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Our story starts with the tale of two
mathematicians at the end of the 19th
century, Henri Poincaré (1854-1912)
and Gusta Mittag-Leffler (1846-1927).
For them, as for almost all scholars 
of dynamics in their day, the big
motivating problem was the difficulty
in reassuring the public that the moon
and the planets were likely to evolve
on their current course for the
foreseeable future. Although today 
the media has now shifted our focus
to possible fatal meteor strikes, for
generation after generation we have
looked to the heavens for portents 
of the end of the world. 

Poincaré was the greatest 
mathematician of his day. A deep
thinker who understood and made
contributions to just about every
branch of mathematics. Mittag-Leffler,

by contrast, was a networker. He knew
all the leading mathematicians of his
day, corresponded with them,
organised conferences, edited the key
journal, and persuaded the King of
Sweden to fund a unique prize. The
winning entry would be the best
solution to any one of a number of
great unsolved mathematical problems
of the day. Poincaré’s essay attempted
to show that the universe really does
run like clockwork – and within the
essay lay the foundations for two
brand new fields of mathematics:
topology, or ‘rubber sheet geometry’,
and what is now popularly called
‘chaos theory’. Needless to say,
Poincaré won the competition.

Poincaré’s essay studied a simplified
model consisting of just three planets
– for argument’s sake, the sun, the

moon and the Earth. He imagined the
moon as a pawn in a great celestial
chess game that could be positioned
anywhere at will. Now, there are
several positions in space where, if the
moon were placed in any one of them,
it would stay there for a very long time.
These positions are called Lagrange
points – locations in space where the
gravitational forces acting on the moon
are precisely counterbalanced by the
orbital motion of the moon. Some of
these points, such as its current
position, are stable. Others are
inherently unstable – like a pendulum
standing on its head: given the
minutest kick, the pendulum (moon)
would fall to the left or right. 
Poincaré’s idea was to study all the
places where you could put the moon
such that the path of its orbit would
end up at a Lagrange point infinitely

far in the future – the INset. Similarly,
points that were found infinitely far in
the past formed the OUTset. But what
would happen if the INset and OUTset
were to intersect? Continuing the
pendulum analogy, there would be a
motion that begins life upside down in
the infinite past, gathers momentum
and swings back up to the upright
again, staying there for ever more. 
This ‘homoclinic orbit’, to give it its
technical name, is described as ➜

The stock market crashes due to a single rogue trader. War starts from a
lone sniper’s bullet. The plane falls out the sky because of the tiniest crack
or defect. Ships capsize after encountering a freak wave. So, in our
increasingly safety-conscious and sanitised world, we should seek and
eliminate such extreme events or imperfections, shouldn’t we? Not so!
argues Professor Alan Champneys, Head of the Engineering Mathematics
Department. Localised events do not always require localised causes.

Bumps, blips and
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why do things localise?

Poincaré paid Mittag-Leffler more than the prize
money to have the original article destroyed
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➜ being ‘localised in time’; it’s just a
blip, a finite lifetime of swing emerging
from the upside down and eventually
settling back upside down again, for 
all eternity. 

Today we understand that homoclinic
orbits form the backbone of chaotic
dynamics. Their existence in any
abstract set of mathematical equations
– whether modelling the solar system, a
pendulum, the stock market or whatever
– can delineate the boundary between
the regular, predictable and stable, and
the chaotic, unpredictable and noisy.
In essence, Poincaré had shown that
celestial mechanics is inherently chaotic
and his discovery is now heralded as the
first example that qualitative thinking
about dynamics is often more powerful
than quantitative computation. 

However, it is not widely known that in
fact Poincaré missed the homoclinic
orbit altogether in his original prize-
winning essay. It was only while
contemplating a referee’s comment
that he realised his mistake. He then
paid Mittag-Leffler more than the prize
money to have the original article
destroyed and the new, much-
celebrated version was published. We
see in this story two truths we already
know but don’t like to admit: first, that
science doesn’t pay, and second, that
negative referee comments can
sometimes be a blessing.

The theory of homoclinic orbits has
come a long way since that time and

Champneys’ ongoing work looks at
deeper connections of the same
theory. For example, water can
support travelling structures (waves)
that are localised in both time and
space – so-called ‘solitary waves’ –
isolated bumps of raised fluid that
move with a well-defined speed.
These were first described by John
Scott Russell, who is also famous for
his role in the demise of Isambard
Kingdom Brunel, but who enters our
story in 1834 as the man who first
described such a solitary wave, caused
by a boat crossing a narrow aqueduct.

Homoclinic connections do not end
there. The same theory can also help
explain things that ‘localise in space’.
For example, what happens if you
twist a stretched elastic band? Try it.
After a couple of twists, the band
takes on a spiral shape like a stick of
barley sugar (or helix). A few more
twists and it starts to writhe and
double up on itself. The trigger for this
second form is that the spatially
uniform helix must first ‘localise’ into a
homoclinic orbit along the length of
the band, in the sense that the
amplitude of the helix gets larger in the
middle, before the band suddenly
jumps into the self-intersecting double
helix (see right). Applications of these
ideas abound: from laying undersea
pipelines, where twisting of the cable
can cause localised writhes and hence
snagging points, through the
mechanics of DNA – the double helix –
to an ingenious explanation of how

climbing plant tendrils gain their strength.
So what does this theory tell us 
about localised events? Yes, certainly
they sometimes have clearly defined
localised causes. But, Champneys
claims, there are many more instances
of localised events – catastrophic
solitary waves (tsunamis), the time at
which the pendulum falls over, the
point of snapping of an undersea
cable – for which it is the system 
itself that shows the propensity to
localise. The search for the precise
imperfection that triggers the instance
or point of localisation is, like the
identification of scapegoats, often 
a futile waste of time. Instead, the
message of chaos theory to many
areas of applied research is that we
need to invest our effort in a greater
qualitative understanding of ‘the
system’ – whatever that may be. ■
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Twisting an elastic band
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