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About the NICE Guidelines Technical Support Unit  

The NICE Guidelines Technical Support Unit (TSU) is a collaboration between the Universities of Bristol, 
Sheffield, York and Leicester. The TSU is commissioned by the Centre for Guidelines at the National 
Institute for Health and Clinical Excellence (NICE) to provide rapid-response technical support, 
methodology training, and methods research, in the context of guideline development. Please see this 
website for further information http://www.bristol.ac.uk/population-health-
sciences/centres/cresyda/mpes/nice/ 

About the Guideline Methodology Document series 

This series of Guideline Methodology Documents (GMDs) complements the Guide to the Methods of 
Technology Appraisal (1), the Guidelines Manual (2), and the NICE Decision Support Unit (DSU) 
Technical Support Documents (TSDs) (3-9).  

The aim of the GMDs is to assist all those involved in guideline development, including guideline 
developers, guideline committee members, those commenting on draft guidelines during the 
consultation period, manufacturers, and stakeholders. 

There is, of course, already a wealth of tutorial material on how to conduct systematic review and 
meta-analysis (10-12). The GMDs are in agreement with virtually all this material, although there are 
some significant differences in the way that meta-analytic methods are used.  

The GMDs take the particular perspective of the guideline developer. They therefore go beyond 
standard treatments in which systematic review and meta-analysis tend to be seen as methods for 
producing “pooled” analyses that “summarise the literature”. The decision context requires a focus 
on patients at specific points in their disease progression, methods that have particular properties 
regarding coherence and complete use of evidence, and procedures that are compatible with decision 
making under conditions of uncertainty. 

The GMDs are aimed at a basic and introductory level: more advanced topics are indicated with an 
asterisk (*), and readers are referred elsewhere.  

There are several areas of methodological uncertainty, controversy or rapid change. These are 
indicated in the GMDs. GMDs are extensively peer reviewed prior to publication (see 
acknowledgements).  However, the responsibility for each GMD lies with the authors, who welcome 
any constructive feedback on the content, suggestions for updates and further guides. Readers should 
be aware that while the TSU is funded by NICE, these documents do not constitute formal NICE 
guidance or policy. 
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1. INTRODUCTION 

1.1. PURPOSE AND SCOPE OF THIS DOCUMENT 

The purpose of this document is to make recommendations about methods for meta-analyses of trials 
that report continuous outcomes. This guidance should be read alongside GMD1 Meta-analysis. 

Among the topics covered will be:  

1. Different forms of analysis depending on whether the treatment is believed to have an 
additive effect, or a proportional or multiplicative effect. 

2. How to carry out meta-analysis when trials report outcomes on different scales measuring 
similar constructs 

3. How to include data on more than one outcome from each trial 

There is an abundance of excellent tutorial material on systematic review and meta-analysis of 
continuous data from RCTs (10, 11, 13, 14). As far as basic methodology is concerned, our 
recommendations do not depart greatly from previous work. However, there are some major 
differences in how the basic methodology is used, and these are documented and explained. 

1.2. OUTLINE OF THIS DOCUMENT 

We begin with a summary of the recommendations for easy reference (Section 2). Section 3 gives a 
brief overview of how a meta-analytic model is developed in the context of guideline development 
and describes the key decisions that guideline developers must make, before data extraction can 
begin. These will be based in part on a scoping review. 

Section 4 provides details on the preferred summary statistics that should be extracted from each 
trial, and alerts readers to the need for data conversions that are needed if the data are not reported 
in the form required for the meta-analytic model. 

Section 6 provides some worked examples to illustrate recommended procedures for standardisation.  

The guidance on what should be reported in Guidelines (Section 7) is specific to continuous outcomes: 
more general guidance is available in GMD1. We close with a brief section on research 
recommendations (Section 8). 

An accompanying Data Conversion Workbook (GMD-2 Data Conversion Workbook.xlsx) is available to 
assist in calculating the correct summary statistics for data input into Review Manager (RevMan) 
version 5.3, and the metafor package version 2.4-0 in R (version 3.6.3). The use of these packages is 
illustrated in a Software Appendix. Mathematical notation is avoided throughout, although the 
formulae used in the GMD2 Data Conversion Workbook are set out in Appendix C for reference. 

 

2. SUMMARY OF RECOMMENDATIONS 

Recommendation 1. Use multiplicative models (additive on the log scale) for outcomes that are 
commonly analysed after log transformation (Section 5.1) 

Recommendation 2. For outcomes commonly reported on the natural scale, but where there is 
convincing evidence that treatment acts in a proportional way, an analysis using RoM is preferred 
(Section 5.1) 

Recommendation 3. In a meta-analysis of mean differences (MDs), the order of preference for the 
estimates to be extracted is: 

(i) MD from analysis of covariance (ANCOVA) with baseline score as a covariate 
(ii) MD based on means of change-from-baseline scores 
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(iii) MD based on means of post-treatment scores 
Combinations of each type may be pooled together in a meta-analysis. When data permit, convert 
post-treatment MD to change-from-baseline MD (5.2) 

Recommendation 4. If meta-analyses include trials with different outcomes of the same construct and 
an additive model is assumed, they should be mapped to a common scale, using one of the following 
methods, in this order or preference: 

(i) Division by an SD from an external reference population (Section 5.3.1) 
(ii) Division by an SD derived internally from the trials included in the meta-analysis, taking care 

to adjust for differences in the direction of effect (Section 5.3.2) 
SMD meta-analysis (standardisation by dividing the MD in each trial by the same trial’s sample SD) 
should not be used (Section 5.3.3) 

Recommendation 5. If trials report more than one outcome on the same construct, a within-trial 
synthesis should be conducted taking account of the correlations between outcomes (Section 5.4) 

 

3. PRELIMINARY STEPS AND OVERVIEW 

3.1. STRATEGIC DECISIONS BASED ON A SCOPING REVIEW 

Before data extraction is begun in earnest, Guideline Developers need to make a series of strategic 
decisions, based partly on a scoping review of the literature. In the specific case of continuous 
outcomes, a series of decisions must be made before full data extraction and meta-analysis can begin. 
These relate to: 

 Choice of an additive or multiplicative model of the treatment effect (Sections 3.2, 5.1) 
 Continuous outcomes or proportions (Section 3.2.4) 
 Contrast-based vs Arm-based data (Section 3.6) 
 How to conduct meta-analysis of different outcomes measuring similar constructs (Section 5.3) 
 Within-trial synthesis of multiple outcomes measuring similar constructs (Section 5.4) 

3.2. DOES THE TREATMENT WORK IN AN ADDITIVE OR MULTIPLICATIVE WAY? 

This is a fundamental decision, representing alternative models of the data. Different models can 
easily result in different recommendations based on the same set of data. Four kinds of model are 
considered, three of which are for multiplicative or proportional effects: 

 Standard Additive model – additive treatment effect 
 Multiplicative or proportional treatment effects 

a.  Additive models for log-transformed data – multiplicative treatment effect 
b.  Ratio of Means (RoM) – proportional treatment effect 
c.  Percent change from baseline – proportional treatment effect 

 
The additive effect model is generally regarded as the standard approach. 

3.2.1.Multiplicative effects: log-transformed data 

Multiplicative treatment effects are most often seen in trials reporting laboratory outcomes. Usually, 
the observations are skewed to the left, and are log transformed in primary data analysis. Results may 
be reported as geometric means. The strategy in these cases should be to conduct the meta-analysis 
on the log-transformed scale. On this scale, the treatment effect is additive. The pooled results should 
be converted back onto to original scale and reported as Geometric Means with 95% CIs. 
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3.2.2.Ratio of means 

A second kind of “multiplicative” model assumes that the treatment effect acts in a proportional way, 
but the log transformation is applied not to the observations themselves, but to their means. If 
observations tend to be skewed but are analysed on the natural scale, for example outcomes 
measured in hours, days or weeks, RoM analysis should be preferred. Patient Reported or Clinician 
Reported Outcomes based on multi-item questionnaires should also probably be analysed as RoM. 
Criteria for deciding whether an additive or RoM analysis is most appropriate are presented in Section 
5.1. RoM is also a method for combining data from trials that report similar outcomes measured on 
different scales (Section 3.4). 

3.2.3.Percent change from baseline 

There are some specific outcomes, such as HbA1c in diabetes studies, that tend to be reported as 
mean percent change from baseline. This also reflects a belief that treatment acts in a proportional 
way. 

3.2.4.Continuous outcomes or proportions 

Within the same meta-analysis, some trials may report results as means and standard deviations, 
while others may report the proportion of “responders” – for example the proportion who improve 
by more than 50% from baseline, or whose score exceeds a specified threshold. Then a decision must 
be made as to whether the meta-analysis will be on the continuous or on the binomial outcome. The 
choice can be made on several grounds, for example: which is the most commonly reported; or which 
is required for use in a cost-effectiveness analysis. Like RoM, proportion responding is a convenient 
way of pooling across trials that report similar outcomes on different scales. 
 

3.3. CHOICE OF MODEL AND STRATEGY FOR EXTRACTION, DATA CONVERSION AND META-ANALYSIS 

Guideline developers need to make a decision as to which model of the data should be adopted. The 
decision should be based, as much as possible, on what seems to be the most appropriate model for 
the data: different models may lead to different recommendations, and will have a major impact on 
the guideline development process (See Section 4). But, at the same time, the decision can be 
tempered by the way in which trials tend to report data, and on the feasibility of converting the 
summary statistics reported in trials into a format suitable for input into the chosen model. 
 
Table 4.1 shows which sets of summary statistics can be converted for use in each model, and which 
conversions are available in the GMD2 Data Conversion Workbook. These data conversions make it 
possible to incorporate trials reported in several different ways into the same meta-analysis. Among 
the salient points to note: 

 It is feasible to convert summary statistics calculated on the natural scale into a form suitable for 
meta-analysis of log-transformed data. 

 Summary statistics calculated on the natural scale, or on the log scale, can be used in an RoM 
meta-analysis only if arm-based summaries are available. 

 Percent change from baseline cannot easily be combined with any other form of summary. Trials 
reported this way must be analysed separately. 

 Binomial outcomes can be converted to a continuous form.  

3.4. DIFFERENT OUTCOMES MEASURING SIMILAR CONSTRUCTS 

For continuous outcomes it is common for different studies to report different outcome measures 
that attempt to capture the same underlying construct. Well known examples are the various scales 
used in trials of treatments for depression, such as the Beck Depression Inventory (BDI), and the 
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Hamilton Depression Scale (HamD); or, for social anxiety, the Liebovitz Social Anxiety Scale (LSAS), the 
Social Phobia Inventory (SPIN), and so on. To carry out a meta-analysis it will be necessary to either 
convert them to a common scale, or to carry out an RoM analysis. The scoping review will establish 
which scales are used in the literature and a decision will need to be made on which ones are 
considered sufficiently reliable and sufficiently similar to synthesise together. While guideline 
developers should aim to be as inclusive as possible, in practice the decision will be influenced by: how 
frequently each outcome is reported, and the availability of external data to inform the 
standardisation (see Section 5.3.1). 

3.5. MULTIPLE OUTCOMES WITHIN THE SAME TRIAL 

The scoping review will also establish how many trials report the outcome on more than one scale. 
The recommended approach in these cases is to carry out a “within-trial” synthesis of these outcomes 
before proceeding with the meta-analysis (see Section 5.4). 

3.6. ARM-BASED AND CONTRAST-BASED DATA 

Data can be extracted and analysed in two forms, either Arm-Based (arm means, standard deviations 
(SDs) and sample sizes, or Contrast-Based (mean difference and its standard error (SE). Analyses of 
Arm-based and Contrast-based forms will give identical results, so long as the same adjustments (if 
any) are applied to both forms of data. 

Examples of how each kind of data are entered into software can be found in the Software Appendix 
for RevMan (Examples 1 and 2) and the metafor package (version 2.4-0) in R (Examples 3 and 4). 

None of these software options allow one to combine Arm- and Contrast-Based data in the same 
meta-analysis. Therefore, in every meta-analysis where there is mixed data, it is necessary to convert 
all the arm-based data into contrast-based data. These conversions can all be carried out in the Data 
Conversion Workbook. There is also facility for this in RevMan (Example 5 in the Software Appendix). 
R scripts can also be written to facilitate this process. 

* Different forms of data can be combined if a Bayesian simulation approach is taken, for example in 
WinBUGS (see TSD2 Example 8 under the heading “Shared Parameter Models” (4)). Several of the data 
conversions not available in the GMD2 Data Conversion Workbook can be carried out by modelling in 
a Bayesian framework. 

 

4. DATA EXTRACTION AND PROCESSING 

Once the model has been chosen - additive, RoM, log-transformed, or percent CFB – data extraction 
and processing can begin. The order of preference regarding which summary statistics should be 
extracted from each study is shown in Table 4.1, which is essentially the same regardless of the model. 

It is relatively unusual for every trial to report results in exactly the same way. In most cases there is a 
standard formula which “converts” the extracted summary statistics into a form that is appropriate 
for the treatment effect model that has been chosen. These formulae, which are implemented in the 
GMD2 Data Conversion Workbook are set out in Appendix C for reference. 

 
* Advanced material that may be skipped. 
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Data Extraction Procedure  

1. Order of preference. Table 4.1 shows several sets of summary statistics that might be reported. 
Extract the set that is highest on the list, and enter them into a spreadsheet, using the Data Conversion 
Workbook as necessary, before entering them into the meta-analysis package. 

2. Change from baseline. Change from baseline (listed 3rd-4th in Table 4.1) is preferred to follow-up 
(listed 5th-6th) even when the SE or SD of CFB is not reported (Recommendation 3, Section 5.2) 

3. SD and SE. Distinguish between SD (a measure of variation), and the SE of the mean (a measure of 
uncertainty). The SE is sometimes referred to as the “SD of the mean”, and papers may report a mean 

“+/- SD”: this is usually an SE. The two are related: for a single sample SD SE n , where n  is the 
sample size. When converting between the two, it is important to ensure that the sample size used is 
the correct one used for either measurement’s calculation. 

4. If the relevant mean, SD, DSE  or pooledSD  is not available, it may be possible to infer it from other 

statistics such as the median, IQR, confidence intervals, z-statistic, t-statistic, or p-value. See Appendix 
A, otherwise contact the authors. 

5. If standardisation by internal SDs is intended, extract the pooled baseline SDs from every trial, or 
extract the arm SDs and calculate it from that (Section 6.2). 

6. If the paper reports none of the statistics in Table 4.1, contact the authors. 
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Table 4.1. Order of preference which summary statistics to extract, and feasibility of conversion to form required 
for each meta-analytic model. 

 

 
Data to be extracted, in order of preference 

Available synthesis 
models 

A
dd

iti
ve

 Multiplicative 

Ro
M

 

Lo
gg

ed
 

da
ta

 

%
 c

ha
ng

e 

 Summary statistics on natural scale     
1 MD, SE(MD) from ANCOVA Y - Ye - 
2 Change-from-baseline arm means, CFB SDs, N  Y - - - 
3 Arm Means, SDs at baseline and follow-up, N, correlation b Y Y Y - 
4 MD, SE(MD) change from baseline Y - Ye - 
5 Arm means, SD, N at follow-up Y Y Y - 
6 MD, SE(MD) at follow-up Y - Ye - 
7 Geometric arm means, confidence intervals, N a Y Y - 
8 Ratio of geometric means, confidence intervals a - Y - 
9 Mean percent change in each arm, SD of % change, and N - - - Y 
10 MD of % change, and its SE - - - Y 
      
 Summary statistics on log scale     
11 MD, SE(MD) from ANCOVA a - Y - 
12 Arm means, SD, at baseline and follow-up, N b a Y Y - 
13 MD, SE(MD) change from baseline a - Y - 
14 Arm means, SD, N at follow-up a Y Y - 
15 MD, SE(MD) at follow-up a - Y - 
      
 Summary statistics as probabilities    - 
16 Pr(Response), N in each arm. Also extract SD c Y Y Y - 
17 Log odds ratio, and its SE. Also extract SD c Y -     Y - 
      
 Less common outcomes     
18 SMD, and SE. Also extract SD d

 and samples sizes Y - Y - 
20 % change based on mean scores, SE  Y  - 
21 Any statistic listed in Point 4 of the Data Extraction Procedure 

above. 
    

Abbreviations: ANCOVA – analysis of covariance; CfB – Change from baseline;  MD – mean difference; N – sample 
size;  RoM – ratio of means; SD – standard deviation; SE – standard error; SMD – standardised mean difference.   
a These conversions are possible but very unlikely to be useful as their presentation suggests a multiplicative 
model should be fitted. They are not currently available in the GMD2 Data Conversion Workbook 
b Extract the correlation between baseline and follow-up scores if available 
c The SD required here is the pooled SD at Follow-up in that trial 
d The SD required here is the SD that was used to produce the SMD in that trial 
e  To transform MDs on the raw scale to MDs on the log-transformed scale, also extract the overall mean response 
averaged over both arms 
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5. ISSUES IN META-ANALYSIS OF CONTINUOUS OUTCOMES 

This section looks at some particular topics in meta-analysis of continuous outcomes, focussing on 
those where clarification of existing methods is required, or where our proposals differ from currently 
accepted approaches. The issues we review are 

 Multiplicative vs additive treatment effects (5.1) 
 Preference for change-from-baseline data (5.2) 
 Standardisation and RoM analysis (5.3) 
 Within-trial synthesis of multiple outcomes (5.4) 

 

5.1.  MODELLING ADDITIVE VS. MULTIPLICATIVE EFFECTS 

The effect of a treatment is considered to be additive when it adds to or subtracts from a value on a 
scale. Difference measures are, then, the natural way to quantify the additive effect on an outcome.  

Laboratory outcomes are often skewed to the right, and statistical analysis of trial data may be carried 
out on log-transformed observations. In these trials it is implicitly assumed that the treatment effect 
is multiplicative: its effect is to multiply or divide a value on a scale. In these cases meta-analysis is 
carried out on the log scale. Some complications arise when trials report log-transformed data analysis 
on the natural scale, but in most cases standard conversions are available to convert summary 
statistics on the raw scale into summary statistics on the log-scale, or vice versa (15). These 
conversions can be carried out in the Data Conversion Workbook. Meta-analysis should be performed 
on the log-transformed data, and converted to that form if necessary. The pooled results should be 
converted back to the natural scale, in exactly the same way that Odds Ratios meta-analysis is carried 
out on log-transformed data, and the pooled result converted back to ORs. 

Recommendation 1: Use multiplicative models (additive on the log scale) for outcomes that are 
commonly analysed after log transformation 

A different analysis of “proportional treatment effects” is possible using Ratio of Means (RoM) meta-
analysis. This is applied to summary statistics on the original raw scale, where the original scores are 
Patient, or Clinical Reported Outcomes (PROs, CROs) based on the sum of multiple ratings. Examples 
are the BDI scales for depression, the PANSS score for Schizophrenia, or the Liebowitz Social Anxiety 
Scale (LSAS). 

It is emphasised that additive and RoM models represent different models of how treatments work, 
and they can lead to different treatment recommendations for the same data. 

Literature addressing how to choose between additive and RoM methods is inconclusive. Simulation 
studies (16) suggest that RoM and MD have comparable performance in most scenarios, although this 
assessment was limited to simulated data in which effects were always additive. A study in which 
results of RoM and MD meta-analysis were compared on a large number of reviews from the Cochrane 
database (17) revealed similar treatment effects and assessments of heterogeneity. However, the 
relative merits of additive and multiplicative effect models should ideally be considered separately for 
each condition. Ideally the choice “should be determined by the biological effect of the treatment” 
(17). This is an area requiring further research. 

In considering whether PROs and CROs should be analysed using additive or RoM methods, Guideline 
Developers should take account of the following “signs” that treatment effects are likely to be 
proportional: 

 If there is a positive correlation between the groups mean and SD: this might be established by a 
plot of the arm SDs against the arm means, over all the trials. 
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 Similarly, if RoM shows less heterogeneity than mean difference, when plotted against baseline 
mean. 

 If trials tend to report proportion of patients responding, where “response” is defined as a % 
change from baseline. 

 If trials tend to report mean % change from baseline as a continuous outcome. 
 If there is evidence that the size of the treatment effect is greater (or less) in more severe disease: 

i.e. a positive (negative) interaction between treatment effect and baseline severity. 
 Most PRO and CRO total scores are sums of scores on correlated items. These would be expected 

to be log distributed on a priori grounds, suggesting RoM is more appropriate. 

A further consideration in favour of RoM analysis is that it provides a solution to the issue of different 
trials reporting outcomes on different scales that measure essentially the same construct. Although 
RoM offers a convenient and very general solution to this problem, which avoids “standardisation” 
(see Section 5.3), RoM modelling should only be done if the assumption of proportional treatment 
effects is reasonable. 

Against adoption of an RoM model, it should be born in mind that only trials that report arm-based 
summary data can be included in an RoM analysis (Table 4.1). 

Even when there is every indication that a treatment effect is proportional, and that RoM analysis 
would be preferred, Guideline Developers may prefer to carry out separate analyses on an additive 
scale, looking at “Mild”, “Moderate” and “Severe” disease separately. Another option, consistent with 
a belief that treatment effects are proportional, is to carry out a meta-analysis on a proportion 
responding to treatment outcome. 

Recommendation 2. For outcomes commonly reported on the natural scale, but where there is 
convincing evidence that treatment acts in a proportional way, a RoM analysis is preferred 

5.2. ORDER OF PREFERENCE: ANCOVA, CHANGE FROM BASELINE, OR POST-TREATMENT SCORE 

In most trials, patients are enrolled, allocated to a treatment at random, treated, then followed up, at 
which point a post-treatment observation is made. In some cases, a baseline observation is also 
recorded: this may be before randomisation if it is used to determine eligibility, or after. If a baseline 
observation is available, there is a choice of outcome measure: either the mean post-treatment 
observation in each treatment arm, or the mean of the difference between the post-treatment score 
and the baseline, in each arm: the change from baseline (CFB). 

5.2.1.Basic order of preference 

The preferred method for analysing change-from-baseline data is by analysis of covariance (ANCOVA) 
(18) in which the patients’ post-treatment scores are regressed against their pre-treatment scores, 
and possibly against other covariates. This both corrects for any baseline imbalance in the covariates 
included, and results in more precise estimates of the treatment effect, by removing variation due to 
covariates. 

A simple change-from-baseline analysis may adjust or partially adjust for imbalance in baseline 
outcome scores (18). Baseline imbalance in the outcome score can come about in two ways. 

The first is random variation, which affects both baseline and post-treatment scores. However, if 
change-from-baseline has a lower variance, or (equivalently) the pre-post correlation is greater than 
0.5, then we expect there to be an advantage in using the CFB MD in preference to the post-treatment 
MD, just on the grounds of greater precision. Empirical studies have reported a median correlation of 
0.59 for tests with reasonable test-retest reliability (19). Therefore, if precision was the only 
consideration, CFB would be expected to have an advantage. 
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A second cause of baseline imbalance is bias: for example, if baseline testing takes place before 
randomisation, failure to conceal allocation could lead to a selective inclusion of more severe patients 
in the more active intervention arm. Use of the change-from-baseline MD may reduce this, and other, 
biases. For these reasons, we strongly prefer CFB to post-treatment MD, and, unlike some authorities 
(14) we do not propose any explicit criteria for baseline imbalance. 

Recommendation 3. In a meta-analysis of mean differences (MDs), the order of preference for the 
estimates to be used is: 

(i) MD from analysis of covariance (ANCOVA) with baseline score as a covariate 
(ii) MD based on means of change-from-baseline scores 
(iii) MD based on means of post-treatment scores 

Combinations of each type may be pooled together in a meta-analysis. When data permit, convert 
post-treatment MD to change-from-baseline MD. 

The same recommendation applies when the summary statistics have been calculated on log-
transformed data. 

In the case of RoM analysis, change from baseline expressed as a difference cannot be converted to 
an RoM summary. Instead change from baseline must be expressed as a ratio. Thus it is the ratio of 
the ratios of follow-up mean to baseline mean that is used. If arm baseline and follow-up means and 
their SDs are available, an RoM analysis should be based on a ratio of follow-up-to baseline ratios. As 
with an additive analysis, the correlation between baseline and follow-up scores must be extracted, 
or assumed. This option is available in the GMD2 Data Conversion Workbook. 

5.2.2.Procedure when the change from baseline standard deviation is missing 

The change-from-baseline standard error or standard deviation is generally only reported in papers 
which have carried out a change-from-baseline analysis. Our recommendation, which differs from 
advice in the literature, is that change-from-baseline should be used in preference to post-treatment 
analysis, whenever possible, even when the change from baseline SD is not reported. 

The change-from-baseline SD can be calculated from the pre- and post-treatment SDs, if the 
correlation is known (Section 5.2). However, trials seldom report the correlation, in which case one 
may either assume a correlation of 0.5, which is on average slightly conservative (19, 20), or a 
correlation may be sourced from literature on similar outcomes, or from an appropriate area of 
medicine. Balk (2012) (19) is a useful reference, and a summary of findings from that study appear in 
Appendix B. 

Various kinds of imputation have been discussed (14), including calculation of correlations in trials 
where it is can be estimated, and then use of the average to impute values for trials where the 
correlation cannot be calculated. We do not recommend this for routine use as it requires additional 
data extraction, is time consuming, and because correlations calculated this way are highly variable 
(estimates of +1 or -1 are not uncommon (19, 20)) so the process can be hazardous even with large 
samples. 

Conversion of arm-based change-from-baseline data to a change-from-baseline mean difference and 
SE is available on the GMD2 Data Conversion Workbook: users need to specify the pre-post 
correlation. 

5.3. MAPPING OUTCOMES TO A COMMON SCALE, STANDARDISATION AND ROM 

When trials report what are essentially the same or similar outcomes measured on different scales, 
there is a need to convert them to a common scale, so that the results of each trial can be compared 
and pooled. 
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Conversion of feet and inches into centimeters, Fahrenheit to Centigrade, or pounds into kilograms, 
are trivial examples of “mapping to a common scale”, and we assume that this is done at the time of 
data extraction, and make no further comment except that extreme care is required to harmonise 
concentrations reported in different standard units (milli-, micro-, pico-, nano-grams per mm3, litre, 
or decilitre), with concentrations reported in molecular units. 

A slightly less trivial example is pain scores. Pain is generally either measured on an 11-point Numerical 
Rating Scale (NRS) (0,1,2….10), or on a Visual Analog Scale (VAS) from zero to 100. There is a literature 
comparing these scales, and it is accepted that they give closely similar results (21, 22). Results should 
therefore be converted to the same units. 

Where there is no suitable “mapping” between outcome scales, for example different questionnaires 
aimed at measuring the same underlying construct such as anxiety, two approaches have been 
advocated. The first is standardisation, in which all responses are mapped onto a common unit SD 
scale by dividing by an SD. However, the traditional “standardisation”, in which each trial’s MD is 
divided by the sample SD in the same trial, is not recommended (Section 5.3.3). Instead we suggest 
two ways of mapping to a common scale that are applicable especially to patient reported outcomes 
(PROs) and clinician reported outcomes (CROs). Both are forms of “standardisation” in that they map 
data onto an SD scale, but this is done by dividing the summary statistics by a scale-specific (not trial-
specific) SD. The preferred method is to use SDs derived from external reference data (Section 5.3.1); 
the other option is to derive the SDs “internally” from the trials included in the meta-analysis (Section 
5.3.2). 

A major advantage of this approach is its simplicity, as it reduces the problem to the same kind of 
calculation needed to convert between inches and centimeters, and also avoids having to undertake 
complex calculations to take account of difference in the SDs generated by different study designs (23, 
24). 

A second possibility is RoM meta-analysis: ratios of mean results on treatment and control arms 
constitute a “mapping” onto a common, unit-less scale (Section 5.1). 

5.3.1. Standardisation using an external reference SD 

This method requires a large cohort or cross-sectional study, in an external reference population that 
matches the target population in the trial data in the meta-analysis. The subjects in the cohort or 
cross-sectional study must have been tested on all the measurement scales of interest and the SDs on 
each scale must be reported. Each MD and its SE, or each arm mean and its SD, is then divided by the 
relevant scale SD.  

The resulting standardised means and mean differences can be considered comparable because the 
SDs used for the mapping were based on the same population. The process is illustrated in Section 
6.1. 

When using this method, guideline developers should choose a reference population that is as similar 
as possible to the target population for the decision, represented in the trials included in the meta-
analysis. Note this method does not take into account the sampling uncertainty in the reference SD. 
More research is needed to investigate the degree of heterogeneity in SDs and ratios of SDs of 
different scales, in large observational datasets, so that this can be incorporating into the method in 
future. 

5.3.2. Standardisation using an internal reference SD 

External reference SDs can only be used if there is a dataset that provides SDs on all the scales of 
interest.  
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An alternative that can always be used is to create a set of internal reference SDs, using the sample 
SDs reported in the trials included in the meta-analysis. The simplest approach is to use the mean of 
the SDs on each scale. For example, if there are 15 trials, with 10 reporting on scale “A” and 5 on scale 
“B”, we standardise the Scale “A” MDs and SEs (or the arm means and SDs) by the mean of the 10 
pooled Scale “A” SDs, and the Scale “B” results by the mean of the 5 pooled Scale “B” SDs.  

The SDs at baseline, pooled over all the treatment arms, should be used for this purpose as the 
baseline SD most closely approximates that of the trial population. The calculations are illustrated in 
Section 6.2. 

If there are trials where the baseline SD is not reported, the analysis can proceed using the mean SD 
based on the other trials. If several baseline SDs are unreported, and post-treatment SDs are reported 
instead, the best approach is to regress all the baseline SDs against the post-treatment SDs. The best 
estimate of the average pooled baseline SD is now the average of all the fitted baseline SDs. This is 
illustrated in Section 6.3. 

Methods for deriving reference SDs for a set of similar outcome scales, either from observational 
studies, trials, or both require further research (see Section 8). 

5.3.3. Sample-based standardization: the traditional SMD 

The Standardised Mean Difference (SMD) of a trial, also sometimes called the standardised effect size, 
or simply “the effect size”, is the mean difference divided by the sample standard deviation (SD). The 
SMD, realised as Cohen’s d (25) or Hedges g (26) is an apparently simple and very frequently used 
solution to the problems created by having similar outcomes reported on different scales (27), but it 
must be regarded as a flawed procedure that should be avoided wherever possible. 

The fundamental problem is that the SMD is created by dividing the MD by what is essentially an 
arbitrary number. If one trial reports an MD on the Beck Depression Inventory (BDI) of 4.5, and another 
reports and MD of 3.0, then no one would dispute that the treatment effect in the first trial has clearly 
reported a larger effect. This fact cannot be changed by the SDs. And yet, if the pooled SDs happened 
to be 9 and 5 respectively, then the ranking of trials on the “SMD scale” would be reversed: 0.50 and 
0.60. The fact that the SDs were 9 and 5 was no more than a coincidence: it would have been equally 
probable that they happened to be 5 and 9 respectively. In this case we would have SMDs of 0.90 and 
0.33, representing a massively greater effect in Trial 1. 

The origin of sample-based standardisation appears to have been in sample size calculations. The 
sample size required to declare a given standardised effect statistically significant at a stated level is 
independent of the SD (25). Thus, within the same trial, SMDs on two outcome scales should be the 
same, within measurement error and sampling variation. However, the same model which gives us 
these results also tells us that, in the presence of sampling variation or variation in population SDs, no 
such equivalence can exist between trials. 

The problematic nature of SMDs in this respect has in fact been widely recognised for many years. 
Leading epidemiologists (28-30) have described SMDs as “non-comparable and useless for meta-
analysis”. The Cochrane Handbook (2019) notes that the use of SMDs assumes that “between-study 
variation in standard deviations reflects only [our emphasis] differences in  measurement scales and 
not differences in the reliability of outcome measures or variability among study populations” (31) 
(p252). The use of SMDs is therefore not compatible with any degree of between-trial variation in SDs, 
let alone the high level of variation that can be routinely observed in systematic reviews using the 
same scale. It should be added that the requirement is not that the SDs in different studies should be 
“similar” (32): the requirement is that they should be the same. 

Hunter and Schmidt (33) express the same concerns at what they term “range variation” and “range 
restriction”, whereby the study SD is typically restricted by the study inclusion criteria. They regarded 
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these as artefacts which need to be removed to reveal the true treatment effect. As a solution they 
advocate that a correction is applied to the sample SD, so that the denominator SD becomes, in effect, 
that of a reference population, and therefore fixed. This is exactly equivalent to the use of a single 
reference population to define a set of fixed reference SDs for each measurement scale, as 
recommended in Section 5.3.1. 

Interestingly, this same idea underlies the suggestion that the pooled summary SMD can be “back-
transformed” onto the scale of the original measurement instrument by using a reference SD, derived 
either from a representative observational study (Section 5.3.1), or based on the weighted average of 
the study SDs that measure the outcome on the scale of interest (14). Once again, this requires a 
population reference SD, although this is needed for only one outcome. The notion of a weighted 
average of the study SDs is exactly our proposal if no external one can be found: use an internal 
reference SD (see Recommendation 4).  

Besides the logical flaws in SMDs flowing from between-trial variation in the population SDs, SMDs 
meta-analysis is exposed to several further unwelcome sources of heterogeneity:  

 Sampling error: The standard deviation is based on the trial sample, and will therefore vary across studies 
by chance alone. For example, if the true SD is 1, the 95% limits on what would be observed in a study of 
with a sample size of 20 in each treatment arm is (0.68, 1.32) and with 50 in each arm it is (0.80, 1.20). 

 Variation in measurement error and construct validity: Measurement scales vary in both precision, and in 
the extent to which they reflect the underlying construct, for example “depression” or “anxiety”, to which 
the treatment is directed. Both measurement error and construct validity will affect the responsiveness to 
the effects of treatment, so that two scales which are identical in every other way will produce different 
SMDs 

 Risk of deliberate manipulation. It is good experimental practice to minimise unwanted sources of variation. 
Patient selection criteria that limit trial populations to a narrow range therefore represent good practice, 
and allow investigators to obtain a given power with a smaller number of patients. However, minimising 
unwanted variation will lower the population SD, and will then generate treatment effects that are higher 
on the SMD scale, without being any different on the MD scale. 

Standardisation based on an internal reference SD, using an average of the baseline SDs in the meta-
analysis (Section 5.3.2) is a compromise, somewhere between the external reference SD and the 
traditional SMD dividing each trial by the sample SD. Because it takes an average of the trial-specific 
SDs it is always less variable than the SMD, and thus introduces less heterogeneity. 

Recommendation 4. If meta-analyses include trials with different outcomes of the same construct 
and an additive model is assumed, they should be mapped to a common scale, using one of the 
following methods, in this order or preference: 

(i) Division by an SD from an external reference population 
(ii) Division by an SD derived internally from the trials included in the meta-analysis, taking care 

to adjust for differences in the direction of effect.  
SMD meta-analysis (standardisation by dividing the MD in each trial by the same trial’s sample SD) 
should not be used. 
 

5.4.  SYNTHESIS WITHIN AS WELL AS BETWEEN TRIALS 

When a trial reports more than one “similar” outcome, for example the BDI and the HAMD depression 
scores, the usual advice is to select a single outcome from each study (14). This is because the 
measures are correlated (as they are measured on the same patients) and including both is a form of 
“double counting”. A common practice is to propose a preference hierarchy, for example: choose scale 
A if available, otherwise scale B, otherwise… and so on. But this raises the question: if evidence from 
scale B is acceptable when it is the only one reported, why should it be excluded from trials also 
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reporting scale A? It seems strange to go to such lengths to include every trial, if we then discard what 
could be a high percentage of the information we have found. 

Once the scores are converted to a common SD scale using internal or external standardisation, it is 
preferable to include all relevant information, taking the correlations into account. Table 5.1 shows 
how much the standard error of a trial rescaled MD is reduced if we include 2, 3, 4 or 5 measures, 
given a range of correlations. The correlations cited here are the between-score correlations between 
individuals that would be recorded in cross-sectional studies of patients with the condition under 
study. Methods and formulae for pooling mean treatment differences within trials, taking account of 
correlations, are found in (34, 35), Appendix C10-12, and may be implemented in the GMD2 Data 
Conversion Workbook (see Appendix D). 

Table 5.1 Benefits of within-study synthesis of multiple outcomes when using rescaled MDs. The cell entries 
represent the proportional decrease in the SE of the composite rescaled Mean Difference. The reduction is less 
as the correlation increases, and is independent of sample size. 

Proportional decrease 
in the SE of the 
composite rescaled 
Mean Difference 

Number of outcomes 

1 2 3 4 5 

Co
rr

el
at

io
n 

0.60 1.000 0.894 0.856 0.837 0.825 

0.65 1.000 0.908 0.876 0.859 0.849 

0.70 1.000 0.922 0.894 0.880 0.872 

0.75 1.000 0.935 0.913 0.901 0.894 

0.80 1.000 0.949 0.931 0.922 0.917 

 

To implement this, estimates of the cross-sectional correlations are required. Typically, for the kinds 
of patient reported outcomes (PROs) and clinician reported outcomes (CROs) where multiple 
outcomes are reported, correlations of around 0.65 to 0.75 between outcome measures are observed 
in the general psychometric literature (36-39). The true correlations are likely to be higher (close to 
0.95), as the observed variability in PROs and CROs consists of both between-patient variation in the 
underlying scores and measurement error, which is reflected by a degree of attenuation in the 
observed correlations due to measurement error (33). Guideline developers should consult literature 
in the relevant field to obtain ranges for correlation. 

If an estimate of the correlation between two outcomes is not available in the literature, a plausible 
range may be elicited from clinical experts based on unpublished datasets. For example, a reasonable 
estimate for depression and anxiety scales may be 0.70, and the impact of this imputation may be 
assessed with a sensitivity analysis using 0.60 and 0.80. If there is doubt about which value is 
appropriate, or if there is variation between correlations reported in the literature, a conservative 
approach is to choose a higher value as this will lead to less benefit of within-trial synthesis. 

The arguments for within-trial synthesis apply equally to RoM meta-analysis and the necessary 
calculations are available in the GMD2 Data Conversion Workbook.   

Recommendation 5. If trials report more than one outcome on the same construct, a within-trial 
synthesis should be conducted taking account of the correlations between outcomes. 

GMD1 includes some discussion and references to other methods for synthesis of multiple outcomes.  
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6. WORKED EXAMPLES FOR PROCEDURES FOR STANDARDISATION 

6.1.  STANDARDISATION USING SDS FROM AN EXTERNAL REFERENCE POPULATION 

If the trials included in the meta-analysis have reported the outcome on various scales that aim to 
measure the same underlying construct, the analyst will have to rescale the outcomes across trials to 
a common scale. The preferred approach to standardise the arm-based means and SDs or contrast-
based MDs and SEs by dividing them by a SD on the same scale from an external reference population 
(Recommendation 4) that matches the patient populations in the included trials (Section 5.3.1). 
 
Worked Example  
A systematic review compared Donepezil to placebo for dementia due to Alzheimer’s disease (AD) 
(40). The included studies reported change from baseline in cognition scores on the Alzheimer’s 
Disease Assessment Scale – cognitive subscale (ADAS-cog), or the Mini-Mental State Examination 
(MMSE) scale in individuals with mild-to-moderate AD are listed in Table 6.1. 

The observational ICTUS study (41) was considered to represent the patient population of the trials. 
It included patients with mild-to-moderate AD from 12 European countries, like the review’s target 
population, and reports the baseline SDs in 973 individuals on the ADAS-cog and MMSE scales (41), 
shown as the reference SDs in Table 6.1. 

Table 6.1. Studies reporting change in cognition scores from baseline on one of two scales in patients with mild-
to-moderate Alzheimer’s disease. First six data columns: original data on two scales; last four data columns: data 
mapped to a common SD scale using external reference SDs. 

Study 

Data on two scales,  
ADAS-Cog and MMSE 

Re
fe

re
nc

e 
SD

 Data mapped to a common 
SD scale 

Placebo 
Donepezil  
(10 mg/day) 

Scale 

Placebo 
Donepezil  
(10 mg/day) 

1Y  1S  1n  2Y  2S  2n  1Y  1S  2Y  2S  
Burns 1999 1.66 5.5 264 -1.26 5.5 254 ADAS-Cog 9.0 0.18 0.61 -0.14 0.61 

Maher-
Edwards 
2011 

-0.3 6.26 61 -1.5 6 67 ADAS-Cog 9.0 -0.03 0.70 -0.17 0.67 

Moraes 
2006b 

3.8 26.3 18 -7.3 18.4 17 ADAS-Cog 9.0 0.42 2.92 -0.81 2.04 

Rogers 1998b 1.82 5.43 153 -1.06 5.43 150 ADAS-Cog 9.0 0.20 0.60 -0.12 0.60 

Seltzer 2004 0.69 4.61 55 -1.64 4.69 91 ADAS-Cog 9.0 0.08 0.51 -0.18 0.52 

Tariot 2001 -0.81 4.03 102 -0.1 4.05 103 MMSE 3.8 0.21 1.06 -0.03 1.07 

Winblad 2006 0.1 3.3 120 1.1 3.3 120 MMSE 3.8 -0.03 0.87 0.29 0.87 

 

We map the scores to a common scale by dividing the means and SDs in all studies reporting on the 
ADAS-cog scale by 9.0 and the means and SDs in all studies reporting on the MMSE scale by 3.8. For 
example, in the placebo arm of Burns 1999: 

1 1
1.66 5.50.184,  0.6119.0 9.0Y S      

Note that because a high score means greater cognitive impairment on ADAS-cog but lower on MMSE 
we have multiplied the mean MMSE scores by -1, so that they can then be pooled as (rescaled) mean 
differences. 
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6.2.  STANDARDISATION USING AN INTERNAL REFERENCE STANDARD: THE AVERAGE OF POOLED SDS AT BASELINE 

If the outcome has been reported on different scales across trials included in the meta-analysis, and 
an external set of reference SDs is not available (Section 5.3.1), the preferred rescaling option is then 
to standardise the arm-based means and SDs or contrast-based MDs and SEs by an internal reference 
SD (Recommendation 4). That is, for each scale, the average of the pooled baseline SDs reported by 
trials included in the meta-analysis. This is further explained in Section 5.3.2.  
 
Worked Example  
The example data come from 17 parallel RCTs comparing atomoxetine to placebo in patients with 
attention deficit hyperactivity disorder (ADHD) symptoms and the efficacy outcome has been reported 
as the mean change from baseline on one of two scales (i.e., Swanson, Nolan, and Pelham, Version IV 
(SNAP-IV) or ADHD Rating Scale-IV (ADHD-IV)) (42). 

Table 6.2. Baseline  ,B BY S  and change from baseline  ,C CY S  measurements from studies comparing 

atomoxetine and placebo in ADHD patients [25] 

Study 

Placebo Atomoxetine 

Scale 1B
Y  

1B
S  

1C
Y  

1C
S  1n  

2B
Y  

2B
S  

2CY  
2CS  2n  

Bangs 2008 45.3 5.7 -4.4 8.4 68 44.7 6.4 -9.6 11.4 153 SNAP-IV 
Dell'Agnello 2009 41.5 6.9 -2.0 4.7 32 42.7 6.2 -8.1 9.2 105 SNAP-IV 
Dittmann 2011 36.4 9.3 -6.7 10.5 59 37.6 9.7 -14.7 10.3 60 SNAP-IV 
Gau 2007 37.1 6.4 -9.3 13.2 34 36.7 6.7 -17.3 10.6 72 ADHD-IV 
Kaplan 2004 41.9 8.0 -7.5 11.4 44 42.2 8.3 -17.0 13.9 52 ADHD-IV 
Kelsey 2004 42.3 7.1 -7.0 10.8 60 42.1 9.2 -16.7 14.5 126 ADHD-IV 
Kratochvil 2011 37.6 7.0 -5.8 8.4 49 38.9 6.6 -13.2 11.3 44 ADHD-IV 
Marenyi 2009 37.0 7.5 -11.4 8.0 33 38.1 7.3 -15.8 7.6 72 ADHD-IV 
Michelson 2001 38.3 8.9 -5.8 10.9 83 39.2 9.2 -13.6 14.0 84 ADHD-IV 
Michelson 2002 36.7 8.8 -5.0 10.4 83 37.6 9.4 -12.8 12.4 84 ADHD-IV 
Montoya 2009 39.5 9.0 -4.7 7.4 50 39.1 9.0 -12.8 9.3 99 ADHD-IV 
Newcorn 2008 41.7 8.5 -7.3 11.5 74 40.9 8.8 -14.4 12.7 222 ADHD-IV 
Spencer 2002a 37.6 8.0 -5.9 13.0 60 37.8 7.9 -14.4 13.0 63 ADHD-IV 
Spencer 2002b 41.4 7.9 -5.5 11.6 61 41.2 8.9 -15.6 13.7 64 ADHD-IV 
Svanborg 2009 39.5 6.7 -6.3 10.6 50 38.9 7.7 -19.0 10.5 49 ADHD-IV 
Takahasi 2009 32.3 9.6 -8.1 7.1 61 33.3 8.7 -10.8 6.8 58 ADHD-IV 
Weiss 2005 36.7 8.4 -7.2 9.7 51 38.9 7.2 -14.5 12.3 100 ADHD-IV 

In the absence of an external reference standard, an internal reference standard is constructed using 
the averages of the pooled SDs at baseline. For example, the pooled SD in Bangs 2008 is calculated 
based on the formula provided in Appendix C1: 

   2 268 1 5.7 153 1 6.4
6.1942

68 153 2pooledS
  

 
 

  

For the SNAP-IV scale, the internal reference SD is calculated as the average of pooled baseline SDs 

reported in Bangs 2008, Dell’Agnello 2009, and Dittmann 2011: 

6.1942 6.3676 9.5308
Reference 7.3552

3SNAP IVSD 

 
    
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The change from baseline means and SDs on the SNAP-IV scale are then rescaled to a common scale 
by dividing them by this reference SD. For example, in the placebo group of Bangs 2008: 

1 1

4.4 8.40.598,  1.1427.3552 7.3552C CY S       

A similar procedure follows for studies reporting the outcome on the ADHD-IV scale, resulting in the 
rescaled values provided in Table 6.3 that can be in turn pooled as [rescaled] mean differences. 

Table 6.3. Change from baseline scores mapped to a common SD scale using an internal reference. The pooled 
baseline SDs on each scale are averaged to form the Reference SD, and then the Means and Standard deviations 
are divided by the reference SDs 

Study 

pooledS   Scale Reference 
SD 

Placebo Atomoxetine 

1C
Y  

1C
S  1n  

2CY  
2CS  2n  

Bangs 2008 6.1942 SNAP-IV 7.3552 -0.598 1.142 68 -1.305 1.550 153 
Dell'Agnello 2009 6.3676 SNAP-IV 7.3552 -0.272 0.639 32 -1.101 1.251 105 
Dittmann 2011 9.5038 SNAP-IV 7.3552 -0.911 1.428 59 -1.999 1.400 60 
Gau 2007 6.6063 ADHD-IV 8.1286 -1.144 1.624 34 -2.128 1.304 72 
Kaplan 2004 8.1641 ADHD-IV 8.1286 -0.923 1.402 44 -2.091 1.710 52 
Kelsey 2004 8.5828 ADHD-IV 8.1286 -0.861 1.329 60 -2.054 1.784 126 
Kratochvil 2011 6.8139 ADHD-IV 8.1286 -0.714 1.033 49 -1.624 1.390 44 
Marenyi 2009 7.3627 ADHD-IV 8.1286 -1.402 0.984 33 -1.944 0.935 72 
Michelson 2001 9.0522 ADHD-IV 8.1286 -0.714 1.341 83 -1.673 1.722 84 
Michelson 2002 9.1068 ADHD-IV 8.1286 -0.615 1.279 83 -1.575 1.525 84 
Montoya 2009 9.0000 ADHD-IV 8.1286 -0.578 0.910 50 -1.575 1.144 99 
Newcorn 2008 8.7265 ADHD-IV 8.1286 -0.898 1.415 74 -1.772 1.562 222 
Spencer 2002a 7.9489 ADHD-IV 8.1286 -0.726 1.599 60 -1.772 1.599 63 
Spencer 2002b 8.4270 ADHD-IV 8.1286 -0.677 1.427 61 -1.919 1.685 64 
Svanborg 2009 7.2122 ADHD-IV 8.1286 -0.775 1.304 50 -2.337 1.292 49 
Takahasi 2009 9.1726 ADHD-IV 8.1286 -0.996 0.873 61 -1.329 0.837 58 
Weiss 2005 7.6238 ADHD-IV 8.1286 -0.886 1.193 51 -1.784 1.513 100 

 

6.3.  PREDICTING BASELINE SD IN STUDIES REPORTING POST-TREATMENT SD ONLY 

If a trial did not report the baseline SDs, but reported the post-treatment SDs, its pooled baseline SD 
may be imputed from the studies reporting both baseline and post-treatment SDs on the same scale 
through geometric regression. 

 

Worked Example 

The trials in Table 6.4 come from the meta-analysis presented in Table 6.3. These trials report both 
the baseline and post-treatment SDs on the ADHD-IV scale. However, for illustrative purposes, 
suppose Kaplan 2004 did not report the baseline SDs. We will impute its pooled baseline SD using 
information from the remaining trials reporting both SDs on the ADHD-IV scale.  

First, we calculate the pooled baseline SD and pooled post-treatment SD in all  trials that report both 
(Table 6.4).  We then calculate a factor,  ,  as follows:   

 pooledB

pooledF

S

S

SD

SD
    
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(   is in fact the geometric mean regression slope). For example, in Excel, we compute the standard 
deviations of the pooled baseline and post-treatment SDs in each arm using the stdev.S formula. For 
example, for the pooled baseline SDs, we would input =STDEV.S(8.58,6.83,9.00,9.17) in an Excel cell 
(Table 6.5). 

  is then: 

1.07 0.66792.41     

The pooled pre-treatment SD for Kaplan 2004 would then be computed as 

0.6679 14.01 9.36
B Fpooled pooledS S       

 

Table 6.4. Baseline and post-treatment SDs and sample sizes in trials reporting both on the ADHD-IV scale 

Study 

Sample Size Baseline SD Post-treatment SD 

Placebo 
Atom-

oxetine Placebo 
Atom-

oxetine 

Pooled 

Placebo 
Atom-

oxetine 

Pooled 1n  2n  
1B

S  
2B

S  
1F

S  
2F

S  

Kaplan 2004 44 52 NR NR NR 13.4 14.5 14.01 
Kelsey 2004 60 126 7.1 9.2 8.58 12.3 14.3 13.69 
Kratochvil 2011 49 44 7 6.63 6.83 9.8 5.80 8.16 
Montoya 2009 50 99 9 9 9.00 12.3 12.7 12.57 
Takahasi 2009 61 58 9.6 8.7 9.17 11.4 10.3 10.88 

 

Table 6.5. Standard deviations of the pooled baseline and post- treatment SDs of trials reporting both 
 Pooled baseline SDs Pooled post-treatment SDs 

SD 1.07 2.41 

 

 

7. REPORTING GUIDANCE 

This section makes recommendations about additional items to be reported in the case of continuous 
outcomes, over and above those mentioned in GMD1. 

Guideline documents should provide an account of the strategic decisions that were made, 
concerning: 

1. Which continuous outcomes were available, and which were extracted, and which not: how was 
this decided? 

2. The reasons for choosing an additive or multiplicative model, referring to the issues set out in 
Section 5.1. 

3. If different but related outcomes were reported in different trials, within the framework of an 
additive model, the method for mapping to a common scale, or standardisation should be 
explained. If external reference SDs were used, what was the source of data to inform the values, 
and how was this determined.  

4. If multiple outcomes reflecting the same construct were reported in some trials, whether within-
trial synthesis was used, and if so, what was the source of information about the correlation 
coefficient(s). 
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8. RESEARCH RECOMMENDATIONS 

8.1.  IS ANCOVA SUPERIOR TO CHANGE-FROM-BASELINE? 

It is widely considered that the best way to analyse RCT data is the analysis of covariance using the 
patient’s baseline score as the covariate, and the estimate of the relative treatment effect computed 
this way is widely seen as the optimal choice in meta-analysis. However, the core research papers in 
this area (43-45) have consistently employed the standard ANCOVA model which assumes that the 
baseline score is measured with no error. This assumption is irrational because the post-treatment 
score, based on the exact same test instrument as the baseline score, is assumed to be measured with 
error. Thus, the preference for ANCOVA is based on a false assumption, and research is needed to re-
evaluate its role in trial analysis and meta-analysis.  
 

8.2.  METHODS FOR STANDARDISATION AND MAPPING TO A COMMON SCALE 

In Section 5 we recommend two simple ways to derive sets of reference SDs, either from external 
observational studies, or internally from sets of trials. More research is required to develop these 
methods, with the objective of generating sets of “off the shelf” reference SDs for use in meta-analyse 
of treatments for different disorders, and “off the shelf” correlations for use in within-trial synthesis 
These methods assume that ratios of SDs of different instruments are relatively stable, with minimal 
variation across studies. This needs to be assessed. At the same time there is a need to develop 
methods for pooling data on ratios of SDs across observational studies, and possibly to combine data 
from trials and observational studies. 
 
At the same time, the additivity or proportionality of treatment effects measured on these outcomes 
needs to be assessed, so that more definitive guidance on the use of RoM could be made available  
 
A final possibility is the use of “cross-walking” between outcome scales (46, 47). Also known as test 
equating, aligning, or linking. The objective of cross-walks is to determine, for each point on one scale, 
what is the corresponding point on the other. Methods include Item Response Theory (IRT) (48-51) 
and equi-percentile matching. There is a widely accepted set of properties that these mapping must 
have, in order to be valid (46). Originally designed for educational psychology applications, cross-walk 
data are being seen increasingly in psychiatry, especially depression (52-56) and schizophrenia (57, 
58), using either equi-percentile or IRT methods. Research is needed, in the first instance, on whether, 
and how, published cross-walk tables can help map group means and standard deviations between 
scales. If they have a role, further work will be required to develop cross-walks for a wider set of 
disorders. 
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APPENDICES 

APPENDIX A 

Indirect estimation of the standard error of the mean difference 

Methods for deriving the pooled standard deviation, pooledSD , and the standard error of the mean 

difference, DSE , from available statistics, when it is not reported directly.  
 

Finding pooledSD  from DSE   

1 2

1 2

D
pooled

SE
SD

n n

n n




  

Finding DSE  from 95% confidence interval 
of mean difference 

upper limit - lower limit

3.92DSE    

Finding DSE  from mean difference, D , 
and z-statistic 

D

D
SE

z
   

Finding DSE  from mean difference, D , 
and t-statistic 

D

D
SE

t
   

Finding z-statistic from one sided p-value, 
p , corresponding to z-test 

 1 1z p   , where  1   is the inverse 

of the standard normal cumulative 
distribution function 

Finding z-statistic from two sided p-value, 
p , corresponding to z-test  1 1 2

pz      

Finding t-statistic from one sided p-value, 
p , corresponding to t-test 

 1
1 2, , 2t t p df df n n     , where 

1t   is the inverse of the t distribution, 1n  

and 2n  are the number of patients in arm 1 
and arm 2, respectively.  

Finding t-statistic from two sided p-value, 
p , corresponding to t-test  1

1 2, , 22
pt t df df n n       

 
Alternatively, the RevMan calculator may assist in these calculations. An Excel File containing the 
RevMan calculator may be obtained from:  

http://training.cochrane.org/resource/revman-calculator 

 

Indirect estimation of the mean and SD from the median and interquartile range (IQR) 

Where the distribution of the individual measurements are approximately normal, which may be the 
case when the data has been log-transformed, the median of the log-transformed measurements,  

jX , is approximately equal to the mean, jX , and the standard deviation of the log-transformed 

measurements, 
jXS , may be approximated as 1.35jX

IQRS   [6]. 
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APPENDIX B 

Empirical correlations between baseline and post-treatment scores 

Table B.1: Empirical correlations of baseline and final values based on a collection of trials, overall and 
broken down by different characteristics (19) 

Characteristic Median 25th, 75th 
Percentile 

All studies 0.59 0.40, 0.81 
Treatment type 

Active treatment 0.54 0.37, 0.77 
Inactive treatment 0.73 0.53, 0.87 

Outcome types 
Device measure 0.83 0.61, 0.94 
Lab 0.63 0.39, 0.81 
Sign 0.51 0.37, 0.72 
Questionnaire/Score 0.51 0.34, 0.68 
Symptoms 0.44 0.38, 0.50 
Other 0.78 0.71, 0.87 

Clinical domains 
Nephrology 0.61 0.44, 0.82 
Cardiovascular medicine 0.59 0.35, 0.86 
Pulmonary medicine 0.77 0.54, 0.94 
Diabetology 0.65 0.44, 0.76 
Internal medicine/Geriatrics/Primary care 0.73 0.56, 0.83 
Gastroenterology/Hepatology 0.44 0.23, 0.55 
Psychiatry 0.36 0.22, 0.58 
Neonatology/Pediatrics 0.60 0.46, 0.84 
Ophthalmology 0.38 0.26, 0.54 
Critical care 0.56 0.38, 0.70 
Others 0.52 0.34, 0.77 
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APPENDIX C 

Formulae used in the GMD2 Data Conversion Workbook 

Note that in all calculations involving a log-transformation, we use the natural logarithm, denoted by 
ln .  
 
Notation 
 
Let ,i jkY  denote the outcome observed on individual 1,2,..., ji n  in treatment group 1, 2j  , where 

k  indicates the outcome is the baseline measurement, b , follow-up measurement, f  , or the change 

from baseline measurement, c , such that , , ,i jc i jf i jbY Y Y  . 1 1,b fY Y  and 2 2,b fY Y  are the mean 

responses in treatment groups 1 and 2 at baseline and follow-up. For example, ,
1

1 jn

jf i jf
ij

Y Y
n 

   is the 

average over the individuals in treatment group j  at follow-up, with standard deviation

   2

,
1

1

1

jn

jf i jf jf
ij

S Y Y
n 

 
  . The mean change from baseline (CFB) in treatment group j  is:

 , ,
1

1 jn

jc i jf i jb jf jb
ij

Y Y Y Y Y
n 

     .  

 
 
Alternatively, the mean response in group j  may be reported as a mean percent change from 

baseline, 
 , ,

1 ,

1 jn
i jf i jb

j
ij i jb

Y Y
P

n Y


   , and it’s standard error 

jP
S . 

 
Note that in the calculation of relative effects described below, ijY  may refer to either the post-

treatment values, ,i jfY , or to changes from baseline, ,i jcY , so that jY  may refer to the post-treatment 

mean, jfY , or the mean change from baseline, ,j cY , in group j .  

In addition, note the data may be recorded on the log-scale, i.e.,  , ,lni j i jX Y . The mean and 

standard deviation of these log-transformed measurements in group j  are denoted as jX  and 
jXS , 

respectively. The geometric mean, exp( )j jG X , may be reported on the natural scale with a 

corresponding confidence interval  ,
j jG GL U .  

 

C1. Converting arm-based data into contrast-based data: mean differences (two-arm trial) 

The mean difference, D , in a trial is calculated as the difference between the means 1Y , 2Y  of the 

outcome in two treatment groups, and has variance DV  : 
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2 1

2 2
2 21 2 1 1 2 2

1 2
1 2

,     

( 1) ( 1)
,    ,      2

D D

D pooled pooled

D Y Y SE V

n n n S n S
V S S df n n

n n df

  

   
    

  

 

C2. Converting arm-based data into ratio of means 

The log of a ratio of means, RoM , in a trial is calculated as  (16) 

 

   

   

2
2 1

1

2 2

1 2
log( )log log

1 1 2 2

log( ) ln ln ln

1 1
,    

f
f f

f

f f
RoMRoM RoM

f f

Y
RoM Y Y

Y

S S
SE V V

n Y n Y

 
    

 

   
        

   

  

 
where this variance is based on a Taylor series approximation (16). Note that the  log RoM  may 

only be calculated if the means are positive. If sufficient statistics are not available to directly calculate 

 log RoMV  or  log RoMSE , they may be derived using other statistics reported in a trial (see Appendix A). 

 

C3. Converting baseline and follow-up arm-based data into a ratio of ratios of means 

A ratio of ratio of means, RoRoM , i.e., the ratio of ratio of follow-up to baseline means, is computed 
as  

2

2

1

1

f

b

f

b

Y
Y

RoRoM
Y

Y

  , 

where these ratios are pooled on the log-scale: 
 

  2 1

2 1

log ln lnf f

b b

Y Y
RoRoM

Y Y
   

    
   

  

and the standard error is calculated as 
 

   log logRoRoM RoRoMSE V , 

 

2 22 2

1 1 1 1 2 2 2 21 2
log

1 1 1 1 1 1 2 2 2 2 2 2

1 1
2ln 1 2ln 1f b f f b fb b

RoRoM
b f b f b f b f

S S S S S SS S
V

n Y Y nY Y n Y Y n Y Y

                                                         
  

where j  is the correlation between baseline and follow-up measurements in group j . Note that 

this variance is based on a multivariate Taylor series approximation.  
 

C4. Calculating CFB and its SE in studies reporting baseline and post-treatment means 

2 2,     2jc jf jb jc jb jf j jb jfY Y Y S S S r S S       
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where jr  is the correlation between the baseline and post-treatment measures in arm j . 

 

C5. Working out a pooled SD in a multi-arm trial 

In a M-arm trial, pooledS  is the pooled standard deviation, calculated as the square root of a weighted 

average of the sample variances 2 ,  1,2,...,jS j M   

  2

1

1

1

,     

M

j j M
j

pooled j
j

n S

S df n M
df






  


   

where , 1, 2,...,jn j M  are the sample sizes of each treatment group j . 

 

C6. Converting means and standard deviations of raw data to that of log-transformed data 

Assuming the individual observations on the natural scale, ijY , are log-normally distributed, the 

arithmetic mean, jX , and standard deviation, 
jXS , of the measurements on the log-scale  may be 

calculated based on the arithmetic mean, jY , and standard deviation, jS , of the measurements on 

the natural scale, using (15) 

2
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2

ln ,     ln 1

1
j

j j
j X

jj

j

Y S
X S

YS

Y

 
 

  
      

   
 

 . 

 
Note that if we are converting mean change from baselines, then the assumption behind this 
conversion is that the individual’s change from baseline on the natural scale are log-normally 
distributed. 
 

C7. Converting geometric means and confidence intervals to log-transformed data 

A geometric mean of raw values in a particular treatment group, jG , may be converted to an 

arithmetic mean of log-transformed values, jX , using (15) 

 ln
jj GX Y .   

A 100(1 )%2
  confidence interval of the geometric mean,  ,

j jG GL U , may be used to obtain a 

measure of the standard deviation of the log-transformed values, 
jXS , using 

   
1 2

ln ln
 

2
j j

j

G G

X j

U L
S n

z 


    

where jn  is the sample size in treatment group j  and 
1 2
z 

 may be determined in an Excel worksheet 

by inputting = norm.inv(1 ,0,1)2
  into a cell. In the case of a 95% confidence interval,

1 2
1.96z 

  
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C8. Converting MD and its SE calculated on the natural scale to MD and SE calculated on the log-

transformed scale 

If the effect size is small, and the distributions of the individual observations on the natural scale,  

ijY  , are similar for both treatment groups, a mean difference reported on the natural scale may be 

converted to a mean difference on the log scale, so long as the overall (or grand) arithmetic mean 
response across both treatment arms, Y , is available (15): 

log

D
D

Y
 ,  

log

D
D

SE
SE

Y
   

 

C9. Converting ratio of geometric means to MD and SE of log-transformed data 

A ratio of geometric means, RoGM , based on raw data may be converted to a mean difference based 
on log-transformed data by taking the log of the ratio,  log lnD RoGM .  

A 100(1- 2
 )% confidence interval of the ratio of geometric means,  ,RoGM RoGML U , may be 

converted to an approximate standard error of the MD based on log-transformed values, 
logDSE , using 

   
log

1 2

ln ln

2
RoGM RoGM

D

U L
SE

z 


   

where 
1 2
z 

 may be determined in an Excel worksheet by inputting = norm.inv(1 ,0,1)2
  into a 

cell. In the case of a 95% confidence interval, 
1 2

1.96z 
 . 

 

C10. Within-trial synthesis of a continuous outcome with additive effects 

A composite MD, *D , in a trial may be calculated as (35) 

* *

1

1 K

k
k

D D
K 

   , 

where *

Reference 
k

k
k

D
D

SD
 , the rescaled MD on the thk  scale reported in a particular trial,

1,...,k K .  Its variance is 

 * *

* *
2

1

1
cov ,

k

K

a bD D
k a b

V V D D
K  

 
  

 
  . 

If we assume that the correlation between the measurements on each pair of scales ,a b  is ab , and 

all participants in treatment group j  were measured on both scales, i.e., ja jb jn n n  , then (34) 

    
* *

1 1
1

1 1 1
cov ,

Reference Reference a b ab a b ab ja jb
a b j

D D S S S S
SD SD n n

 
 

   
 

, 

where jaS  and jbS  are the standard deviations of the measurements recorded on scales a  and b , 

respectively, for treatment group j . 
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C11. Within-trial synthesis of a continuous outcome in a log-transformed MD analysis  

A composite MD in terms of the log-transformed measurements, logD , in a trial may be calculated as 

(35) 

log log
1

1
k

K

k

D D
K 

  , 

Where log 1k jk kD X X  , the difference between arithmetic means of log-transformed values, jkX  

in treatment groups 1 and j  on the thk  scale reported in a particular trial, 1,...,k K .  Its variance 
is 

 
loglog log log2

1

1
cov ,

a bk

K

DD
k a b

V V D D
K  

 
  

 
  . 

If we assume that the correlation between the log-transformed measurements on each pair of scales 
,a b  is logab

 , and all participants in treatment group j  were measured on both scales, i.e., 

ja jb jn n n  , then (34) 

 
1 1log log log log

1

1 1
cov ,

a b ab a b ab ja jbX X X X
j

D D S S S S
n n
   , 

where 
jaXS  and 

jbXS  are the standard deviations of the log-transformed measurements recorded on 

scales a  and b , respectively, for treatment group j . Note that if a correlation between the raw 

measurements on each pair of scales ,a b , ab , is only available, then  

  1 1
log log

1 1 1

1 1
cov , ln 1 ln 1

a b

ab ja jbab a b

a b j ja jb

S SS S
D D

n Y Y n Y Y

   
          

, 

where ,ja jbY Y  and ,ja jbS S  are the means and standard deviations of the raw measurements 

recorded on scales a  and b , respectively, for treatment group j . 
 

C12. Within-trial synthesis of a continuous outcome in an RoM analysis 

A composite log-RoM,  log RoM , in a trial may be calculated as (35) 

   
1

1
log log

K

k
k

RoM RoM
K 

  , 

where  log kRoM  is the log-RoM measured on the thk  scale reported in a particular trial,

1,...,k K .  Its variance is 

        log2log
1

1
cov log , log

k

K

a bRoMRoM
k a b

V V RoM RoM
K  

 
  

 
  . 

If we assume that the correlation between the measurements on each pair of scales ,a b  is ab , and 

all participants in treatment group j  were measured on both scales, i.e., ja jb jn n n  , then (34) 

     1 1

1 1 1

cov log , log ab ja jbab a b
a b

a b j ja jb

S SS S
RoM RoM

nY Y n Y Y


  , 

where ,ja jbY Y   and ,ja jbS S  are the means and standard deviations of the measurements recorded 

on scales a  and b , respectively, for treatment group j . Note that this covariance has been derived 
using a multivariate Taylor series approximation (34). 
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C13. Converting log odds ratio, or proportions responding on each arm to an MD and its SE for an 

additive model 

Trials reporting the proportion of responders in each arm can be combined with other trials reporting 
additive effects. The following procedure assumes that the underlying individual responses have a 
logistic distribution, and they start with the log OR, map to a “standardised mean difference”, and 
then rescale this to the scale of measurement, using a reference SD. 

If 1 2, p p  are the proportions of responders on arms 1 and 2, 1 2, n n  are the total number of patients 

on each arm, and Reference SD  is an appropriate reference SD for the desired scale, then the 
treatment effect and SE in that trial can be found as follows: 

   

2 1

1 2 1 1 1 2 2

(1 ) 1 1 3
ln ;     ( ) ,     

(1 ) (1 ) (1 )

3
Reference ;        Reference ( )

s

D

p p
LOR Var LOR SMD LOR

p p p p n p p n

D SMD SD SE SD Var LOR





 
       

 

  

The final step maps the “standardised effect” into the units of the mean difference.  

 
If either the arm probabilities or the LOR are reported, the mean difference and its SE may be further 
converted into a form suitable for log transformed analyses, provided sufficient statistics are reported 
(see Appendix C7). 
 
If the probabilities are reported, they can be further converted to a form suitable for RoM analysis. 
 

C14. Converting arm-based data into contrast-based data: Differences in mean percentage change 

from baseline 

We note here that if all studies report mean percentage change from baseline, jP , and its standard 
error, 

jP
S , then the data may be directly pooled as mean differences (Appendix C1). It is not possible 

to combine this type of data with any other data formats.   
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APPENDIX D 

General guidance on GMD2 Data Conversion Workbook 

This workbook should allow the user to input one of the prioritised sets of statistics listed in Table 4-
1 for each trial. To keep track of data conversions, we suggest saving a workbook for each review. Data 
may be stored for multiple trials within the worksheets for this purpose.  

The data should be outputted in the format required for synthesis, whether that be arm-level or 
contrast-level. Outputted data from some worksheets may be copied and pasted as inputted data in 
other worksheets. For example: 

 The outputted mean CFB, SD, and n from the CFB Calculation worksheet may be inputted 
into:  

o the External or Internal Rescaling worksheets for standardisation, or  
o the Additive worksheet to be converted into a MD, or  
o the Log worksheet to be converted into a MD of the log-transformed CFB data,  

 The outputted mean differences and SE from the Additive worksheet may be inputted into 
the Within-trial synthesis_MDs worksheet. 

 
Table D1. Reference to conversions in GMD2 Data Conversion Workbook  

Procedure Worksheet 
Data Input Data Output 

Statistics Column(s) Statistics Column(s) 
Calculate mean 
change from 
baseline (CFB) 
based on 
baseline and 
post-treatment 
means 

CFB Calculation Sample size (n) B; G Mean CFB, SD, 
sample size for 
both 
treatment 
groups 

N-S 
Baseline mean, SD C-D; H-I 
Post-treatment 
mean, SD 

E-F; J-K 

Correlation 
between baseline 
and post-treatment 
measurements 

L 

Standardising 
using an 
externally 
sourced 
reference SD 

External 
Rescaling 

Scale name, codea, 
and external 
reference SD 

A-C If arm-level 
data inputted: 
Rescaled 
group means 
and SDs, 
sample size 
 
If contrast-
level data 
inputted: 
Rescaled MD 
and SE 

If arm-level 
data 
inputted: 
Q-V 
 
 
If contrast-
level data 
inputted: 
W-X 

Scale codea 
reported in trial 

F 

CFB or Post-
treatment mean, 
SD, n 

H-M 

Mean difference, SE N-O 
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Procedure Worksheet 
Data Input Data Output 

Statistics Column(s) Statistics Column(s) 
Standardising 
using an 
internally 
sourced 
reference SD 

Internal 
Rescaling 

Baseline SDs and 
sample size from all 
included trials 
reporting data on 
the same scale 

B-E Trial-specific 
pooled 
baseline SD; 
Average 
pooled 
baseline SD 

F; H 

Scale name, codea, 
and internal 
reference SDb from 
column H 

J-L If arm-level 
data inputted: 
Rescaled 
group means 
and SDs, 
sample size 
 
If contrast-
level data 
inputted: 
Rescaled MD 
and SE 

If arm-level 
data 
inputted: 
Z-AE 
 
 
If contrast-
level data 
inputted: 
AF-AG 

Scale codea 
reported in trial 

O 

CFB or Post-
treatment mean, 
SD, n 

Q-V 

Mean difference, SE W-X 

Additive - MD Additive CFB mean, SD, n B-D; H-J Mean 
difference and 
SE 

V-W 
Post-Treatment 
mean, SD, n 

E-G, K-M 

Mean difference, SE N-O 
Within-trial 
synthesis of 
Rescaled MDs 

Within-trial 
synthesis_MDs 

Correlation 
between scales 

A-E Composite 
mean 
difference and 
SE 

BC; BE 

Rescaled MD, SE, 
Reference SD for 
each scale 

H-J; O-Q; 
V-X; AC-AE; 
AJ-AL  

Group SDs, n for 
each scale 

K-N; R-U; 
Y-AB; AF-
AI; AM-AP 

Multiplicative – 
Calculate the 
MD for log-
transformed 
measurements 

Log Sample size (n) B; O Mean 
difference and 
SE for log-
transformed 
measurements 

BZ; CA 

CFB mean, SD of 
log-transformed 
data 

C-D; P-Q 

Post-treatment 
mean, SD of log-
transformed data 

E-F; R-S 

CFB mean, SD of 
raw data 

G-H; T-U 

Post-treatment 
mean, SD of raw 
data 

I-J; V-W 

Geometric mean 
and confidence 
interval limitsd 

K-N; X-AA 

Mean difference, SE 
based on log-
transformed data 

AB-AC 

Overall (grand) 
mean based on raw 
data 

AD 

Mean difference, SE 
based on raw data 

AE-AF 
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Procedure Worksheet 
Data Input Data Output 

Statistics Column(s) Statistics Column(s) 
Within-trial 
synthesis of 
MDs of log 
transformed 
measurements 

Within-trial 
synthesis_MDs_ 
log 

Correlation 
between raw or log-
transformed 
measurements on 
scales 

A-E Composite 
mean 
difference of 
log-
transformed 
measurements 
and SE 

BH; BJ 

MD of log-
transformed 
measurements, SE 
for each scale 

H-I; P-Q; X-
Y; AF-AG; 
AN-AO  

Group means of 
raw measurements 
(if correlations are 
between raw 
measurements) 

J, M, R, U, 
Z, AC, AH, 
AK, AP, AS  

Group SDs of raw 
measurements (if 
correlations are between 
raw measurements) OR 
log-transformed 
measurements (if 
correlations are between 
log-transformed 
measurements)  

K, N, S, V, 
AA, AD, AI, 
AL, AQ, AT 

Group sample size 
(n) for each scale 

L, O, T, W, 
AB, AE, AJ, 
AM, AR, 
AU 

Multiplicative - 
Calculate the 
log(RoM) and 
SE in each trial 

RoM Correlation 
between baseline 
and post-treatment 
measurementsc 

B If arm-level 
CFB data 
inputted: 
log(RoMF:B) 
and SE 
 
Otherwise: 
log(RoM) and 
SE 

U-V 

Sample size (n) C; H 
Baseline mean, SD D-E; I-J 
Post-treatment 
mean, SD 

F-G; K-L 

log(RoM), SE M-N 
Within-trial 
synthesis of 
RoMs 

Within-trial 
synthesis_RoMs 

Correlation 
between scales 

A-E Composite 
log(RoM) and 
SE 

BH; BJ 

log(RoMs), SE H-I; P-Q; X-
Y; AF-AG; 
AN-AO 

Group means, SDs, 
n for each scale 

J-O; R-W; 
Z-AE; AH-
AM; AP-AU 

Multiplicative – 
Calculate ratios 
of mean 
percentage 
change from 
baseline data 

% change Mean percentage 
CFB, SD, n 

B-G log(RoM) and 
SE 

I-J 
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Procedure Worksheet 
Data Input Data Output 

Statistics Column(s) Statistics Column(s) 
Converting log 
odds ratio, or 
proportions 
responding on 
each arm, to an 
MD and its SE  

Proportion of 
Responders 

Proportion of 
responders, n 

B-E Rescaled MD 
and SE 

P-Q 

log odds ratio, 
variance 

F-G 

Scale name and 
reference SD 

I-J 

aCode as determined by user. This will prompt the worksheet to look up the reference SD listed in column C 
(External Rescaling worksheet) or column P (Internal Rescaling worksheet). 
bThe internal reference SDs will have to be inputted one-scale-at-a-time, as the user iteratively inputs baseline 
SDs and sample size from all included trials that report data on the same scale into columns B-E. 
cOnly required if inputting baseline and post-treatment data. 
dDefault confidence level is 0.95, but can be changed by user. 
Abbreviations: CFB – change from baseline, RoM – ratio of means, RoMF:B – ratio of the post-treatment to 
baseline mean ratios, SD – standard deviation, SE – standard error 
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SOFTWARE APPENDIX 

1. Inputting arm-based continuous data into Review Manager (RevMan) 5.3 

Steps to import data: 

 Right click ‘Data and analyses’. 
 Select ‘Add Comparison’. 

 
 The New Comparison Wizard will pop up.  

i. Under ‘What name should the comparison have?’ enter the treatments being compared (e.g., 
“LABA/LAMA vs. LAMA”).  

ii. Click ‘Next >’. 
 Under ‘What do you want to do after the wizard is closed?’, select ‘Add an outcome under the 

new comparison’. Then click ‘Continue’. 
 The New Outcome Wizard will pop up. 

 
i. Select the appropriate Data Type.  

• In this example, we are entering means and standard deviations (SDs) for each arm, 
so we will select ‘Continuous’. 

ii. Click ‘Next >’. 
iii. For ‘Name’, enter the outcome. 

For example: ‘Change from baseline in FEV1 at 3 months’. 
iv. Enter the treatment names. E.g.: 
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• Group Label 1: LABA/LAMA 
• Group Label 2: LAMA 

v. Click ‘Next >’. 
 The Wizard will prompt you to specify which analysis method you would like to use.  

 Different methods will be available depending on the data type you specified previously. 
For our example, the default selections are what we want.  

 
 Click ‘Next >’. 
 Under ‘Which analysis details do you want to use?’, select desired options. 
 Click ‘Next >’. 
 Under ‘Which graph details do you want to use?’, enter: 

i. Left Graph Label: E.g., ‘Favours LAMA’ 
ii. Right Graph Label: E.g., ‘Favours LABA/LAMA’ 

(Note this depends on whether the outcome is desirable or not.) 
 Click ‘Next >’. 
 Under ‘What do you want to do after the wizard is closed?’, select ‘Add study data for the new 

outcome’. 
 Click ‘Continue’. 
 Select all of the studies under ‘Included Studies’  

 Tip: Ctrl + A 
 Click ‘Finish’. 

 
 Copy the data from Excel and paste it into RevMan. 

 Tip: Make sure data columns between the programs match! 
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2. Inputting contrast-based continuous data into Review Manager (RevMan) 5.3 

Steps to import data: 

1. Right click ‘Data and analyses’. 
2. Select ‘Add Comparison’. 

 
3. The New Comparison Wizard will pop up.  

iii. Under ‘What name should the comparison have?’ enter the treatments being compared (e.g., 
“LABA/LAMA vs. LAMA”).  

iv. Click ‘Next >’. 
4. Under ‘What do you want to do after the wizard is closed?’, select ‘Add an outcome under the 

new comparison’. Then click ‘Continue’. 
5. The New Outcome Wizard will pop up. 

 
i. Select the appropriate Data Type.  

• In this example, we are entering log(ratio of means) and standard errors (SEs) for 
each study, so we will select ‘Generic Inverse Variance’. 

ii. Click ‘Next >’. 
iii. For ‘Name’, enter the outcome. 

For example: ‘Change from baseline in FEV1 at 3 months’. 
vi. Enter the treatment names. E.g.: 

• Group Label 1: LABA/LAMA 
• Group Label 2: LAMA 

vii. Click ‘Next >’. 
 The Wizard will prompt you to specify which analysis method you would like to use.  
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 Different methods will be available depending on the data type you specified previously. 
For our example, the default selections are what we want, and we specify the effect 
measure to be “Ratio of Means” 

 
 Click ‘Next >’. 
  Under ‘Which analysis details do you want to use?’, check ‘Entered data are on log scale (Generic 

Inverse Variance only)’ if appropriate (e.g., if entering log(RoM)). 
 Click ‘Next >’. 
 Under ‘Which graph details do you want to use?’, enter: 

i. Left Graph Label: E.g., ‘Favours LAMA’ 
ii. Right Graph Label: E.g., ‘Favours LABA/LAMA’ 

(Note this depends on whether the outcome is desirable or not.) 
 Click ‘Next >’. 
 Under ‘What do you want to do after the wizard is closed?’, select ‘Add study data for the new 

outcome’. 
 Click ‘Continue’. 
 Select all of the studies under ‘Included Studies’  

 Tip: Ctrl + A 
 Click ‘Finish’. 

 
 Copy the data from Excel and paste it into RevMan. 

 Tip: Make sure data columns between the programs match! 
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3. Inputting arm-based continuous data into R 

The following code delivers a fixed effect meta-analysis on the mean difference scale where data are 
inputted as an Excel file where the columns contain the study IDs (“studyid”), treatment group 1’s 
mean (“m1”), standard deviation (“sd1”), and sample size (“n1”), and treatment group 2’s mean 
(“m2”), standard deviation (“sd2”), and sample size (“n2”) (Figure 1). Output from R is displayed in 
blue. The forest plot produced by the code applied to the data in Figure 1 is given in Figure 2. 
 
#Set working directory to be folder that contains relevant files 
setwd(c:/ ") 
 
##load metafor package 
library(metafor) 
##load xlsx package 
library(xlsx) 
 
######################### 
#### Arm-based data ###### 
######################### 
 
# Load data from the “Depression (BDI)_arm” worksheet in an Excel file entitled “metafor example data.xlsx”  
dat<-read.xlsx(file="metafor example data.xlsx",sheetName="Depression (BDI)_arm", header=TRUE) 
 
# Preview a maximum of the first 6 rows of the data 
head(dat) 
 
# Fit a Fixed Effect model 
model.arm <- rma(m1i=m1, m2i=m2, # specify group means 
           sd1i=sd1, sd2i=sd2,  # specify group SDs 
           n1=n1, n2=n2,  # specify group sample sizes 
           measure="MD",  # specify effect measure (MD = mean difference, SMD = standardised mean difference (Hedges' g)) 
           data=dat,      # specify data 
           slab=studyid, # specify column name containing study labels 
           method="FE")  # specify you want to fit a fixed effect ("FE")  
 
# Display the MA results 
model.arm 
 
  # R displays a summary of the meta-analysis model. It first notes that a fixed effect model was fitted, where k = 3 studies were included. 
  # The results of a Q-test for heterogeneity are displayed, followed by the pooled summary results (estimate = 6.92, CI = (4.58, 9.25)). 
  # Fixed-Effects Model (k = 3) 
  #  
  # I^2 (total heterogeneity / total variability):   0.00% 
  # H^2 (total variability / sampling variability):  0.65 
  # 
  # Test for Heterogeneity:  
  #   Q(df = 2) = 1.3081, p-val = 0.5199 
  #  
  # Model Results: 
  #    
  #   estimate      se    zval    pval   ci.lb   ci.ub      
  #    6.9162  1.1908  5.8082  <.0001  4.5823  9.2501  *** 
  #    
  #   --- 
  #   Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
 
# Create a forest plot 
forest(x=model.arm,                 # specify label given to fitted MA model (e.g., "model") 
       xlim=c(-40,35),         # specify horizontal limits of plot 
       alim=c(-10,15),           # specify actual x-axis limits 
       showweights=TRUE,        # Tell R to include study weights 
       at=c(-10,-5,0,5,10,15),   # Specify tick marks on x-axis 
       ilab=round(cbind(dat$m1,dat$sd1,dat$n1,dat$m2,dat$sd2,dat$n2),1),         #specify column names of study data, and round values to 1 decimal place 
       ilab.xpos=c(-28,-25,-22,-19,-16,-13),    # specify location of m1, sd1, n1, m2, sd2, n2 
       digits=1,                 # specify number of decimal places of x-axis labels and effect measures 
       refline=0)                # specify null value to draw reference line at 
 
# Add titles to forest plot  
text(x=c(-28,-25,-22,-19,-16,-13),   # horizontal position of labels 
     y=4.25,                         # vertical position of labels 
     c("m1","sd1","n1","m2","sd2","n2"))   # labels 
text(x=-40,y=4.25,"Study",pos=4)    # pos=4 indicates to position text to right of x 
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text(x=35,y=4.25,"MD [95% CI]",pos=2)  # pos=2 indicates to position text to left of x 
text(x=26,y=4.25,"Weight",pos=2) 

 
 

 
Figure 1. Excel spreadsheet containing arm-level data for three studies comparing CBT intervention to a control 
in terms of reducing depression scores on the Beck Depression Index (BDI) scale. This structure of the data is 
required to run the R code provided above. 

 
 

 
Figure 2. Meta-analysis of arm-level data from studies using the same scale to measure the outcome: CBT vs. 
control for depressive symptoms (measured with Beck Depression Index, BDI). This forest plot was produced 
using the R code provided above. 
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4. Inputting contrast-based continuous data into R 

The following code delivers a fixed effect meta-analyis on the mean difference scale where data are 
inputted as an Excel file where the columns contain the study IDs (“studyid”), the mean differences in 
each study (“md”) and their corresponding variance (“v”) and standard error (“se”) (Figure 3). Output 
from R is displayed in blue. The forest plot produced by the code applied to the data in Figure 3 is 
given in Figure 4. 
 
#Set working directory to be folder that contains relevant files 
setwd("C:/") 
 
##load metafor package 
library(metafor) 
##load xlsx package 
library(xlsx) 
 
############################## 
##### Contrast-based data ##### 
############################## 
 
# Load data from the “Depression (BDI)_contrast” worksheet in an Excel file entitled “metafor example data.xlsx”  
dat <- read.xlsx(file="metafor example data.xlsx",sheetName="Depression (BDI)_contrast", header=TRUE) 
 
# Preview a maximum of the first 6 rows of the data 
head(dat) 
 
# Fit a Fixed Effect model 
model<-rma(yi=md,           # specify mean differences 
           sei=se,           # specify standard error of mean difference 
           measure="MD",     # specify effect measure (MD = mean difference, SMD = standardised mean difference (Hedges' g)) 
           data=dat,         # specify data 
           slab=studyid,     # specify column name containing study labels 
           method="FE")      # specify you want to fit a fixed effect ("FE") 
 
# MA results 
model 
 
  # R displays a summary of the meta-analysis model. It first notes that a fixed effect model was fitted, where k = 3 studies were included. 
  # The results of a Q-test for heterogeneity are displayed, followed by the pooled summary results (estimate = 6.92, CI = (4.58, 9.25)). 
  # Fixed-Effects Model (k = 3) 
  # 
  # I^2 (total heterogeneity / total variability):   0.00% 
  # H^2 (total variability / sampling variability):  0.65 
  # 
  # Test for Heterogeneity:  
  #   Q(df = 2) = 1.3081, p-val = 0.5199 
  # 
  # Model Results: 
  #   
  #   estimate      se    zval    pval   ci.lb   ci.ub      
  #     6.9162  1.1908  5.8081  <.0001  4.5823  9.2501  *** 
  #   
  #  --- 
  #  Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
 
# Create forest plot 
forest(x=model,                 # specify label given to fitted MA model (e.g., "model") 
       xlim=c(-20,30),           # specify horizontal limits of plot 
       alim=c(-10,15),           # specify actual x-axis limits 
       showweights=TRUE,         # tell R to include study weights 
       at=c(-10,-5,0,5,10,15),   # specify tick marks on x-axis 
       digits=1,                 # specify number of decimal places of x-axis labels and effect measures 
       refline=0)                # specify null value to draw reference line at 
 
# Add titles to forest plot 
text(x=-20,y=4.25,"Study",pos=4)         # pos=4 indicates to position text to right of x 
text(x=30,y=4.25,"MD [95% CI]",pos=2)  # pos=2 indicates to position text to left of x 
text(x=23.5,y=4.25,"Weight",pos=2) 
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Figure 3. Excel spreadsheet containing contrast-level data for three studies comparing CBT intervention to a 
control in terms of reducing depression scores on the Beck Depression Index (BDI) scale. This structure of the 
data is required to run the R code provided above. 

 

 
Figure 4. Meta-analysis of contrast-level data from studies using the same scale to measure the outcome: CBT 
vs. control for depressive symptoms (measured with Beck Depression Index, BDI). This forest plot was produced 
using the R code provided in above. 
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5. RevMan calculator for calculating contrast-based data from arm-based data 

The mean difference and standard error for a Contrast-Based meta-analysis may be computed from 
Arm-Based data using the built-in calculator in RevMan, as illustrated for McGillivray 2008 (59) in 
Figure 5.  
 

 

Figure 5. Calculator in RevMan for continuous outcomes 
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