the ideal
number of processors when the code was ported to the SGI Origin 2000. Figure 3.4
shows that four processors give a good speedup of 3.5 relative to the speed of a
single processor for the C7TGBCT system with 512 molecules. The dashed line is the
one-to-one ratio line. The closer the points are to the line, the better the speed-up
is. For larger systems the number of processors used was increased to eight. Some

of the simulations were done on a Cray T3E, where sixteen processors were used.

48



RMS Energy Fluctuation (arbitrary units)

100

10

® - - @ All Energies
'Y / m—=a Non-bonded Energy

2 4 8 16
Time Step / fs

Figure 3.3: Energy fluctuation versus time step.

49




Speed up Relative to one Processor

O L 1 L 1 L 1 L 1

0 2 4 6 8
Number of processors

Figure 3.4: Speed up of the code GBMOL on the SGI Origin 2000.

20



3.3.2 Bulk C7GBC7

The bulk C7TGBCT system consisted of 512 molecules in a cubic box with periodic
boundary conditions in the z-, y- and z-directions. Initial configurations were ob-
tained from melting a lattice under high pressure and temperature. Once a suitable
liquid had formed, the pressure was reduced to zero and the run was continued at
that temperature to check the stability of the fluid at zero pressure. The bulk phase,
at this stage, is a pseudo nematic phase. Once it was determined that a stable fluid
was obtained, the temperature was varied and the respective systems were allowed
to equilibrate.

This system showed an isotropic phase at high temperatures and a condensed
phase at low temperatures. At intermediate temperatures, a liquid crystalline phase
was observed. Figure 3.5 shows the progress of the nematic order parameter as
a function of time. As the graph shows, some of these runs are extremely long
~ 50 ns. A spontaneous growth of an ordered phase occurred at T=300K starting
from an isotropic phase as shown in Figure 3.5; at this temperature, the system
turned out to be a solid. Starting from a highly ordered phase, the fluid rapidly
became isotropic when the temperature was increased to T=385K. The progress of
the order parameter at T'=350K shows some interesting behaviour. This behaviour
would perhaps not be observable in a shorter run. Looking at the director profile
as a function of time, and at the snapshots of the configuration throughout the run,
shows a director reorientation towards one of the diagonals of the simulation box. A
snapshot of the configuration at a temperature of 7=300K is shown in Figure 3.6.
This figure also shows the orientation of the layer normal pointing along one of
the diagonals of the box. A highly ordered phase also appeared at T=350K which
turned out to be a very dense smectic. The value of S(k) = 0.587 was found at
the wave-vector k = (2,1,0). Figure 3.7 shows the full zero-pressure equation of
state of the reduced density as a function of temperature and the order parameter

as a function of temperature. The reduced density is defined as p* = pj; + pip
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x _ NpjVj * _ NaVq _m 3 _m 3
where p}; = FLELL pfp = SCEZCE and Vi; = F(ors)’ and Vg = Gr(ogp)’ are

the approximate volume of a single LJ and a single GB unit respectively. These

graphs show that as the temperature is reduced the density increases and the degree

of ordering increases. They also show a phase transition occurring as temperature

goes from T'=385K to T'=365K.
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Figure 3.5: Order parameter versus time for bulk C7TGBC7.

The system was then rotated such that the layer normal pointed along the z-
direction of the box. This was to ensure that the smectic layers could relax. This
was done by making multiple copies of the box then rotating the large system to
desired directions. A box of about the same size as the original was placed around
the centre and the excess molecules were removed. This generated a box containing
516 molecules with the layer normal pointing along the z-axis of the box. The
temperature was then increased slightly to T=365K and T'=375K. The system was
equilibrated at each temperature for 6-8 ns allowing the box dimensions to vary
independently. At T=375K the fluid became isotropic. Figure 3.8 shows the pair

distribution function and its components parallel and perpendicular to the director
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Figure 3.6: A snapshot of the unrotated configuration for bulk CTGBC7 at T=300K.
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Figure 3.7: The zero-pressure equation of state for bulk C7TGBC7: (a) Density versus
temperature and (b) Order parameter versus temperature.
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Compound Phase Sequence

Cyclohexane derivative Crystal 347K smectic-B 522K isotropic [110]
Triphenyl derivative Crystal 454K smectic-B 480K isotropic [111]

Table 3.3: Transition temperatures of the benzene and cyclohexane derivatives.

for T=365K. The oscillations in g(r) indicate weak smectic ordering as the g (r)
does not go to zero. The type of smectic phase case also be determined from the plot
of g, (r) which shows the formation of a smectic-B phase at this temperature. This
is characterised by the double peak in ¢, (r) caused by hexagonal packing within the
layers [107]. To study this smectic phase further, the system size was doubled in the
z-direction to a total of 1032 molecules. The system was then allowed to equilibrate
for 6 ns. Figure 3.9 is a snapshot of the smectic system showing the fluid forming
a smectic phase at T=365K, from this snapshot, the degree of ordering and the
orientation of the director and the layer normal are apparent. The structure factor
and smectic order parameter were calculated. The value of S(k) = 0.363 was found
at the wave-vector k = (0,0,4). This value of S(k) shows a moderate degree of
smectic order; the k vector indicates that the direction of the layer normal is along
the z-axis and that there are 4 layers as shown in Figure 3.9, where the bottom-most
layer is actually part of the topmost layer, since the system has periodic boundary
conditions. A transition to a solid phase is also observed when the temperature is
lowered further.

The C7TGBCT model forms a smectic-B phase in agreement with the experimental
results of Billard et al [110] in their study of the phase behaviour of 1,4-bis(4'-heptyl-
cyclohexyl)-cyclohexane. Comparing the transition temperatures of the CTGBC7
with experimental results shown in Table 3.3. It is observed that the isotropic to
smectic-B transition occurs at a much lower temperature (between 365K and 385K)
than the experimental finding which is much closer to 500K. The smectic-B to crystal
transition (between 300K and 350K) is closer to the experimental findings of the

cyclohexane derivatives.
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Figure 3.9: A snapshot of the configuration for bulk C7TGBC7 at T'=365K.
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3.3.3 Liquid-vapour Film of C7TGBC7

A film was set up by taking the large N = 1032-molecule, bulk smectic system at
T=365K and adding two boxes of vapour at each end giving a box dimension of
1 x 1 x 4 relative to the original cubic box. The new box contained 1048 molecules.
MD simulations were done in the constant-NVT ensemble for a total of 4-7 ns at
various temperatures. Setting the temperature at T=365K or higher caused the film
to become isotropic. Signs of a stable film were seen at a temperature of T=350K.
Density, order parameter and director profiles were calculated along the long axis
of the box. Figure 3.10(a) shows the density profiles. The GB density profile shows
three distinct peaks corresponding to three smectic layers. The LJ density profile -
on the other hand - has four peaks. This is expected as the LJ chains are mostly in
between the layers of the GB units. This behaviour can be easily seen in a snapshot of
the configuration as shown in Figure 3.11. The order parameter profile - represented
by the largest eigenvalue - is shown in Figure 3.10(b), the figure also shows the
profiles of the other two eigenvalues. The high layer ordering is also visible here in
the form of three peaks in the order whose positions coincide with the positions of the
three peaks in the GB density profile. Figure 3.10(c) shows the director profile along
the box. Here the profiles show that the molecules within the layers are oriented
along the layer normal. The order parameter profiles indicate that the interlayer
molecules are preferentially aligned in the zy-plane (the eigenvalue pattern has two
‘high’ values and one ‘low’ one); the small number of molecules between the layers
makes it impossible to conclude whether there is a preferred direction within this
plane. From the profiles and the snapshot of the configuration, the liquid-vapour
interfacial region is totally disordered i.e. in the isotropic phase, so a kind of surface
‘melting’ of the smectic happens. This kind of disorder at the interface was also
observed by Martin del Rio et al [115] who simulated the liquid-vapour interface of
liquid crystals using the GB model. Their anisotropy parameters were x = 3 and

k' = 5. These are the choice of parameters used in this study.
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Figure 3.10: (a) The density profile, (b) the nematic order parameter profile (where
Sy, Sy and S_ are the largest, middle and lowest eigenvalues respectively) (c¢) The
director profile (where n is the eigenvector corresponding to the largest eigenvalue)

for a smectic film at T=350K.
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Figure 3.11: A snapshot of the configuration for the smectic film at T=350K.

3.3.4 Bulk C7TGBC7/C7GB Mixture

In an attempt to achieve a nematic phase, a mixed system was created. This mixture
consisted of two types of molecules: the original CTGBC7 molecule and a shorter,
single-tailed molecule C7GB. The new molecule was created by removing one of the
flexible tails of the original molecule. A molecule was chosen at random and one of
its chains was removed. The process was repeated until 25% of the molecules were
of the C7GB form. This was applied to the newly equilibrated smectic phase at
T=365K consisting of 516 molecules.

The system was equilibrated at T=365K and an isotropic phase was observed.
The temperature was then lowered further until a stable liquid crystalline phase was
observed. Figure 3.12 shows the progress of the order parameter as a function of
time from the initially ordered starting configuration for different temperatures. The
figure shows that the system disordered very rapidly at temperatures of T=350K
and above. High ordering was observed from the value of the nematic order pa-
rameter (S ~ 0.78) at T=325K. The equilibration for this system took ~ 30 ns.
Figure 3.13(a) shows the zero-pressure reduced density as a function of temperature
and Figure 3.13(b) shows the order parameter versus temperature. As with the re-
sults for bulk C7TGBC7, these show an increase in density and degree of ordering as

the temperature is reduced. This also shows that a phase transition occurs when the

29



temperature goes from T=350K to T'=325K. A plot of the pair distribution function
and its components is shown in Figure 3.14 for 7=325K. The oscillations in g(r)
are very shallow. The smectic order parameter at this temperature was found to
be S(k) = 0.085, this value suggests that there is no smectic ordering and that a
very highly ordered nematic had formed. Figure 3.15 shows a snapshot of the mixed
system at a temperature of 7'=325K showing a highly ordered phase and Figure 3.16
is a snapshot of the same system at a higher temperature of T=350K. The latter
snapshot shows the system in the isotropic phase. The GB units of the two species
are colour coded to distinguish them from each other. The blue coloured molecules
are C7TGBCT while the red coloured are C7GB. The dense phase at a temperature
of T=300K is thought to be a solid.
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Figure 3.12: Order parameter versus time for the mixture.

3.3.5 Liquid-vapour film for the C7TGBC7/C7GB mixture

To set up the liquid-vapour system, a simulation box of the CTGBC7/C7GB mixture

containing 516 molecules was duplicated to form a 2 x 1 x 2 film. Two boxes of
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Figure 3.13: The zero-pressure equation of state for the mixture CTGBC7/C7GB:

(a) Density versus temperature and (b) Order parameter versus temperature.
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Figure 3.14: The pair distribution function for bulk C7TGBC7/C7GB Mixture at
T'=325K.

Figure 3.15: A snapshot of the configuration for the mixed bulk at T=325K.
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Figure 3.16: A snapshot of the configuration for the mixed bulk at T=350K.

vapour were added to the two ends to form a 2 x 1 x 4 simulation box with a total
of 2104 molecules. The box dimensions were, in units of ogp, 24.47 X 16.20 X 65.33.
Initially, the system was set such that the the director was aligned normal to the
interface. In this case the molecules at the interface very rapidly reoriented to a
direction planar to the interface and finally disordered. This is in contrast to the
C7GBCT7 system which maintained a normal orientation relative to the interface. A
planar orientation of the molecules at the interface was then setup. After running
for about 4 ns, the film rapidly became isotropic. It is thought that this occurred
when the interfaces became disordered, this left a very thin layer of ordered phase
in the centre that rapidly disordered. The disorder in this case occurred at a slower
rate than that of the normal orientation at the interface. It was concluded that a
planar orientation was more likely the preferred orientation.

To overcome this problem, the system size was increased to form a simulation

box of 2 x 1 x 6 of the original box, which is 24.47 x 16.20 x 98.00 in units of ogp. A
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planar orientation at the interface was maintained. The total number of molecules
in this case was 4168 giving a total number of 55100 particles. Due to the size of
the system, these simulations progressed very slowly. To give an idea of the time
scale, the system took just over 100 days of continuous running on four parallel
processors to do 370000 steps corresponding to a real time of 1.5 ns. The system
was also restricted by the amount of computer memory available to the program:
since GBMOL is a replicated data code, the memory requirement increases as the
number of processors used is increased. For a system this size, using four processors
required 1 GB of memory, which was the total amount available on the SGI Origin
2000. Using eight processors would require twice as much memory, and this proved
to be impossible. Consequently, an exhaustive study of this system was judged to
be beyond reach at present, and the results reported here are just indicative.
Molecular dynamics simulations in the constant-NVT' ensemble were used to
equilibrate the system at T'=325K. The total lengths of the runs took 1.5 ns of
which the last 0.8 ns were used to calculate the density, order parameter, director
and structure factor profiles. Figure 3.17 shows the density profiles across the long
axis of the box. Figure 3.17 (a) shows the overall density profile of the fluid and
the profiles of the two types of molecules. The LJ units density profiles are shown
in Figure 3.17 (b) and the GB units density profiles in Figure 3.17 (c¢). The density
profiles show a sharp interface. The figure also shows an oscillation of the density
profiles of the two molecules. These oscillations are out of phase with each other
indicating a possible phase separation. However it turns out that the situation is
complicated by the fact that the layer normal is perpendicular to the interfaces.
Figure 3.18(a) shows the order parameter profiles measured from the orientation
of GB units. This figure also shows that there is a higher ordering of the CTGBC7
molecules over the C7GB molecules as expected. Similar effects have been seen by
Bemrose et al [116] in their simulations of GB mixtures. Figure 3.18(b) shows the
director profile across the box expressed through the two angles # and ¢. This shows

that the director is pointing along the x-axis throughout the film, the exception
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Figure 3.17: Density profiles: (a) Full densities for both types, (b) the density of
the LJ units and (c) the density of the GB units.
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being the interfacial region where the system is disordered - as shown from the
order parameter profile. The structure factor profile is shown in Figure 3.18(c).
These are the maximum values obtained by varying the wavevector k. In this case
Kinax = (4,0,0) throughout the system, away from the interfaces. The profile shows
three distinct peaks away from the interfaces: these occur at the same position along
the box axis as the three peaks in the order parameter. They also coincide with the
positions of the three peaks in the density profile for the CTGBCT7 molecules. This
is a strong indication that this molecule is forming distinct smectic domains within
the film. Looking at a snapshot of the system as depicted in Figure 3.19, the system
does show some evidence of this. This is even clearer when looking at snapshots of
the GB units of each type independently as in Figure 3.20. The top figure shows
the CTGBCT type of GB units coloured in blue. This figure clearly shows smectic
ordering forming in the centre between the two interfaces. The bottom figure shows
the C7GB kind of GB units coloured in red. The snapshot shows some demixing
with the separation into areas of high and low density of molecules along the box.
Three high-density regions can be seen which correspond to the three peaks clearly
visible in the GB density profile. The longer molecules have a slight preference
for the ordered smectic domains, while the shorter C7GB molecules slightly prefer
the disordered regions in between the domains. The interfacial region is highly
disordered. This is evident in the order parameter profile shown in Figure 3.18(a).
Figure 3.18(c) shows two peaks at the interfaces, this is due to a few molecules at

the surface layer.

3.4 Summary

The original aim was to locate a stable nematic phase at low pressure, using a
flexible molecule model (C7TGBCT), or a mixture of species of different lengths
(C7TGBC7/C7GB) in the eventual hope of studying the nematic-vapour interface.

In the event, neither system showed evidence of a nematic phase at zero pressure
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Figure 3.19: A snapshot of the configuration for the mixed film.
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Figure 3.20: Two snapshots of the configuration for the mixed film showing the GB
units of the two molecules separately. Blue: C7TGBC7 and Red: C7GB.
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(although the situation was not immediately clear for the mixture) and the study
was restricted to examining the structure of smectic-vapour films. The interfacial
region was found to be orientationally disordered in both cases. The disorder at
the interfaces is similar to the findings of Martin del Rio et al [115] for the GB
parameterisation used in this study. In the case of CTGBC7, smectic layers parallel
to the interface seemed to be stable. In the case of the mixtures, the layers were
rotated to become perpendicular to the interface, substantial disordered regions be-
tween smectic domains were observed. A small amount of segregation of the two
species was seen in this case, the longer molecules preferring the ordered regions,
the shorter molecules the disordered ones. Limitations of computer time restricted
what could be achieved in this study, but further progress could be made using a
domain decomposition version of the code currently under development [117].
Future work could include investigating various ways to obtain a stable nematic,
these would include the use of shorter flexible tails as done by La Penna et al [105]

or varying the energy anisotropy parameter as done by Martin del Rio et al [64].
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Chapter 4

Isotropic-Nematic Interface

4.1 Introduction

In 1949, Onsager demonstrated that a system of long rigid rod-like molecules inter-
acting with each other through steric excluded-volume interactions exhibits a first
order isotropic to nematic phase transition at sufficiently high density [71]. When
the nematic and isotropic phases coexist, the interface breaks both translational
and orientational symmetry. Though the bulk free energy of the nematic phase is
independent of the director n, the surface tension does depend on . The system
will adopt the orientation for which the surface tension is minimized [82].

There are very few investigations using simulations to try and understand the
behavior of the isotropic-nematic (I-N) interface. This is because of the weak nature
of the phase transition, and thus the dominant role of fluctuations on the interfacial
properties has discouraged simulations of the I-N interface for models with dimen-
sions appropriate to thermotropic liquid crystals.

The purpose of the current work is to study the isotropic-nematic interface and
to make a quantitative comparison of both experiments and theory with computer

simulation.
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4.2 The Model

4.2.1 Model Details

The objective is to simulate a fluid of purely repulsive spherocylinders. This is a
model that is similar to the hard spherocylinder model but more suitable for use
with molecular dynamics simulation. The phase behavior of hard spherocylinders is
well known theoretically - see for example the work of McGrother et al [118] - and
through simulation and Gibbs-Duhem integration - see Bolhuis and Frenkel [119].
To achieve this objective, a soft spherocylinder model interacting via the Kihara
potential was used. The Kihara potential is described in section 1.2.2.

The length to diameter ratios used in this work were L/D = 20 and L/D = 50
where L the length of the cylinder and D is the spherocylinder diameter set to
1.0. The segment-segment cutoff was sq; = 2'/% and the center-center cutoff was
Tewt = L 4 Seyr- The motivation for studying such elongated particles is that the
Onsager theory makes certain predictions for the interfacial structure and properties

that are expected to be valid in the limit L/D — oo.

4.2.2 Reduced units

The reduced temperature is given as T* = kpT /ey, reduced energy as U* = U/ey
and pressure as P* = Puvy/kgT, where v, is the volume of a spherocylinder. The
positions and box dimension are scaled by the spherocylinder diameter: z* = z/D.
All densities are expressed as the reduced density p* = p/p., where p = N/V, the
number density, and p., is the closed packed density of spherocylinders given as p., =
m with L/D being the length to diameter ratio of the spherocylinder. All
units will be expressed as reduced units unless otherwise stated. The spherocylinder
can be thought of as a dumbbell which is a long massless rod with a point mass m/2
1

at each end. The moment of inertia of such an object is I = 2(3m)(3L)? = tmL>.

This distribution of the mass of the spherocylinder away from the center mimics a
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more realistic slowly rotating spherocylinder than, for example, arbitrarily setting
I = mD?. Setting the mass of the spherocylinder as the unit of mass m = 1, the
moment of inertia for a spherocylinder of length L = 20 will then be I = 100 and a
spherocylinder of length L = 50 will have a moment of inertia of I = 625.

4.3 Simulation

4.3.1 Bulk Coexistence

To simulate isotropic-nematic bulk coexistence, GEMC simulations - as described
in section 1.4.2 - were used. The initial configuration for the L/D = 20 system
consisted of two, almost cubic (~ 50 x 50 x 50), fully periodic boxes. One box
contained a spherocylinder fluid in the isotropic phase, the other in the nematic
phase. Each box contained ~ 1200 spherocylinders. For the L/D = 50 system, the
initial configuration consisted of two, almost cubic (~ 103 x 103 x 103), fully periodic
boxes. Each box contained ~ 1800 spherocylinders. The overall combined densities
of the two systems lie within their respective two-phase regions. As a guiding point
for the initial densities, the coexisting densities observed by Bolhuis and Frenkel
[119] for different length-to-breadth ratios of hard spherocylinders were used. Their
results proved to be good starting points to find the coexisting densities for soft
spherocylinders.

An equilibration period of 4.0 — 6 x 10* sweeps was carried out at a reduced
temperature of 7* = 1.0. The number of particles exchanged between the two boxes
was set to 10* particles attempted per sweep. Figure 4.1 shows the progress of the
density and order parameter from an initial density p* = 0.16. The figure shows a

rapid separation of the densities to the coexistence densities of the two phases.
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Figure 4.1: Density and order parameter as a function of MC sweeps for L/D = 20.
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P 0.130 | 0.145 | 0.150 | 0.155 | 0.160 | 0.164 | 0.167
Phase I I I N-I N-I N-I N

Table 4.1: Observed Phases for different initial densities for L/D = 20.

p* 0.065 | 0.067 | 0.069 | 0.071 | 0.073

Phase I N-I N-I N-I N-I

Table 4.2: Observed Phases for different initial densities for L/D = 50.

Coexistence Results

Results show that soft-spherocylinders nematic and isotropic bulk phases coexist
and are stable over a large period of time. Figure 4.2 shows the density and or-
der parameter histograms. The histograms show the number of molecules at each
density and order parameter. These distributions are quite narrow relative to their
separation, reflecting the first-order character of the transition. Table 4.1 shows
the observed phases for different starting overall densities of the two boxes for the
L/D = 20 system and Table 4.2 shows the observed phases for the L/D = 50 system.
An overall density p* = 0.16 is well within the coexistence region for L/D = 20, and
p* = 0.071 similarly for L/D = 50.

Figure 4.3 shows the final configuration of the two coexisting bulk phases for
L/D = 20. The molecules are colour coded according to orientation, such that all
molecules aligned in the same direction have the same colour. The bulk on the left is
in the nematic phase and the one on the right is in the isotropic phase. The nematic

phase director is pointing towards the top of the page.

4.3.2 Overlaps in Interfacial Region

To model the isotropic-nematic interface the phases have to be in spatial contact

with each other. This was done by combining the two boxes containing the bulk
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Figure 4.2: Coexistence density and order parameter probablity distributions for
the L/ D = 20 system with p* = 0.16. p* and S are the same as before. The vertical

scales are such that the distributions are normalized.
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Figure 4.3: The nematic and the isotropic bulk phases of the L/D = 20 system.

nematic and bulk isotropic phases to form a nematic film surrounded by an isotropic
fluid on both sides. Three ‘copies’ each of the two boxes were made. This gave a
total of four boxes of each phase. The four nematic boxes were put together in the
middle, while two isotropic boxes went on each end forming a 1 x 1 X 8 simulation
box relative to the original boxes. The new boxes are quite large, they are roughly
of the order of ~ 2 x 2 x 20 molecular lengths for both the L/D = 20 and L/D = 50
systems. This is to ensure that there is enough of the fluid to maintain stable
phases and to allow the interfaces to be well separated. For reasons of economy, in
this study the transverse box dimensions were set close to the minimum required
to avoid the possibility of a particle overlapping with two periodic images of a
neighbour - ideally these dimensions should be larger. These new boxes are fully
periodic and have a combined number of particles of N = 9600 and N = 14400 for
the L/D = 20 and the L/D = 50 cases respectively. For the L/D = 20 system, two
distinguishable anchoring orientations of the nematic director with respect to the
interface were set up. The first had the nematic director parallel to the interface:

planar anchoring. The second had the nematic director normal to the interface:
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homeotropic anchoring. In the case of the L/D = 50 system, the anchoring was
set up to be planar as it was already established from the results of the L/D = 20
that planar anchoring was the preferred anchoring orientation (without an applied
constraint or field, the director would spontaneously rotate away from the normal
direction, towards an in-plane direction).

When combining the two phases as just described, molecular overlaps occur at
the interfaces. To get rid of these overlaps, Monte Carlo simulations in the constant-
NV'T ensemble were used. NVT-MC was discussed in section 1.4. Equilibration
runs of ~ 10% MC sweeps were done at temperature 7* = 1.0 and constant volume
to eliminate overlapping molecules at the interfaces. The total energy and pressure
of each system was calculated at 10-sweep intervals throughout the run. Figure 4.4
shows the progress of energy and pressure as a function of MC sweeps for L/ D = 20.
The decrease in energy and pressure occurs as the overlaps are removed by trans-
lating molecules or by rotating them. This process was repeated until no overlaps

existed.

4.3.3 Parallel Molecular Dynamics

To study the progress of the isotropic-nematic interface with time and to be able
to compare with real experiments, Molecular Dynamics (MD) simulation was used.
Due to the size of the system, time restrictions and available computer power, par-
allel MD methods were preferred. The parallel code GBMEGA [22] was modified to
include the Kihara potential and the calculation of the corresponding forces. Con-
stant energy molecular dynamics (Constant-NV E MD) runs were done to deter-
mine a time-step that would conserve energy to an acceptable error. A time-step of
0t = 0.01 was found to give reasonable energy conservation with the fluctuation in
the energy calculation being ~ O(1073), this is an acceptable value. This time-step
is in agreement with Grest and Kremer [15] for the bead-spring model that uses a

similar type of repulsive Lennard-Jones potential as the Kihara potential.
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Figure 4.4: Progress of Energy and pressure during removal of overlaps for the two

anchoring orientations for L/D = 20.
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Equilibration and production runs were done at a constant temperature and
constant volume (constant-NVT'). The constant temperature was maintained using
the ad hoc rescaling method described in section 1.3.2. The reduced temperature
was set to T* = 1.0 and the rescaling of the velocities was done at each time-step. For
the L/D = 20 case, the system with the nematic director parallel to the interface,
an equilibration period of 1.2 x 106 MD steps was done followed by a production
period of 1.5 x 10° steps during which configurations were dumped every 500 time
steps for later analysis of interfacial properties. The system with the director normal
to the interface took 1.3 x 10° equilibration steps and 1.4 x 10° production steps.
During the run, the system with the nematic director normal to the interface began
to rotate towards a planar orientation. A director constraint method was applied
to maintain the director normal to the interface. This constraint method was used
by Allen et al [120] and is incorporated as part of the parallel code GBMEGA. For
the L/D = 50 case, an equilibration period of 1.4 x 10® MD steps was done with a
production period of 1.7 x 10% steps. Slightly longer equilibration and production
times were needed for the longer spherocylinders which rotated much more slowly
than their shorter counterparts, this was because of their larger moment of inertia.
The code was run on a Cray T3E using n, = 32 processors in the configuration of

2 x 2 x 8. This was found to give reasonable speed-up times on the Cray T3E.

4.4 Results

Density profiles p*(z*) taken along the z-axis of the box were calculated for the two
systems. These profiles are averages over the whole production run of each system
and director angle. Figure 4.5 shows the density and order parameter profiles for
the L/D = 20 system with the nematic director parallel to the interface. Figure 4.6
shows the profiles when the nematic director is normal to the interface. These
figures show well defined phases in both cases with very stable interfaces. The

homeotropically oriented system has a much wider interface than the planar case
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as expected. Figure 4.7 shows the profiles for the L/D = 50 system. The nematic
director for this case is parallel to the interface. These profiles also show a stable

and well defined interface.
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z

Figure 4.5: (a) Density profile and (b) Order parameter profile of the L/D = 20

system with nematic director parallel to the interface.

4.4.1 Surface Tension Calculations

The surface tension was calculated using the well-known expression:
7= [(PA(=) - Pi=") a2 (4.

80



3.8

3.4

3.2

0.8

(b)
0.6 -

w04 -

0.2 +

0 100 200 300 400
4

Figure 4.6: (a) Density profile and (b) Order parameter profile of the L/D = 20

system with nematic director normal to the interface.
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Figure 4.7: (a) Density profile and (b) Order parameter profile of the L/D = 50

system with nematic director parallel to the interface.
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where Py (z*) and Pj(z*) are the normal and transverse reduced pressure respec-
tively with z* being the axis normal to the interface [121]. The measured reduced
surface tension for both spherocylinder lengths was of the order of O(10™*) while
the error in our measurement was of the order of O(1072). Due to the size of the
error in the calculation of the surface tension in comparison to the measured value,
it is concluded that no accurate estimation of the surface tension is possible for the
current simulations.

Figure 4.8 and Figure 4.9 show the final configuration of the two L/D = 20
systems. These are colour coded such that all molecules aligned in the same direction
have the same colour. Figure 4.10 shows the final configuration of the L/D = 50

system.

4.4.2 Fitting the Interface

To determine the position and width of each profile, the profiles were fitted to a

hyperbolic tangent function of the following form:

S(z*) = SN ; Sr + (SN 2_ SI) tanh (%) (4.2)

where Sy and S are the nematic and isotropic second-rank order parameter respec-
tively, ¢ is the thickness of the interface and z* is the position in the simulation box
in units of D the spherocylinder diameter.

Keeping in mind that the interface might move during the simulation, each entire
run was split up into 10 sub-runs. Since the film had two interfaces, each interface
was treated independently. Each sub-run was fitted independently to the hyperbolic
tangent function and then shifted so that the center of the interface is at the origin.
Finally, an average of all the sub-runs and sides was done. Figure 4.11 shows the
fitting of the order parameter profiles of the two cases for L/ D = 20 to a hyperbolic
tangent. The density profiles were shifted by the same amount as their corresponding
order parameter profiles. The order parameter profile for the L/D = 50 case was

also fitted to a hyperbolic tangent function as is shown in Figure 4.12. The widths of
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Figure 4.8: Snapshot of the configuration of the L/D = 20 system with the director

parallel to the interfaces.
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Figure 4.9: Snapshot of the configuration of the L/D = 20 system with the director

normal to the interfaces.
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Figure 4.10: Snapshot of the configuration of the L /D = 50 system with the director

parallel to the interfaces.
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the interfaces were determined from the fitting and are presented in Table 4.3. The
interfacial thickness d of both profiles are of the order of half a spherocylinder length
(6 ~ 3L) to within a certain error which arises from the fitting. This is in agreement
with the work of Chen and Noolandi [78]. The width of the interface varies with
the director angle in agreement with the findings of Allen [84] in his study of the
isotropic-nematic interface of hard ellipsoids of revolution. The shift in position
between the interfaces was found to be of the order of a third of spherocylinder
length (A ~ 1L) also in agreement with the findings of Allen [84].

It is interesting to note that the coexisting nematic and isotropic densities for
L/D = 20 are slightly higher for the case with the director in the interface plane
than for the normal orientation. In the thermodynamic limit, we would expect these
values to be the same. It is speculated that this small difference is a finite system
size effect, which arises from the small transverse box direction: the free energy of
the nematic phase may be different when the molecules mainly point across the box
and this shifts the transition.

An interesting observation is that the density profile for all these cases was found
to vary monotonically with z. This is in contrast to the Onsager theory predictions
of Koch and Harlen [81], which were expected to be valid in the limit L/D — oo.
It remains to be seen whether this effect will appear for even larger elongation than

L/D =50, or if there is some other explanation of the discrepancy.

4.4.3 Biaxiality Calculation

The biaxiality order parameter was calculated from the eigenvalues obtained from

diagonalising the order tensor Q as written by Cui et al [80]:

—3(a+59) 0
UQU™ = 0 Ha=S) 0 (4.3)
0 0 S
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Figure 4.11: Fitting of the profiles to a tanh function for L/ D = 20. Density profiles
for: (a) Normal director and (b) In-plane director. Order parameter profiles for: (c)
Normal director and (d) In-plane director. The solid lines are the actual profiles

and the dashed lines are the fits.
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Figure 4.12: Fitting of the profiles to a tanh function for L/D = 50 with director in
the interface plane. (a) Density profile and (b) Order parameter profile. The solid

lines are the actual profiles and the dashed lines are the fits.
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Director orientation SN St ds/D
Planar(L/D = 20) | 0.78 £ 0.04 | 0.04 = 0.04 10+ 1
Normal(L/D =20) | 0.77 £0.04 | 0.04 £ 0.04 14+2
Planar(L/D = 50) | 0.81+0.08 | 0.06 £ 0.08 | 20+ 2

Director orientation | py/(L*D) | p;/(L*D) | 6,/D | A/D
Planar(L/D=20) | 40+04 | 34404 |11+1| 8
Normal(L/D =20) | 38+04 | 33+04 | 9+1 | 6
Planar(L/D = 50) | 4.6+04 | 37404 |20+£2]| 18

Table 4.3: Results of the fitting to a tanh function. Here Sy and S; are the nematic
and isotropic order parameters respectively, py and p; are the nematic and isotropic
densities respectively and dg and 0, are the widths of the interface from the order
parameter and density profiles respectively, and A is the shift in position between

the two profiles.

where S is the nematic order parameter and « is the biaxiality order parameter
defined in Chapter 2. The biaxiality order parameter profiles of both spherocylinder
lengths were computed and the results are shown in Figure 4.13. This shows a
significant effect for both planar anchoring cases in comparison to what was observed
by Chen [79] and Cui et al [80]. However, the errors in these calculation are also
quite significant. The nonzero value in the isotropic phase would disappear in the
thermodynamic limit: it results from the finite number of molecules averaged over
in each bin. Because the variation in « near the interface is no larger than this

effect, we cannot conclude very much from the « profile.

4.5 Summary

A detailed simulation study of the isotropic-nematic coexistence and the interface re-

gion of a system of elongated soft spherocylinders was done. The coexisting densities
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Figure 4.13: Biaxial order parameter profiles (a) L/D = 50 with director in interface
plane, (b) L/D = 20 with director normal to interface and (c¢) L/D = 20 with

director in interface plane.
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of the two phases were found for spherocylinders of length-to-width ratio L/D = 20
and L/D = 50. The two phases were then combined to form a nematic film sur-
rounded by isotropic liquid. Interfaces were allowed to form where the two phases
came into contact. It was observed that the molecules preferred an orientation that
was parallel to the interface -planar anchoring - in agreement with experimental re-
sults for MBBA [68]. This is also in agreement with theoretical results [78, 81] and
other simulation results [83, 85, 84]. The interfacial profiles fitted well to a hyperbol-
ic tangent function. The interface width was found to be of the order of %L. This is
what was observed in the Onsager approach of Chen et al [78]. The interfacial width
was found to vary with director orientation as found by Allen [84]. The positions of
the orientational order interface and the density interface are shifted with respect
to each other by about one third a molecular length, again as predicted by theory.
No oscillations in the density profile as found by Koch and Harlen [81] for long hard
spherocylinders were observed. A significant biaxiality effect was observed for the
L/D = 50 case and is comparable to that found by Cui et al [80] for semiflexible
polymers and by Chen [79] for rigid rods. A rather small biaxial effect was observed
for the shorter spherocylinders in comparison to the theoretical findings, this was
also observed by Allen [84] and for these rods the effect is comparable in magnitude
to the artificial biaxiality seen in the isotropic phase. Surface tension measurements
were done on both spherocylinder lengths, but due to the magnitude of the error,
the measurements were found to be unreliable. Due to the size of the system, the
thickness of the isotropic-nematic interface was of the order of the bulk correlation
lengths. This prevented the observation of certain phenomena like capilary waves

and wetting which are associated with larger length scales [37].
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Chapter 5

Bistability in Nematics

5.1 Introduction

Bistable nematic liquid crystal devices offer obvious advantages for display address-
ing. An applied constant voltage would no longer be needed to maintain a single
state. It would only be needed in switching between the two stable states. This
would prolong the life of the liquid crystal display and conserve the power source
needed to drive the display. Current experimental approaches for producing bistabil-
ity in nematic systems include the use of fabricated gratings [100]. One well-known
technique used to orient the nematic liquid crystal is based on SiO evaporation
on glass substrates [122]. Another technique is based on constructing periodic mi-
crometric surface structures (bigrating made with photosensitive materials) [123].
Gratings create bistability by imposing boundary conditions on the nematic which
give rise to some bulk distortions. Simple elastic models proposed to connect such
surface geometry with the anisotropic part of the anchoring energy are just an ex-
tension of the Berreman-de Gennes model [2, 92, 124] in which the nematic liquid
crystal energy density reduces to the Frank elastic energy density. To be of use for
a display, the director configurations for the bistable states must produce signifi-

cantly different optical effects. To optimise both bistability and optical behaviour
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as a function of grating shape and to better understand switching between bistable
states under the influence of an applied field, a modelling scheme which can ad-
dress practical gratings profiles and incorporate an electric and/or magnetic field
interaction is desirable.

Studies concerning the bistability of nematic samples oriented by periodic saw-
toothed surfaces - also known as triangular gratings - have been done [123]. The
same model was used to measure the azimuthal anchoring energy on sinusoidal
holographic unidimensional and bidimensional gratings [125]. Newton and Spiller
[100, 101] have investigated bistability using the Gruhn and Hess two dimension-
al model. The surfaces they used were triangular gratings of different triangular
heights and symmetry and they also used real scanning electron micrograph pro-
files. They observed bistability in both cases for the one-constant approximation,
i.e. K1 = Ky = K3 where K, Ky and K3 are the Frank elastic constants described
in Section 1.1.

To study bistability of more realistic systems, the Gruhn and Hess model was
extended to three dimensions and a bigrating (a sinusoidal grating in two directions)
was imposed. Monte Carlo simulations were used with iterative annealing techniques
to achieve an equilibrated low-energy state. We follow the Gruhn and Hess approach
in this chapter. Details of the model are shown in Section 5.2. The details of the
numerical technique are shown in Section 5.3. Section 5.4 presents and discusses
the results of the simulation and Section 5.5 gives a summary of the results and a

comparison with other related work.

5.2 The Model

5.2.1 Introduction

The model used here is a lattice model - see Section 1.2 of this thesis - due to Gruhn

and Hess [20]. Like the Lebwohl-Lasher model [7], Gruhn and Hess have split up
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the liquid crystal into cubic cells of size ¢ x ¢ x . Each cell was assumed to have
a local preferred orientation which was described by a local director at the centre
of the cell. The whole system then formed a director field on a lattice. This form
of coarse graining is shown in Figure 5.1. The equilibrium state of the orientation
field is characterised by the minimum of the Frank free energy [4]. Gruhn and Hess
[20] have used Monte Carlo simulations to generate an equilibrium director field of
a nematic liquid crystal in two dimensions. They used a tensorial description of
the director to properly describe the symmetry of the nematic where n = —n. An
advantage of this model over the Lebwohl-Lasher model is that it allows for the

treatment of energy expressions with three elastic coefficients.

== I

Figure 5.1: Coarse graining of a liquid crystal fluid to a lattice

Hobdell and Windle [126] have used a similar approach in modelling defects in
nematic liquid crystals. They described the nematic director field as a vector where
n # —n. To overcome this shortcoming, they introduced a vector flipping method
where a vector is flipped through 1807 if the angle between it and another vector is
greater than 90°. The approach gives a discontinuity in the gradient of the energy
function whenever neighbours are at an angle normal to each other. They have
accepted this as it will only happen at disclination cores where low angle elasticity

is applicable [126]. This might not be the case near surfaces that are not flat.

5.2.2 Model details

In general, the orientation distribution of uniaxial molecules can be described by

the second rank alignment tensor
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15,
Qpv = 3<“uuu>

where u is a unit vector parallel to the molecules’ principal axis and the brackets
( ) indicate an average. The Greek subscripts refer to Cartesian components, for
which the summation convention is used, and E’ denotes the symmetric-traceless
part of tensor b. We assume a uniaxial orientation of the molecules distributed

symmetrically around a director n(r). Hence, the alignment tensor becomes

3 >
Ay = 5@ NyMy .

Here a = /55, with S = (Py(uun,)) = (2 cos?(f) — 3); the usual Maier-Saupe
nematic order parameter. S characterizes the degree of alignment: in the isotropic
phase, the distribution of the long molecular axis is random, hence (cos?(9)) = 5 and
S = 0. In a perfectly aligned nematic phase, S = 1 since (cos?(#)) = 1. Assuming
S to be constant for the whole system, all that is needed to describe the orientation
of the liquid crystal is nn (r).

To describe the behaviour of the director field and the interaction between the
director a discretized form of the Frank free energy was used. The Frank free energy

equation is [4]:

fu = % [K1(V - n)* + Ky(n - (V x m))* + Ka(n x (V x n))?]. (5.1)

This equation can be rewritten in a tensorial form. The various quantities in

Equation (5.1) can be expressed as follows [1]:

V-n = V,ny
(mx (Vxn))? = (Vxn)>—(n:(Vxn))?
= manu(Vany)(Vyuny)
(V-n)’+(Vxn)* = (V-n)’+(1n-(Vxn))’+ (nx(Vxn))’
= (Van,)(Vany)
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Inserting these expressions in Equation (5.1) gives

Ja = [K2(V>\”u)2 + (K1 — K)((Vana)(Vun,)

1
2
+ (K5 — K)(nan,)(Van,) (V)] (5.2)

This is algebraically equivalent to Equation (5.1) with the exception of surface
terms that have been disregarded.

In Equation (5.2) the director can be written in the form of a dyad nn, giving

the following form:

171
fa = 5 §K2(v/\nunu)2

+(Ky — K3)(Vanan,)(Vynun,)

4 L0y = K0 ) (V) (s, ). 53

Here Van,n, = Vy(n,n,). Equation (5.2) can be recovered by splitting the
dyad.
The influence of an orienting external field is described by fheq. For a magnetic

field B it is [1]:
L _
fﬁeld = _§M0 IXa(nuBu)2 (54)

where i is the vacuum magnetic susceptibility and x, = S(x|| — x1), where ¥
and x are the relative magnetic susceptibilities, parallel and perpendicular to the

director of a perfectly aligned nematic liquid crystal.

Discretisation

The symmetrical discretisation of the gradient of a function g(x) has the form

29 gle+ )~ gle—1)
oxr 20

while the asymmetric discretisation has the form:

dg _ glz+0) — ()
o0x 14
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or
dg _glx) —glz—10)
ox 14 '

When this is mapped on to a cubic lattice with points (i, j, k),the next neighbours

are at a distance ¢ = 1. The function g(z) is replaced by n,n,(i, 7, k) and the
asymmetric discretisation is chosen; the symmetric discretisation was found to be
unsuitable for the Monte Carlo technique, since it does not involve the value of the
function at position x and thus causes the lattice to decouple. In the asymmetric
case, each partial derivative has a left and right discretisation; there are therefore
eight asymmetrical discretisations for Vn,n, (i, j, k)[20].

The discretised free energy for a cubic lattice can now be written in the following

form:

3
FK; > (D405 k)

Apv=1
3 3 (ris) 2
K —K) S (Z DU, k))
3 3 (rei) 2
(Ki = K) (z (i, YD i, k))

3 2

+ <NLHB*(¢,;', k)>2 (; ny (i, 5, k) B, (i, k)> . (5.5)

The asterisks in Equation (5.5) denote dimensionless quantities which are de-
fined later. The elastic part of f;. is defined as the arithmetic average of the eight
asymmetrical discretisations of the derivatives, Dg\’;‘;’t) with (r,s,t) € {£1,£1, £1}.
The =+ indicates the right or left discretisation in x-, y- and z-directions respectively,
the subscript A indicates the axis on which the discretisation is performed and {puv}

are the normal Cartesian components [20].

A few of the D functions are shown below:

DU GG k) = nny (i + 1,5, k) — nuny (i, j, k)
DYV k) = nnu (i, Gy k) — nny (i, — 1, k)
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(i, ¥ (. £)
D(_1’+1’_1)(i,j,/€) = (i k) = (3= 1,,K)
(i, j, k) (i, 5 + 1, k) = nuny (i, 5, k)
(i, ¥ ( )

= nn, (1,7, k) —nun, (i, 5,k —1

5.2.3 Surface Contributions

For the 3-dimensional system, surface terms play a significant role especially when
the bounding surfaces are not flat. Therefore, the surface term can not be ignored
and would have to be included in the free energy. Equation (5.2) which is the tensor

form of the Frank free energy becomes

fa = 5 [Ei(Vana) (V) + Ko ((Van)? = (Van)(Vuna)

1

5 1
(K — K2)(mn) (Van,) (Vum)] (5.6)
This is algebraically equivalent to Equation (5.1). Again, the director in Equa-

tion (5.6) can be written in the form of the dyad nn, giving the following form:

171
fa = B §K2(VA”;L”V)2_KZ(VA”;L”V)(V#”A”V)
+ K1 ((Vanan,)(V,nun,)

+ L (Ka = K0 () (Vo ) (Vo). (.7)

Here Vn,n, = V(n,n,) as before. Splitting up the dyad gives back the ten-
sorial form of Equation (5.6). The discretised form of Equation (5.7) can now be

written down as follows:

1 1 i r,s,t
fo = g2 2 2 5K X (D47, J,/*C))2

r=+1s=+1t=%1 Apv=1

3
- K3 Y (D505, kDY G, )

Apv=1
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2
Z <Z D):\Zt 7’ .]7 )
]_ 3 3 .. (rst) .. ?
+§M?WDZ<ZWMMRMQMO- 55)
pr=1 \A=1
The dimensionless quantities of Equation (5.5) and Equation (5.8) are defined
by the following expressions [20]:

12
Kz:Kz*Ka(Z:]-a273)a F _2KF:1"7
R K .
Bu:BB,ua for: Q_Wfor,

B T K . B —1{ .
‘Qm+nwx)3’ T‘@BJQT‘

Here f is the free energy density and F' is total free energy, the free energy
density summed up over all lattice points. K is a mean elastic constant, kg the
Boltzmann constant and 7" the temperature. The lattice point separation is £ =1
and the thickness of the liquid crystal is d = (N, + 1)¢ between the two surfaces,

where NV, is the number of lattice points along the z direction.

5.3 Simulations

5.3.1 Equilibration Details

Monte Carlo simulations were used to calculate the mean equilibrium orientation
field (n,n, (4, j, k)). The Metropolis method [5] was used to equilibrate the system at
a fixed temperature. Here the temperature is not the thermodynamic temperature,
but is part of the numerical technique.

The method begins with a trial rotation by a random angle ¢ of the local director
n — n. The choice of the random angle is uniformly distributed over the interval
[—®m, ¥m], where 1y, is a fixed parameter, suitably chosen to give a 50% acceptance
rate. The energy difference AF*(n — n) between the configuration with the old

director n and the new one n was calculated. The new director is then accepted
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with the probability p(n — ) = min{1, exp[-AF*/T*]}. If the new director was
rejected, the old director was retained. A trial rotation of the next director is
attempted. Once all directors have been attempted, one Monte Carlo step is made
and the process is repeated. After a number of equilibration steps the algorithm

calculates the mean equilibrium orientation field (n,n,).

5.3.2 Annealing

Due to the fact that the interactions in this model are very short range, defects
occur in large lattices when the system is quenched rapidly to a low temperature.
The defects tend to get frozen in before they can escape. To remove these defects,
annealing techniques mentioned in Section 1.4 were used. The iterative improvement
annealing technique was used. The method was seen to give as good results as the
simulated annealing technique [36], yet it completed its task in a shorter simulation
time. Each simulation run started at a high reduced temperature 7" = 1.0 which
was then allowed to equilibrate for Nequ steps. The temperature was then reduced
by 5% and allowed to equilibrate again. This process of temperature reduction
and equilibration is repeated for Niem, annealing steps. Typical runs would take
Nequit = 10* — 10% equilibration steps and Ntemp = 100 — 150 temperature annealing
steps. Figure 5.2 shows the progress of the order parameter and energy as a function

of MC sweeps for a typical iterative annealing run.

5.4 Results

Lattice systems of 2-dimensions and 3-dimensions were modelled using Monte Carlo
simulation. The 2-dimensional systems had fixed boundaries in the y-direction and
periodic boundaries in the x-direction. The fixed boundaries consisted of surfaces
with triangular and sinusoidal gratings. The lattice size for the 2-D model consisted
of 64 x 64 directors. The 3-dimensional systems had fixed boundaries in the z-

direction and periodic in the others. The fixed boundaries used were either flat,
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Figure 5.2: Order Parameter and Energy as a function of MC sweeps

triangular or bigrated, i.e. the surface follows a sinusoidal pattern in the x- and
y-directions. The flat surfaces system was used as a test for the model and the
technique in three dimensions. The 3-dimensional systems consisted of lattices of
24 x 24 x 24 directors. Annealing techniques [36] were used to minimise the energy

and equilibrate the systems.

5.4.1 Triangular Grating

Simulation runs were done for two-dimensional systems with an ideal single trian-
gular grating surface. This type of grating is also known as sawtoothed. The free
surface was kept flat. Figure 5.3 shows two equilibrated configurations with different
orientations at the free surface. The first has an orientation that is normal to the
free surface, this system is highly ordered and the total energy of the system is low.
The second has an orientation that is planar to the free surface. This system is
at a higher energy and slightly disordered around the points of the triangles. Both

systems have homeotropic anchoring on the grated surface. It is therefore concluded
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that the normal orientation - being the lowest in energy - is the preferred orientation
for such a system. The height to half-base ratio of these triangular gratings is 1:1.

No bistable states were observed for this case.

Figure 5.3: Snapshots of director profiles for two different anchoring angles at the

flat surface with a height to half-base ratio of 1:1 of the triangular grating.

When the height of the triangular gratings were reduced by a half to a height
to half-base ratio of 1:2, bistability was observed. Figure 5.4 shows the bistable
nature of a triangular grating where the free surface orientation is normal. The
two systems are optically distinguishable - being mirror images of each other - and
degenerate in energy. In comparison, Newton and Spiller [101] found bistability for
the triangular grating at a triangular height to half-base ratio of 1:0.8 for the same
type of system. The two stable states that Newton and Spiller obtained were from
two different initial configurations and lead to two different states from the ones
shown in Figure 5.4. The system they obtained from the initial h— state had a
director field comparable to the ones presented in Figure 5.4. Their v— produced a

state that was similar to the low energy state presented in Figure 5.3.
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Figure 5.4: Snapshots of director profiles of two systems with the same anchoring
angles at the flat surface with a height to half-base ratio of 1:2 of the triangular
grating.

5.4.2 Real Gratings

Newton and Spiller [100] have done Monte Carlo simulations using the Gruhn and
Hess model with real surfaces obtained from scanning electron micrograph profiles.
Newton and Spiller have found three stable states - see Section 2.4 for details - which
were not degenerate in energy.

Using the iterative annealing technique on the same surface profile, we found
only one stable state. This state corresponds to Newton and Spillers lowest energy
configuration, the v— state [101]. The real surface profile is shown in Figure 5.5. It is
possible that their other states are a by-product of a biased initial configuration. It
is possible that a lower grating amplitude would produce bistability with degeneracy

in energy as with the triangular grating.

5.4.3 Frederiks Transition

Consider a nematic cell with given boundary conditions, such that a uniform director
field results. When a magnetic or electric field is applied, a conflict arises between

the orienting effect of the boundaries and the orienting effect of the applied field.
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Figure 5.5: Snapshot of the director profile for a system with a real surface profile.
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This causes a distortion of the original field to occur. In the case where the external
field is perpendicular to the original director, the distortion normally sets in only if
the strength of the applied field exceeds a certain well-defined threshold value. This

type of transition is call a Frederiks transition [1].

Analytical Solutions

In the case of an applied magnetic field, de Gennes [2] showed that the threshold

Bei= g <£> (5.9)

Xa

where d is the thickness of the nematic layer, y, the magnetic susceptibility anisotropy

field B, ; corresponds to

and the constants K;(i = 1,2, 3) are the Frank elastic constants. Vertogen and de Jeu
[1] showed that the relationship between the maximum tilt angle 6,, and the applied

magnetic field is of the following form

B, =«

1
B 2 r3 1+ ksin? 6, sin? ¢ 2
_ d 5.10

/0 < 1 — sin? 6, sin? 1) ’ (5.10)
where k£ = 0 for the twist geometry, x = (K3 — K;)/K; for the splay geometry
and k = (K| — K3)/Kj3 for the bend geometry. This type of integral is known as a

complete elliptical integral of the first kind.

Simulation Results

Simulations were done on a system with flat fixed boundaries. The runs were done
for the splay geometry, where the anchoring at the surfaces is planar and the applied
field is normal to the surface. Even though the Frederiks threshold for the splay
geometry depends only on K7, the director field for B > B, varies with K3/K; as
seen in Equation (5.10).

In Figure (5.6) the maximum angle 6,, between the director and the easy axis
is shown for field strength between B/B. = 0.5 and B/B, = 2.0 for various ratios

of K3/K;. The simulation results are compared with the analytical solution of
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Equation (5.10). The results show total agreement between the simulation results
and the analytical solutions. The same is also true for the bend geometry where the
director field varies with K;/K3 (not shown here). These results are in agreement
with the Hobdell and Windle [126] results. They used a lattice model based on the

discretized free energy to study Frederiks transition.

2

0 (radians)
-

Figure 5.6: Maximum tilt angle #,, for the splay geometry. The points are simulation

results and the curves show the analytical solutions.

5.4.4 Bigrating

The bigrated system consists of two surfaces. The first is flat and the second follows
a sinusoidal pattern in both the x and the y directions - a bigrating. This surface is
defined as z = asin(2rz/Ly) + bsin(27y/Ly), where a and b are the amplitudes and
L, and L, are the wavelengths of the grating in the x and the y directions respec-
tively. This type of surface can be experimentally created using photolithographic
gratings with sinusoidal profiles obtained by interferometric exposure of the pho-

toresist [125]. The profile of such a surface is depicted in Figure 5.7. The directors
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are constrained tangentially to the surface with a particular azimuthal angle ¢. The

tangent vector as a function of ¢ for the directors on the surface is defined as

cos pX + sin ¢y + (kia cos ¢ cos k1 + kabsin ¢ cos kyy)z

i = - (5.11)
[1 4 (kia cos ¢ cos k1x + kobsin ¢ cos kyy)?]2

where k; = 2w/L; and ky = 2w/L, are the wavenumbers of the sinusoidal surface

[127]. This vector follows the undulation of the surface.

Figure 5.7: Surface profile of the bidimensional grating.

Simulation runs were done for a set of values of the azimuthal angle ¢ to de-
termine the preferred orientation. The values chosen for the wave amplitudes were
a = 10 and b = 10, while the values for the wave numbers were k; = 27 /n, and
ky = 2w /n, where n, = n, = 24 are the number of lattice points along the z- and
y-directions. The preferred orientation would have the lowest energy among the set
of orientations and would be considered a stable state. Each run was allowed to
equilibrate using the iterative annealing method. Once equilibrated the total energy
of the system was calculated. Figure 5.8 shows the dependence of energy on the
azimuthal angle ¢, the orientation of the tangential vector at the bigrated surface.

The energy is lowest when the tangential vector is along either of the two diagonals
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(i.e. ¢ = /4 and ¢ = 3m/4). This shows that the two diagonal orientations are
the most stable states and that leads to the conclusion that a bigrating does cause

bistability.
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Figure 5.8: Energy as a function of the angle of orientation of the director at the

bigrated surface.

Figure 5.9 shows an equilibrated configuration for the bigrating system looking
at the system from the side. This shows the large oscillations in the surface. It
also shows that the director field is planar above the undulated surface and that the
distortions dissipate rapidly with distance away from the surface. Figure 5.10 shows
two equilibrated configurations for the bigrating system looking at the system from
the top. The snapshot on the right shows one of the two diagonally preferred align-
ments with an azimuthal anchoring angle of 37 /4. The other preferred orientation
is obtained when this system is rotated by 7/2 clockwise around the z-axis. This
figure also shows the degree of alignment as each layer - starting from the bottom all
the way to the top - each director is perfectly aligned parallel to the ones anchored
at the surface. The snapshot on the left shows a less preferred orientation, here the

azimuthal anchoring angle is 7/12. The directors of each layer are not parallel to
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Figure 5.9: Snapshot of the bigrated system looking at it from the side. The system
has a fixed azimuthal angle of ¢ = 7/4.

5.5 Summary

To test bistability using the Gruhn and Hess [20] model in two dimensions, triangular
grating surfaces were used. The lowest energy configurations were obtained and
bistability was observed. This is in agreement with Newton and Spiller [100, 101].
The model of Gruhn and Hess was extended to three dimensions and a magnetic field
was applied to a system with flat surfaces. A Frederiks transition occurred at the
critical field strength. The results presented here were in agreement with the Hobdell
and Windle [126] results for the splay geometry and are in perfect agreement with

analytical solutions. This shows that the model can be used to model the switching
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Figure 5.10: Snapshots of the bigrated system looking at them from the top. The
system on the left has an azimuthal angle of ¢ = /12 and the one on the right has

an azimuthal angle of ¢ = 37 /4.

of liquid crystal devices. Finally, bistability was observed in a three dimensional
system with a bigrated surface. The two stable states are degenerate in energy and
have significantly different director orientations which are optically distinguishable.
This is in agreement with experimental findings [125]. This kind of behaviour has
great importance to liquid crystal displays (LCD). Current technologies used in
LCDs are based on a single stable state which requires a constant applied voltage
to maintain any other (switched) state. A bistable LCD would only require a short
voltage pulse to switch from one state to the other and vice-versa. This would
reduce the energy requirements to operate LCDs. Switching or flexoelectric effects
resulting from applying an electric field were not addressed in this thesis, these may

prove to be a fruitful area for further research.
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Chapter 6

Conclusion

In this thesis, several aspects of the behaviour of liquid crystals near interfaces
were investigated using computer simulation. This started with a study using long
flexible molecules, of the form C7TGBC7, using constant-/N P71 molecular dynamics.
The bulk phase behaviour of the model at zero-pressure was investigated. It was
observed that the model formed a smectic phase below a temperature of 7' = 385K in
agreement with experimental findings for molecules with roughly similar shape. The
structure and the degree of ordering of the smectic phase was investigated in detail.
It was observed that it formed weak smectic ordering. A smectic-vapour film was set
up and a study of its structure was carried out using constant-NV'T ensemble MD.
The director at the centre of the smectic film maintained its orientation normal to
the interface. A surface melting of the smectic occurred at the interfaces. Extensive
simulation studies of a mixture of C7TGBCT and a short, single-tailed molecule of
the form C7GB were carried out. The bulk phase behaviour of this model was
studied at zero-pressure. An ordered phase was observed below the temperature
T = 350K. A liquid-vapour film of the mixture was set up and a detailed study of
its structure was carried out using constant-NV'T" ensemble MD. Here the director
rotated to become parallel to the interface. The film was observed to form smectic
domains in its centre, while the interfacial region was seen to disorder. Substantial

disordered regions were also observed in between the smectic domains. A small
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amount of segregation of the two species between ordered and disordered domains
was observed. The nematic phase of this model was found to be unstable. Hence, a
study of the nematic-vapour interface using this model was not possible. However,
the model should not be discarded entirely, other possible avenues of investigation
still exist. These could be in the form of using shorter tails, having dissimilar chain
lengths or changing the energy anisotropy parameter to one that would increase the
stability range of the nematic phase.

Another liquid crystal interface that has hardly been studied through simulation,
is the isotropic-nematic interface. Here, an extensive investigation of the properties
and structure of this interface was carried out using computer simulation. The model
consisted of long spherocylinders of length-to-width of 20 and 50. The isotropic-
nematic bulk coexistence of the spherocylinders was studied using Gibbs ensemble
Monte Carlo. An isotropic-nematic interface was set up at a suitable coexisting
density and constant-NV'T" MD simulations were used. Two director orientations at
the interface were investigated for L/D = 20, these were at an orientation parallel
to the interface and one normal to the interface. A planar orientation of the director
was found to be the preferred orientation, this was the orientation of the director
at the interface for the L/D = 50 system. Density, order parameter and biaxial
order parameter profiles were calculated. The order parameter and density profiles
were independently fitted to a hyperbolic tangent function. It was observed that
the profiles fitted well to the function, and from the fits, the interfacial widths and
positions were obtained. A shift in the positions of the interfaces between the two
profiles was also observed. A significant biaxiality effect was observed for the long
(L/D = 50) spherocylinders. The results are in good agreement with experimental
findings and with theoretical predictions using similar models.

The third liquid crystal interface studied is the liquid-solid interface or more
precisely, the effects of different surface topographies on a nematic liquid crystal.
A detailed study was carried out using a simple lattice model of the director field,

to investigate the effect of two different surface topographies in creating bistable
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devices. Monte Carlo simulations were used to model nematic liquid crystal in
contact with triangular gratings in two-dimensions and bigrated surfaces in three
dimensions. Bistability was observed in both cases in agreement with other studies
using simulation and with experimental findings. Studies of the Frederiks transition
were also carried out and were found to be in agreement with analytical solutions and
other simulation studies. The benefit of bistability to device switching is enormous
and hence, is of great importance to model actual switching and the dynamics of
switching. As most liquid crystal devices use electric fields to switch between states
rather than magnetic fields, the effects of flexoelectricity are also of great importance

and are worth further investigation.
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