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EXECUTIVE SUMMARY 

This report addresses the use of threshold analysis in NICE guideline development for the assessment of sensitivity 

of treatment recommendations to bias adjustments. Threshold analysis is focussed around the derivation of bias-

adjustment thresholds, which describe the smallest changes to the data that result in a change of treatment decision, 

and decision-invariant bias-adjustment intervals, within which changes to the data do not affect the decision. Using 

these, guideline developers can discern which evidence the treatment recommendation is sensitive to, and which 

evidence makes little difference. 

We describe a new method for threshold analysis, based on the Bayesian joint posterior as arising from a Network 

Meta-Analysis (NMA), which is both highly flexible and easy to implement with the R functions provided in the 

technical appendix. Analysis of the effects of potential bias adjustment may be considered either to individual study 

estimates or to overall treatment contrasts. The method is illustrated with several examples, which demonstrate the 

results and implications of threshold analysis. In most cases the treatment recommendation was robust to plausible 

levels of bias in all but a small proportion of contrasts or studies. In larger, well connected networks with large numbers 

of trials, recommendations were robust against almost any plausible bias adjustments. We also present more complex 

applications of threshold analysis, where for example biases may be considered in groups of studies or groups of 

treatments. 

The threshold method may be extended beyond decisions based on treatment efficacy, to decisions based on net benefit 

as the result of a probabilistic Cost-Effectiveness Analysis (CEA). We demonstrate the application to simple cases 

where the net benefit function is linear in the treatment parameters, and where log odds ratio treatment effects are 

related via an inverse logit transform to a net benefit function linear in probability. In the simple linear net benefit 

scenario, thresholds are derived in the same manner as for efficacy, as the net benefit posterior is multivariate normal; 

for net benefits involving an inverse logit transform, the posterior is logistic-normal and must be evaluated using 

numerical integration, leading to a numerical solution for the thresholds using standard root-finding tools. A general 

numerical solution for CEAs with complex, non-linear, or even unknown net benefit functions is described; firstly the 

net benefit function is emulated, allowing the posterior expectations to be evaluated efficiently using numerical 

integration, and then thresholds are found using numerical root-finding. This remains an area of active research. 
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In order to interpret the results of a threshold analysis, judgements must be made about the magnitude and direction 

of plausible biases, and whether such biases are present in each piece of evidence. We address the former question, 

summarising the literature on internal and external biases, including a meta-epidemiological study of the size of 

internal bias. In any case, judgements on the presence, magnitude, and direction of bias in any evidence must be clearly 

documented and backed up by reasoned argument or evidence. 

We describe the role of threshold analysis in guideline development, and suggest possible uses. Threshold analysis 

may be used either reactively or pre-emptively, answering concerns raised about specific biases or studies in a 

retrospective manner as they arise, or to pre-empt such criticism ahead of time. Phrasing of the recommendation may 

be guided by the threshold analysis, either to strengthen recommendations which are seen to be robust, or to provide 

basis for necessary restraint in the light of the recommendation being sensitive to plausible bias. We show how 

threshold analysis may be used to reduce the number of laborious qualitative GRADE analyses required, suggesting 

that in-depth quality assessments might only need to be performed for evidence that the recommendation is shown to 

be sensitive to. In practice, plausible biases in only a small number of studies out of the total number included could 

have any effect on the treatment decision, leading to substantial time savings from the reduced number of GRADE 

analyses required. 

In situations where the treatment recommendation is shown to be sensitive to plausible bias which the Guideline 

Development Group have reasonable grounds to believe is present, the recommended course of action is to perform 

an updated NMA which models and adjusts for any such bias. Treatment recommendations should then be made based 

on the updated NMA. We strongly suggest that the recommendation is not changed based on the threshold analysis 

alone, not least because this amounts to crudely changing the original data. In either case, any judgements and 

decisions should be clearly documented for the sake of transparency. 

Threshold analysis is a powerful tool, which guideline developers may use to assess the robustness of treatment 

recommendations to bias adjustments. It should strengthen decisions that are shown to be robust to plausible bias, and 

provide proper cause for restraint where decisions are shown to be sensitive. Threshold analysis can both direct critical 

focus onto evidence that the recommendation is sensitive to, and allay concerns over biases in evidence that is non-

influential. The flexibility of threshold analysis allows application to a wide range of scenarios of varying complexity, 

including decisions based on either efficacy or net benefit. 

1. INTRODUCTION 

Since Network Meta-Analysis (NMA) was first introduced as a method for routine application to multiple treatment 

decisions, doubts have been raised about its reliability and its assumptions. These have included a range of critiques. 

Among them there are empirical studies of the consistency of direct and indirect evidence [4-6]; claims that NMA 

was “mystifying” [7]; claims that indirect evidence was “observational” [8, 9]; a variety of statements about its 

assumptions [10-12]; and a wide range of papers suggesting that there were problems with the method, or that more 

research was needed [13, 14].  
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Taken together, this literature appears to present a formidable challenge to the credibility of NMA. Indeed, in spite of 

the many contradictions, inaccuracies, and lack of mathematical development in this body of work, it succeeds in 

focusing attention on one particular issue of over-riding importance: which is that the interpretation of an NMA 

analysis, like pair-wise meta-analysis, relies on there being no major effect modifiers in the included trials. A further 

difficulty is that this assumption is hard, if not impossible, to verify in practice. 

In this report we examine the credibility of NMA in another way, by taking an ex post facto position. Given the results 

of an NMA, how robust is our treatment recommendation to plausible biases in the data? 

The validity of conclusions drawn from network meta-analysis (NMA), like all statistical analyses, depends on 

whether the input data meet the assumptions required by the model. In the specific case of fixed effects NMA it has 

been shown that, just as with a pair-wise meta-analysis, the final estimate of any treatment effect is no more than a 

weighted average of all the study-level estimates [15]. Specifically, the FE NMA estimate of the effect of treatment b 

relative to treatment a is a sum of products of coefficients ,ab XY  and the observed treatment effects XYD  in the 

original trials, summed over all the trials in the evidence base.   

 ,
ˆ

ab ab XY XY

XY

d D   (1) 

Equation (1) also holds approximately for random effects models. This is a key result because it means that if the 

evidence inputs are unbiased, meaning that they are unbiased estimates of the treatment effects in the target population, 

then the NMA estimates are also unbiased for that target population. These same coefficients also allow us to examine 

the influence that potential bias in any data element might have on any specific treatment effect. The matrix of 

coefficients ,ab XY  has been called the contributions matrix [16, 17], and has been used to explore flow of evidence 

in a network of evidence as well as inconsistency.  

Nevertheless, while the contribution matrix is a powerful tool in the analysis of influence of each data element on any 

treatment effect estimate, as we will see further below, it does not by itself tell us how the assess the “quality” of an 

NMA, or the credibility of conclusions that are based on it.  

We review the work leading up to this project below, and then outline the rationale and scope of the present report. 

1.1 PREVIOUS RESEARCH LEADING UP TO THE WORK IN THIS REPORT 

1.1.1 GRADE-BASED APPROACHES TO QUALITY OF NMA 

Two proposals aim to assess the credibility of an NMA by starting from a GRADE analysis of the quality of evidence 

attaching to each of the direct comparisons in the NMA, which we will refer to as “GRADE NMA” [18] and “CMI 

NMA” [14]. Briefly, a GRADE assessment rates the quality of evidence informing a pairwise meta-analysis as high, 

moderate, low or very low [19] across five domains - study limitations, imprecision, indirectness, inconsistency (in 

this context meaning heterogeneity), and publication bias. Evidence from randomised controlled trials starts as high 
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confidence and can be downgraded by a maximum of two levels per domain. A summative judgement of quality is 

formed across all five domains [20] and interpreted as shown in Table 1.  

The GRADE NMA approach does not actually deliver an assessment of the credibility of the conclusions from the 

NMA, but instead delivers a set of unrelated assessments of the reliability of individual contrasts, based on a GRADE 

assessment of the direct and indirect evidence on each one. Because the GRADE NMA process comes to conclusions 

about the most reliable estimate of the A vs B effect without reference to the AC or BC effects, it is capable of reaching 

a set of conclusions that are internally incoherent. 

The CMI NMA method delivers both an assessment of the reliability of the individual contrasts, and an assessment of 

the reliability of the posterior ranking of treatments generated by the entire network of evidence. The methods are 

statistically well-founded, and make extensive use of the contributions matrix, but they are complex and time-

consuming to apply. Most importantly, although the CMI NMA method delivers an assessment of the reliability of 

the treatment rankings obtained from a NMA, this does not tell the decision maker whether the treatment decision 

derived from an NMA can be relied on, nor what the alternative decision might be. 

1.1.2 THRESHOLD ANALYSIS BASED ON 2-STAGE NMA  

Rather than assess the reliability of conclusions based on NMA by examining qualitative assessments of the “quality” 

of the body of evidence or parts of it, we can instead ask the question: “would bias in any of the data elements change 

the treatment recommendation based on an NMA?”  This question can be formulated as a threshold analysis, which 

is a standard form of sensitivity analysis used in decision analysis or cost-effectiveness analysis. The decision maker 

considers a set of options S  according to an objective function ( , )F S θ  of parameters θ  that includes the relative 

effects of the treatments estimated by the NMA. The decision maker then chooses the treatment *S  with the highest 

expected value on the objective function:  

  * argmax ,SS F S   θ θ  (2) 

where the expectation is taken over the joint distribution of the parameters.  Various objective functions can be 

considered, including net benefit [21], which is used in NICE technical appraisals and clinical guidelines. Multi-

criteria decision analysis (MCDA) [22] is a further possibility. However, the large majority of clinical guidelines, 

including those issued by US Colleges of medicine and by governmental bodies in jurisdictions outside the UK are 

based on efficacy alone. 

Our initial work on this topic [23, 24] was based on a two-stage NMA [15]. This starts with the individual trial data 

as input to Stage 1. The output of the first stage is the set of pooled summaries of each of the pair-wise contrasts on 

which there is direct evidence. The second stage takes the output of the first stage as input and then produces an NMA 

analysis in which the consistency relationships are enforced. The reason for using this method was so that we could 

carry out an NMA analysis starting from the exact same data inputs as a GRADE NMA analysis. The threshold 

analysis would then proceed by going through each input data item (a pair-wise pooled summary) in turn, and adding 



NICE CGTSU  MD091577 

 5 24 March 2016 

or subtracting a small amount in increments and then re-running the second stage of the two-stage NMA until the 

treatment recommendation changed. Caldwell et al. [24] implemented the two-stage method in WinBUGS, and, 

although it runs very quickly, it is a computation-intensive numerical solution.  

Besides being cumbersome in the way it was implemented, the disadvantage of this approach is that the base-case 

treatment recommendation based on a two-stage analysis of this sort may not always be the same as the base-case 

recommendation that comes out of a one-stage NMA. There are two reasons for this: first the pooled pair-wise 

summaries are estimated separately, and may therefore have highly unstable between-study variances. Indeed, it has 

been shown that under the assumptions of an NMA, there are powerful constraints on the set of between-trials variance 

for the set of contrast in the network [25]. These cannot be realized if they are estimated independently. Contrasts 

informed by a single trial, in particular, will necessarily yield fixed effect estimates and have far less variance than is 

reasonable if other contrasts were estimated with random effects. A second reason is that the covariance introduced 

by multi-arm trials is not reflected. We have shown, however [24], that, if a two stage analysis is performed in ways 

that avoid these difficulties, it produces results that are almost identical to one-stage. 

1.1.3 THRESHOLD ANALYSIS BASED ON THE BAYESIAN POSTERIOR DISTRIBUTION OF TREATMENT EFFECTS 

However, a far better solution would be to work the threshold model from the Bayesian posterior distribution of 

treatment effects. This guarantees that the threshold analysis is based upon an identical foundation to the base-case 

treatment recommendation. Another reason for starting from the posterior, rather than from the data inputs is that in 

practical NMA applications, especially in the context of clinical guideline development at NICE, the NMA may 

incorporate a very complex mixture of data types. For example, in the Social Anxiety NMA [3, 26] the final NMA 

incorporated a mixture of response and recovery data, linked together by a regression model, as well as data in the 

form of odds ratios and data in the form of continuous scales. At the same time the NMA model itself may also 

incorporate special structures, such as class effects. The two-stage NMA approach adopted in our early work was 

adequate to illustrate the proof of principle, but it lacks the flexibility that would allow us to extend it to include 

multiple types of data input and additional model structures. 

This report focuses on a method that starts from the joint posterior distribution of treatment effects generated by a 

Bayesian one-stage NMA. In practice, we characterize the input to the process as a multivariate normal distribution 

of the relative treatment effects, which can be recovered from a Bayesian NMA in WinBUGS by outputting the 

summary statistics for the relative treatment effects: that is the posterior means and the posterior standard deviations, 

together with the posterior correlations. The method is essentially based on a quantity we call the influence matrix, 

because its elements describe the influence each data point has on each parameter. This matrix is closely related to 

another quantity from classical statistics, known as the hat matrix, which describes the influence of each data point on 

each fitted value; the hat matrix may be derived from the influence matrix by pre-multiplication with a design matrix.  

What marks the method discussed here as different from standard applications of the hat matrix in classical statistics 

is the way it is recovered from the Bayesian posterior [27, 28]. 
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Although the mathematical and computational basis for the threshold analysis based on a Bayesian posterior is 

fundamentally different from the two-stage analysis, both analyses ask exactly the same question “How much would 

the data input have to change before the treatment decision was changed?” and both give answers in exactly the same 

form.  

1.2 THE SCOPE OF THIS REPORT 

The original intent of this work was to: 

1. Apply threshold analysis to a set of examples from completed NICE Clinical Guidelines, both at the trial-

level and at the aggregate level 

2. To further develop the method so that it could be applied to cost-effectiveness analyses as well as clinical 

efficacy analysis 

3. To develop a set of questions that could be used to assess whether members of guideline development groups 

(GDGs) understood thresholds analyses and whether they found them useful in guideline development. 

As the work progressed we were able to meet with the NMA Working group and participate in the Technical meetings. 

These discussions helped us steer the project in whatever direction seemed most likely to be productive. As a result 

of these discussions, and following further work on extension to CEAs, the objectives of the project were modified 

to:  

1. Apply threshold analysis to a set of examples from completed NICE Clinical Guidelines, both at the trial-

level and at the aggregate level 

2. Develop threshold analyses that can be performed on cost-effectiveness analyses, initially with linear net 

benefit functions and then with increasingly complex or even unknown models, and illustrate with examples 

3. Develop guidance on the circumstances under which the base-case recommendation can be changed as a 

result of threshold analyses 

4. Develop a set of options on how threshold analyses might be used in guideline development. 

At the time of writing the report we have not developed a consensus on how threshold analysis should be introduced 

into the guideline development process, so it would be premature to instigate a piloting exercise. However, we 

understand that the National Clinical Guideline Centre will be piloting threshold analyses into the guideline on deep 

vein thrombosis later this year. 

1.3 OUTLINE OF THIS REPORT 

In section 2 we set out some illustrative examples. These are designed to highlight the basic ideas and properties of 

threshold analysis, in both trial-level and contrast-level analyses. The exposition is designed to minimize the 

mathematics behind the method, although some of the key concepts are described in an appendix to this report.  A 

paper covering the technical aspects of the method in detail has been submitted [27]. It will become apparent that the 
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way in which threshold analysis is used in practice, and the way in which it might impact on guideline development 

will be heavily context dependent. 

In the following section (3) we illustrate some more complex threshold analyses, to demonstrate the flexibility of the 

method in addressing a wide range of practical concerns that could be raised in guideline development. Using the 

Social Anxiety guideline as an example, we begin by exploring the impact of adjusting for a generic bias in (a) all 

trials of drug treatments vs placebo, or (b) in all trials of psychological treatments vs waitlist or similar controls. We 

then look at a 2-dimensional threshold plane for both these kinds of bias. In a third analysis, we explore the impact of 

a generic bias in favour of the active treatment in all the trials in which a specific investigator or sponsor was involved.  

Section 4 examines examples of threshold analysis applied to cost-effectiveness analysis, i.e. with net benefit as the 

objective function in equation (2) rather than treatment efficacy, on the scale of the linear predictor in the NMA model. 

Both trial level and contrast level thresholds are explored. The algebraic basis for threshold analysis as applied to 

clinical efficacy starts to break down in models where the net benefit is not linear in the efficacy parameters. However, 

we have made some important progress towards extending threshold analysis to increasingly complex net benefit 

functions, although this work is still in progress. In section 4 we illustrate with two examples: one where net benefit 

is linear in the efficacy parameters, and a second where it is linear in the inverse logit of the efficacy parameters, 

which is a particularly common configuration. We conclude section 4 by outlining a potentially fully general solution 

which has not yet been implemented, and by describing a computationally intensive method that could be adopted 

currently. 

In section 5 we look at how large biases in the data can be expected to be. Part of this section is a summary of the 

meta-epidemiological findings on size of bias in relation to type of outcome (subjective / objective) and indicators of 

risk of bias, such as lack of allocation concealment and lack of blinding.  

Section 6 sets out some options on how threshold analyses might be used in guideline development. We also make 

some suggestions about the circumstances under which a base-case recommendation could be overturned, and on what 

should be reported in guidelines where threshold analyses have been performed.  Section 7 summarises what we 

believe are the current priorities for further research. 

The mathematical details behind these methods [27, 28] are available on request. We provide a technical appendix 

that explains: 

1. How to output the posterior summaries and correlations from WinBUGS 

2. A set of R routines that perform the threshold analyses 

3. A “how-to” guide on running theses routines to obtain the appropriate analysis with associated statistics and 

graphical aids. 
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2. ILLUSTRATIVE EXAMPLES: DECISIONS BASED ON CLINICAL EFFICACY ALONE 

In this section, we illustrate threshold analysis based on the Bayesian posterior, for decisions based on clinical efficacy 

using four examples, which cover a varied range of use cases: fixed and random effects models, class effects, and both 

small and large networks of treatments. We begin with a simple fixed effects NMA of prophylactic treatments for 

headaches and migraines in over 12s, from the clinical guideline CG150.1 [29], with which we explain in detail the 

method and results of a threshold analysis. Three further examples are then presented, along with a discussion of the 

results and their implications on decision making.  

2.1 THRESHOLD ANALYSIS EXPLAINED – HEADACHES EXAMPLE 

We illustrate the method of threshold analysis using the headaches clinical guideline CG150.1 [29]. Eight prophylactic 

treatment regimens for primary headache were compared in a network meta-analysis of 11 studies. The network 

diagram showing how treatments are connected by study evidence is shown in Figure 1. 

The starting point for a threshold analysis is the Bayesian joint posterior arising from a network meta-analysis. This 

posterior may be briefly summarised by a table giving the efficacy of each comparator relative to the reference 

treatment (the basic treatment parameters) – which in this case is placebo (treatment 1). For the headaches NMA these 

treatment effect summaries are shown in Table 1, where we see that propranolol (treatment 7) is the recommended 

treatment based on maximum efficacy. We refer to the recommended treatment under the original analysis with no 

bias adjustment as the base-case recommended treatment. 

 

Figure 1: Treatment network for headaches example. Edges indicate study evidence between two treatments, and numbers on the edges show 

the number of studies making the comparison. Numbers inside the nodes are the treatment codings. The bold loop is formed by a single three-

arm study. 
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Table 1: Treatment effect estimates vs. placebo, along with 95% credible intervals, from the original NMA. Based on efficacy alone propranolol 

(treatment 7) is base-case recommended treatment, having the greatest reduction in headache days per month (–1.19), followed by amitriptyline (3) 

and then topiramate (6). 

Treatment Mean change in headache days 

per month compared to placebo 

(95% Credible Interval) 

2 Telmisartan  –0.52 (–2.32, 1.27) 

3 Amitriptyline  –1.14  (–2.45, 0.16) 

4 Divalproex Sodium  0.13  (–0.99, 1.23) 

5 Gabapentin  0.00  (–1.60, 1.58) 

6 Topiramate  –1.04  (–1.52, –0.58) 

7 Propranolol  –1.19  (–2.20, –0.20) 

8 Propranolol/Nadolol  –0.60  (–1.65, 0.45) 

 

From here we proceed to mathematically derive bias-adjustment thresholds – either for each individual study estimate, 

or for each aggregate treatment contrast. These thresholds describe exactly how much the evidence can change before 

the treatment recommendation changes.  

To illustrate how the bias-adjustment thresholds are calculated, consider the headaches NMA with 8 treatments: one 

treatment has the greatest efficacy (propranolol), and there are 7 other treatments which are less efficacious. For a 

given data point (study estimate or aggregate contrast), we can attempt to make each of the 7 other treatments in turn 

have the greatest efficacy by adding or subtracting from the data point until another treatment has the greatest efficacy. 

Thus, for a given data point we obtain 7 values (positive or negative) which correspond to the smallest changes 

required to make the each of the remaining treatments have the highest efficacy. The smallest positive and negative 

changes out of these 7 values are the positive and negative bias thresholds respectively for the data point. Intuitively 

we can derive these threshold values by dividing the difference in efficacy between the base-case recommended 

treatment and each of the 7 possible new recommended treatments by the amount of influence the data point has on 

each difference, and then taking the smallest positive and negative values as the thresholds. In practice this is achieved 

directly and efficiently using a mathematical formula, without the need for any numerical methods (see [27, 28] for 

details). 

The negative and positive bias thresholds for a study or contrast data point are then added to the value of the data point 

to create a decision-invariant bias interval, within which the data point can lie without changing the treatment 

recommendation (i.e. the recommended treatment is still the same). If the data point is changed beyond the limits of 

the invariant interval, the treatment recommendation will change. 
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CONTRAST LEVEL ANALYSIS 

We perform a threshold analysis to determine how the quality of the combined body of evidence on each contrast 

might affect the treatment recommendation. The results of the threshold analysis are shown in the forest plot in Figure 

2, where each row gives the results for a treatment contrast; we only include contrasts for which there is direct study 

evidence. We show the posterior mean for each relative effect, its credible interval, and the decision-invariant bias 

interval (shaded line). This is the region within which any change in the combined evidence on a contrast will not 

change the treatment recommendation. Beyond the invariant thresholds at each side of the interval a change in 

treatment recommendation would occur; the new recommendation treatment codes are indicated in Figure 2 at either 

side of the interval in column 4, or show “–“ where there is no threshold in that direction. Larger invariant intervals 

therefore indicate that the recommendation is more robust to changes in the evidence on a contrast; smaller invariant 

intervals indicate that the recommendation is sensitive to the quality of evidence on a contrast. Contrasts where an 

invariant threshold lies within the 95% credible interval of the posterior mean are shown in bold, since the treatment 

recommendation is sensitive to the imprecision on these contrasts. In this case, all but the 4 vs. 1 contrast (divalproex 

sodium vs. placebo) have bias thresholds which lie within the 95% CrI. 

Let us examine more closely the first row of Figure 2, which relates to the contrast of treatment 2 (telmistartan) vs. 

placebo. The threshold analysis for this contrast showed that no amount of bias adjustment in the positive direction 

could change the treatment recommendation, which is indicated by “NT”. However, a negative bias threshold does 

exist: a bias-adjustment of –0.674 headache days per month would result in telmisartan (2) being recommended. To 

derive the (one sided) invariant interval from the bias thresholds we then simply add the thresholds to the contrast 

estimate, resulting in the bias invariant interval shown in column 4 of the table: 1.19 0.52 0.67     for the lower 

end of the invariant interval, and “NT” for the upper. The new treatment recommendations at either end of the bias 

invariant interval are shown to the left and right of the interval in column 4. The plot to the right of the table shows 

Figure 2: Forest plot showing the results of the contrast-level threshold analysis. A bias adjustment to the combined evidence on a contrast 

outside of the invariant interval (shaded) will result in a new treatment recommendation (based on the greatest reduction in headache days per 

month); the new recommended treatment code is shown at either end of the interval in column 4. Bold text indicates contrasts where bias 

thresholds lie inside the 95% CrI. The base-case recommended treatment is 7 (propranolol). 

† indicates contrasts with bias-adjustment thresholds less than the minimally important difference (0.5 days).  

NT = no threshold; no amount of bias adjustment in this direction will change the treatment recommendation.  
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the invariant interval as the shaded region, and the distance between the contrast estimate and the lower end of the 

shaded invariant interval is the negative bias-adjustment threshold. Note that the lower portion of the invariant interval 

is shaded red and the contrast label in column 1 is bold: the lower end of the invariant interval lies inside the lower 

end of the 95% CrI (shown as a thin black line), meaning that the treatment recommendation is sensitive to the 

imprecision of the evidence on this contrast. The remaining rows of the figure are interpreted in the same fashion.  

Of particular note are bias thresholds which are also less than the minimally important difference of 0.5 days (as 

defined in the original guideline). Contrasts with such bias thresholds are identified in Figure 2 by a dagger (†): 

topiramate vs. placebo (6 vs. 1), propranolol vs. placebo (7 vs. 1), topiramate vs. amitriptyline (6 vs. 3), and 

propranolol vs. topiramate (7 vs. 6). For each of these contrasts, it is possible for a change in the combined evidence 

which would be considered clinically negligible to change the treatment recommendation – in all cases the new 

treatment recommendation at the threshold is amitriptyline (3). For the topiramate vs. amitriptyline contrast, a positive 

bias of just 0.05 in favour of amitriptyline would be enough to change the treatment recommendation – equivalent to 

an extra hour and a quarter of headache per month; for the propranolol vs. topiramate contrast, a positive bias of just 

0.08 in favour of topiramate would change the treatment recommendation – an extra hour and fifty minutes of 

headache per month. 

The threshold analysis gives insight into the robustness of the treatment recommendation to bias, and shows how the 

treatment recommendation may change. In this case, the treatment recommendation is sensitive to the level of 

imprecision in all but one contrast, and in four contrasts bias adjustments that might be considered clinically negligible 

could lead to a change in the treatment recommendation.  As such, the evidence supporting each treatment comparison 

should be carefully assessed for potential bias; in particular those studies comparing topiramate to placebo, propranolol 

to placebo, topiramate to amitriptyline, and propranolol to topiramate, as these contrasts are highly sensitive to very 

small biases which would result in the base-case recommendation of propranolol changing to a new recommendation 

of amitriptyline. 

STUDY LEVEL ANALYSIS 

To examine the sensitivity of recommendations to the quality of evidence in more detail, we perform a threshold 

analysis at the study level; the effects of bias adjustment are considered on each study estimate – either absolute 

treatment effects or relative differences, depending on which the study reported – instead of on aggregate bodies of 

evidence. This allows us to determine which studies in particular are critical to the overall bias sensitivity of the 

treatment decision. The results of the study-level threshold analysis are presented in Figure 3. The interpretation of 

the forest plot is as in the contrast-level analysis, with one exception: the thin black lines about the study estimates are 

now 95% confidence intervals as reported by the studies (in the contrast-level analysis these indicate 95% credible 

intervals for the aggregate estimates from the Bayesian joint posterior).  

The results show clearly that sensitivity of the treatment recommendation to plausible levels of bias is an issue in only 

a small number of studies: the treatment recommendation is sensitive to the level of imprecision in 4 out of 11 studies, 

which are indicated with bold labels in Figure 3. In two of these studies (Diener 2004 and Dodick 2009), bias 
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adjustments that would be considered clinically negligible (i.e. less than the minimally important difference of 0.5 

days) could result in a change of treatment recommendation – in both cases to amitriptyline (treatment 3). The 

treatment recommendation is sensitive to adjustment in any arm of Diener 2004, the smallest threshold being a positive 

bias of 0.05 headache days per month in the propranolol (7) arm, equivalent to 1 hour 15 minutes more headache per 

month; the recommendation is also sensitive to the contrast reported in Dodick 2009, where the negative bias threshold 

is –0.05 headache days per month in the relative effect of amitriptyline vs. topiramate (3 vs. 6), equivalent to 1 hour 

10 minutes less headache on amitriptyline per month. We also note that these two study results give evidence on 

treatments 3, 6, and 7, which together make up precisely the contrasts of concern highlighted by the previous contrast 

level analysis (see Figure 2). Two other studies (Diener 2009 and Silberstein 2013) have thresholds that lie within the 

95% CIs, showing that the treatment recommendation is sensitive to the level of imprecision in these estimates also. 

The results of this analysis should lead to further scrutiny of the study evidence which the treatment recommendation 

is sensitive to; additionally, the results may placate any concerns raised about studies with wide invariant intervals 

which the treatment recommendation is not so sensitive to. 
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Figure 3: Forest plot showing the results of the threshold analysis at study level. A bias adjustment to the reported study estimate outside of 

the bias invariant interval (shaded) will result in a new treatment recommendation (based on the greatest reduction in headache days per month); 

the new recommended treatment code is shown at either end of the interval in column 4. Bold text indicates contrasts where bias thresholds lie 

inside the 95% CI. The base-case recommended treatment is 7 (propranolol). 

† indicates contrasts with bias thresholds less than the minimally important difference (0.5 days).  

NT = no threshold; no amount of bias adjustment in this direction will change the treatment recommendation.  
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2.2 FURTHER EXAMPLES 

2.2.1 TOCOLYTICS FOR PRETERM LABOUR 

Nineteen tocolytic treatments were grouped into 7 classes and considered for their effects on estimated gestational age 

(EGA) at delivery, combining evidence from 51 studies in an NMA for clinical guideline NG25 by the National 

Collaborating Centre for Women’s and Children’s Health (NCC-WCH) [1]. Prostaglandin inhibitors were seen to 

have the greatest improvement on EGA, with a mean (95% CrI) increase of 2.32 (1.25, 3.35) weeks. The treatment 

network is shown in Figure 4. 

CONTRAST LEVEL ANALYSIS 

Firstly, we consider the effects of bias adjustments to the combined body of evidence on individual contrasts. Figure 

5 gives the results of such a contrast-level analysis, where invariant intervals (shaded lines) are presented about the 

posterior mean of each treatment contrast which has direct evidence. 95% credible intervals for the posterior means 

are also shown; none of the contrasts have thresholds which lie inside the 95% CrI, indicating that the treatment 

recommendation is robust to the level of imprecision in the combined evidence on each contrast. The majority of 

invariant intervals are wide; the smallest threshold is a positive change of 1.07 weeks in favour of treatment 6 on the 

6 vs. 4 contrast, which would result in treatment 6 being recommended. The four contrasts comparing prostaglandin 

inhibitors (treatment 2) are one-sided – meaning that no amount of bias adjustment that increases the relative efficacy 

of treatment 2 will result in a new treatment recommendation. Although this seems intuitive, unless the base-case 

recommended treatment is located on a “spur” in the network with just one incident edge (i.e. only compared to one 

other treatment) then it is possible for increases (as well as decreases) in the efficacy of the base-case recommended 

Figure 4: Network of tocolytic treatment classes. Nodes represent treatment classes and edges show study comparisons. Numbers inside the 

nodes are the treatment codings; numbers on the edges give the number of studies making that comparison. For full details see [1]. 
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treatment to change the treatment recommendation; such a situation is more likely to occur when the decision is finely 

balanced between two or more treatments with similar efficacies, located close together in the network. Overall, the 

results of this analysis attest to the robustness of the treatment recommendation to bias in the combined evidence on 

each contrast. 

STUDY LEVEL ANALYSIS 

We may also consider the effects of bias in individual study estimates. Figure 6 shows the results of the study-level 

threshold analysis, for study estimates with thresholds smaller than 10 weeks. As with the contrast-level analysis the 

invariant intervals are wide, indicating that the treatment recommendation is robust to bias adjustments in individual 

study estimates. The smallest threshold is in the treatment 5 arm of study 51, where a negative adjustment of –3.05 

weeks to the estimated EGA at delivery would result in treatment 7 (oxytocin receptor blockers) becoming the 

recommended treatment. There are no study estimates with threshold that lie within the 95% confidence intervals, 

indicating that the treatment recommendation is robust to the level of imprecision in the estimates. 

Figure 5: Results of the contrast-level threshold analysis for tocolytics treatments. Invariant intervals are plotted as thick shaded lines, and in 

the table are shown with the new recommended treatments at the thresholds at either side of the interval in column 4. The base-case treatment 

recommendation is prostaglandin inhibitors (2).  

NT = no threshold; no amount of bias adjustment in this direction will change the treatment recommendation. 
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Overall, this analysis demonstrates the robustness of the treatment decision to bias adjustments at both study and 

contrast level. It should alleviate concerns about any one study or evidence base, and may reduce the need for laborious 

critical appraisal of each piece of evidence. 

Figure 6: Results of the study-level threshold analysis for tocolytics treatments. Each study has two or more estimates, one for each arm; the 

treatment on each arm is shown in brackets. Only study estimates with thresholds smaller than 10 weeks are shown for brevity.  Invariant 

intervals are plotted as thick shaded lines, and in the table are shown with the new recommended treatments at the thresholds at either side of 

the interval in column 4. The base-case treatment recommendation is prostaglandin inhibitors (2).  

NT = no threshold; no amount of bias adjustment in this direction will change the treatment recommendation. 
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2.2.2 URINARY INCONTINENCE 

The National Collaborating Centre for Women’s and Children’s Health (NCC-WCH) [2] performed a NMA of 14 

treatments for the management of urinary incontinence in adult women for clinical guideline CG171, combining 

evidence from 22 studies; the resulting treatment network is shown in Figure 7. Immediate release (IR) oxybutynin 

was considered the reference treatment, as it was the primary recommendation from a previous analysis. The results 

of the NMA showed that all active treatments were significantly more effective than placebo, though there was no 

evidence for significant differences between the active treatments. Based on efficacy alone, oxybutynin IR was the 

first-ranked treatment. 

CONTRAST LEVEL ANALYSIS 

The results of a contrast-level threshold analysis are shown in Figure 8. As we would expect, with the relatively small 

amount of evidence and the lack of statistical significance of the treatment effects, the first-place ranking of 

oxybutynin IR is sensitive to the imprecision on 7 out of 16 contrasts; these contrasts have thresholds that lie within 

the 95% credible intervals for the estimates. However, none of the new first-ranked treatments at any of the thresholds 

is placebo, which supports the conclusion of the original analysis that any active treatment is better than placebo. The 

smallest threshold is for contrast 4 vs. 1, where a positive adjustment of 0.10 to the LOR of continence in favour of 

treatment 4 (tolterodine IR) results in tolterodine IR becoming the first ranked treatment. 

  

Figure 7: Treatment network for urinary incontinence. Nodes represent treatments and edges show study comparisons. Numbers inside the 

nodes are the treatment codings; numbers on the edges give the number of studies making that comparison. Treatment 14 is placebo. For 

full details see [2]. 
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STUDY LEVEL ANALYSIS 

To identify which studies the first place treatment ranking is sensitive to, we perform a study-level threshold analysis. 

The results of this are shown in Figure 9. An in the contrast-level analysis, we see that the first place ranking is 

sensitive to the level of imprecision in some estimates; however, this sensitivity is seen in only 8 out of 22 studies. 

The other 14 studies have wider invariant intervals, and thus may not require such an in-depth assessment of risk of 

bias. The influential studies provide evidence on the same contrasts as identified as influential in the contrast-level 

analysis, and indeed show the same thresholds and new first ranked treatments; for example the smallest threshold is 

for the one study estimating the 4 vs. 1 contrast (study 7), where a positive adjustment of 0.10 to the LOR of continence 

results in treatment 4 being ranked first. This is because the network is sparse and contains few loops, and most 

contrasts are only formed by one study. In this analysis, where there are multiple studies estimating the same contrast, 

or the network is better connected and so provides indirect evidence as well as direct, we see that the first place ranking 

is more robust to these studies and contrasts. 

Figure 8: Results of the contrast-level threshold analysis for urinary incontinence. Invariant intervals are plotted as thick shaded lines, and in 

the table are shown with the new first ranked treatments at the thresholds at either side of the interval in column 4. Contrasts where thresholds 

lie within the 95% CrI are shown in bold. The base-case rank 1 treatment is oxybutynin IR (treatment 1).  

NT = no threshold; no amount of bias adjustment in this direction will change the first place ranking. 
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2.2.3 SOCIAL ANXIETY 

We now consider a more complex example where analysis is greatly simplified using the contrast-level approach. 

Figure 10 shows the network for an NMA of 41 treatments for social anxiety from 100 studies, performed by the 

National Collaborating Centre for Mental Health for clinical guideline CG159 [3]. The original analysis uses a random 

effects model with treatment response as an outcome. The model includes class effects for 17 different treatment 

classes, incorporates data in the form of standardised mean differences (SMDs) and log odds ratios, and includes data 

on recovery based on a regression calibration. The resulting model is highly complex, and the influence of individual 

pieces of evidence cannot be determined intuitively. 

Figure 9: Results of the study-level threshold analysis for urinary incontinence. Invariant intervals are plotted as thick shaded lines, and in the 

table are shown with the new first ranked treatments at the thresholds at either side of the interval in column 4. Study estimates where thresholds 

lie within the 95% CrI are shown in bold. The base-case rank 1 treatment is oxybutynin IR (treatment 1).  

NT = no threshold; no amount of bias adjustment in this direction will change the first place ranking. 
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CONTRAST-LEVEL ANALYSIS 

Firstly we present the results of a contrast-level threshold analysis, which, despite the complexity of the original 

analysis, is straightforward to perform. Due to the large number of contrasts, Figure 11 shows the results of the 

threshold analysis only for the 48 contrasts with thresholds less than 3 SMD, out of the total 84 contrasts. The base-

case treatment recommendation is treatment 41, group cognitive behavioural therapy (CBT) with phenelzine. All but 

five contrasts have thresholds greater than 0.8 SMD in magnitude, a difference which Cohen [30] considered to be 

large for behavioural sciences. The smallest threshold is a positive change of 0.46 in the SMD of the 41 vs. 31 contrast, 

at which point treatment 36 (cognitive therapy) becomes the recommended treatment. For all five of the contrasts with 

Figure 10: Social Anxiety treatment network. Nodes represent treatments and edges show study comparisons. Numbers around the edge are 

the treatment codings. Treatment classes are indicated by the braces, some classes contain a single treatment only. Treatment 1 is waitlist, 

treatment 2 is pill placebo, and treatment 3 is psychological placebo. For full details see National Collaborating Centre for Mental Health [3]. 
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the smallest thresholds, cognitive therapy is the new treatment recommendation at the threshold. Two of these five 

contrasts involve treatment 41 (ranked first in the base-case analysis) and the other three involve treatment 36 (ranked 

second); adjustments that reduce the efficacy of treatment 41 or increase that of treatment 36 both result in treatment 

36 being the recommended treatment. 

The large majority of invariant intervals in the contrast-level analysis are wide, and there are no thresholds which lie 

inside the respective 95% CrI which would indicate sensitivity to the imprecision on that contrast. Altogether, this 

suggests that the first place ranking on efficacy of group CBT with phenelzine is largely robust to changes in the 

combined evidence on contrasts, with sensitivity to plausible bias adjustments on only a small number of contrasts. In 

Figure 11: Contrast-level forest plot for the Social Anxiety example showing results of the threshold analysis, sorted with smallest thresholds 

first. Invariant intervals are plotted as thick shaded lines, and in the table are shown with the new recommended treatments at the thresholds at 

either side of the interval in column 4. Only contrasts with a threshold smaller than 3 SMD are shown here for brevity. The base-case 

recommended treatment is 41.  

NT = no threshold; no amount of bias adjustment in this direction will change the first place ranking. 
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particular, the evidence on only a small subset of all 84 contrasts need be assessed qualitatively in detail for possible 

bias. 

STUDY-LEVEL ANALYSIS 

We also perform a threshold analysis where bias adjustments are considered for individual study estimates. Due to the 

large number of studies involved, Figure 12 shows the results of the threshold analysis only for the 44 study data 

points with thresholds less than 3 SMD, out of the total 146 study data points. Echoing the contrast-level analysis, the 

large majority of study estimates have wide invariant intervals, and there are only six data points with thresholds less 

than 0.8 SMD in magnitude. Of particular note are the 41 vs. 2 contrast of study 96 (BLANCO2010), in which a 

positive adjustment of 0.22 to the SMD reducing the efficacy of treatment 41 compared to treatment 2 results in 

treatment 36 becoming recommended, and the 36 vs. 2 contrast of study 81 (CLARK2003), in which a negative 

adjustment of –0.50 to the SMD increasing the efficacy of treatment 36 compared to treatment 2 also results in 

treatment 36 becoming recommended. These thresholds lie within the 95% confidence intervals for the study 

estimates, indicating that the first place rank of treatment 41 is sensitive to the imprecision in these data points. Indeed, 

study 96 is the only one comparing treatment 41, and then only on 32 patients, so this is not surprising. 

The large majority of invariant intervals in the study-level analysis are wide. This suggests that the first place ranking 

on efficacy of group CBT with phenelzine is insensitive to the results of most studies, which should allay concerns 

(either reactively or pre-emptively) raised for many studies regarding their perceived quality or bias, instead focussing 

discussion on the evidence which is most influential. 
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2.3 SUMMARY OF THE SECTION 

In this section we have seen the implementation of the threshold method in practice, explained the ideas behind the 

derivation of bias-adjustment thresholds and invariant intervals, and presented and interpreted the results of threshold 

analyses for NMAs of varying types. A more detailed background to the threshold method is given in [27, 28]; 

technical details are available on request. We have also suggested how the results might be used as part of the decision 

making process, and the potential uses and impacts they could have. The role of threshold analysis in guideline 

development is explored further in section 6. 

Figure 12: Study-level forest plot for the Social Anxiety example showing results of the threshold analysis, sorted with smallest thresholds 

first. Invariant intervals are plotted as thick shaded lines, and in the table are shown with the new recommended treatments at the thresholds at 

either side of the interval in column 4. Only contrasts with a threshold smaller than 3 SMD are shown here for brevity. The base-case 

recommended treatment is 41.  

NT = no threshold; no amount of bias adjustment in this direction will change the first place ranking. 
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3. MORE COMPLEX EXAMPLES 

In this section we continue with the social anxiety NMA (section 2.2.3), and consider more complex uses of threshold 

analysis where, rather than considering bias in individual studies or contrasts, we consider the effects of biases that 

might apply to entire groups of contrasts or studies at the same time. Such analyses are likely to be considered 

reactively to explore concerns raised about specific biases to treatment classes or sets of studies. Here we consider 

generic biases to pharmacological treatments when compared to an inactive treatment, and similarly for psychological 

treatments. We then consider these two biases simultaneously, to examine how the presence of these specific biases 

jointly might affect the treatment recommendation. We also explore the sensitivity of the treatment recommendation 

to potential bias in studies carried out by a particular investigator. Finally, we repeat our analysis where the treatment 

decision is restricted to a subset of the treatments in the full NMA. It should be noted that no new techniques or 

methods are required to carry out any of these analyses; they may be performed using the same tools and ideas as used 

in earlier sections [27, 28]. 

3.1 GENERIC BIAS IN PHARMACOLOGICAL VS. INACTIVE CONTRASTS 

Firstly we consider a generic bias adjustment for pharmacological vs. inactive contrasts (treatments numbers 9-23 and 

1-3, respectively). Such an adjustment may arise for example when it is thought that treatment effects are being 

exaggerated for active pharmacological treatments, perhaps due to lack of blinding. Such biases are believed to occur 

quite commonly for subjective reported outcomes, such as those in social anxiety studies (see section 5). We assess 

how much bias adjustment may be introduced to the evidence on pharmacological vs. inactive contrasts before the 

treatment decision changes, deriving an invariant interval which is presented in Figure 13. 

Since all pharmacological vs. inactive contrasts are considered for bias adjustment by the same amount 

simultaneously, there is a single invariant interval. A bias adjustment to account for an exaggeration of treatment 

effect would need to be larger than 2.23 SMD before the treatment recommendation changes, at which point treatment 

2 (drug placebo) is recommended. Not only is this adjustment large but it would also mean that, in truth, 

pharmacological treatments are significantly worse than an inactive comparator. The threshold for bias adjustment in 

the opposite direction, to account for an underestimation of effect, is also reasonably large at –1.22 SMD, at which 

point treatment 39 (paroxetine with clonazepam) would be the recommended treatment. As such, we may consider 

the treatment recommendation to be robust to such generic bias in the pharmacological vs. inactive contrasts. 
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Figure 13: The invariant interval for all pharmacological treatments against an inactive comparator, considered to be bias adjusted by the same 

amount simultaneously. The base-case recommended treatment is 41. 

Figure 14: The invariant interval for all psychological treatments against an inactive comparator, where all contrasts are considered to be bias 

adjusted by the same amount simultaneously. The base-case recommended treatment is 41. 



NICE CGTSU  MD091577 

 26 24 March 2016 

3.2 GENERIC BIAS IN PSYCHOLOGICAL VS. INACTIVE CONTRASTS 

In the same manner to the pharmacological vs. inactive contrasts, we may consider the psychological vs. inactive 

(treatments numbers 4-8, 24-36 and 1-3, respectively) contrasts for generic bias adjustment. Again, since all 

psychological treatment vs. inactive contrasts are considered for bias adjustment by the same amount simultaneously, 

there is a single invariant interval which is presented in Figure 14. If the true effect of all psychological treatments is 

understated when compared to an inactive comparator, then a bias adjustment for this of more than –0.66 SMD would 

result in treatment 36 (cognitive therapy) being recommended. On the other hand, in the perhaps more likely scenario, 

an adjustment to correct for the effect of psychological treatment being exaggerated when compared to an inactive 

treatment would need to be 1.54 SMD or larger to change the treatment recommendation, at which point psychological 

placebo (treatment 3) would be recommended. Not only is this adjustment relatively large, but would require most 

psychological treatments to be significantly worse than an inactive comparator. We may therefore consider the 

treatment recommendation to be robust to generic bias in the psychological vs. inactive contrasts also. 

3.3 SIMULTANEOUS PHARMACOLOGICAL AND PSYCHOLOGICAL TREATMENT BIAS 

The threshold method is not restricted to analysis in one dimension; we may assess sensitivity to bias in multiple 

studies or contrasts simultaneously. Here we examine the effects of simultaneous bias adjustments for the generic 

pharmacological and psychological treatment biases discussed above. Figure 15 shows the 2-dimensional invariant 

region (shaded) formed by threshold lines; bias adjustments within this region do not change the treatment 

recommendation, however crossing a threshold line will result in a new treatment being recommended. The invariant 

Figure 15: Invariant region (shaded) for simultaneous adjustment for psychological and pharmacological biases. The new treatment 

recommendations at the threshold lines are shown; the base-case treatment recommendation is treatment 41. 
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region is large, requiring large bias adjustments to cross a threshold line. The most notable feature is that increasing 

the amount of positive bias adjustment for pharmacological vs. inactive contrasts reduces the amount of negative bias 

adjustment for psychological vs. inactive contrasts required to cross the threshold line for treatment 36 to become 

optimal. For example, with zero bias adjustment to the pharmacological vs. inactive contrasts, the threshold value for 

bias adjustment to the psychological vs. inactive contrasts is –0.66 SMD; with a 1 SMD adjustment to the 

pharmacological contrasts this reduces to –0.43 SMD; and with a 2 SMD adjustment to –0.21 SMD. 

3.4 BIAS IN STUDIES BY A PARTICULAR INVESTIGATOR 

Professor David M. Clark developed treatment 36 (cognitive therapy, or CT) and also authored three trials which 

compare cognitive therapy to other active and inactive treatments. A critic of CT might argue that patients undergoing 

CT in a Clark trial achieve better outcomes than they otherwise would with a different PI in another CT trial. With 

threshold analysis we do not attempt to detect whether any such bias exists, rather whether it could plausibly make 

any difference to the treatment decision. 

Figure 16 shows the invariant interval for bias adjustment to the CT arms of Clark trials. A bias adjustment of –0.18 

SMD in favour of treatment 36 (CT) would result in CT becoming the recommended treatment. Such an adjustment 

is small and lies within the 95% CI of each study estimate, however the direction of this adjustment would be to correct 

an underperformance of CT in Clark trials – not an exaggeration of effect as suggested. In the opposite direction, there 

is no plausible bias adjustment for overestimation of CT efficacy in Clark trials that could result in a new treatment 

recommendation. In the context of a base-case recommendation for CBT plus phenelzine, such a result should provide 

defence from specific criticisms relating to the Clark trials and the possibility of over-performance. 

 
Figure 16: The invariant interval for bias adjustment in the CT arms of Clark trials. The base-case treatment recommendation is treatment 41. 
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3.5 THRESHOLD ANALYSES FOR A SUBSET OF TREATMENTS 

Using inputs from the social anxiety network meta-analysis, a cost-effectiveness analysis (CEA) was performed to 

arrive at a final treatment recommendation. However, not all treatments were considered for inclusion in the CEA; for 

example if there was insufficient evidence on the efficacy of a treatment, or if a treatment was not available in the UK. 

Of particular note is the decision to remove treatment 41 (group CBT with phenelzine) from the CEA, which was the 

highest ranked treatment for efficacy in the NMA. As a consequence, treatment 36 (cognitive therapy) which ranked 

second amongst all treatments in the NMA, was ranked first amongst those included in the CEA. We therefore also 

consider the robustness of the treatment decision when ranking is restricted to treatments included in the CEA, which 

in the base case is treatment 36. 

Figure 17: Contrast-level forest plot for the Social Anxiety example showing results of the threshold analysis for treatments included in the 

CEA only, sorted with smallest thresholds first. Only contrasts with a threshold smaller than 3 SMD are shown here for brevity. The base-case 

treatment recommendation is 36. 

NT = no threshold; no amount of bias adjustment in this direction will change the first place ranking. 
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Figure 17 shows the contrast-level results of the threshold analysis restricted to treatments included in the CEA only. 

The results are broadly similar to those including all treatments, and indicate that the treatment recommendation for 

CT is largely robust to bias in aggregate data on the contrasts. There are only two contrasts with thresholds less than 

0.8 SMD in magnitude, and none of the contrasts have thresholds that lie within the 95% CrI. The smallest two 

thresholds are negative adjustments of –0.74 and –0.76 SMD to the 17 vs. 2 and 13 vs. 2 contrasts, at which point 

treatments 17 and 13 are recommended respectively. 

The results of the study level threshold analysis for CEA-included treatments in Figure 18, parallel the contrast level 

results: we again see that the restricted decision is again largely robust to biases, this time in the individual study 

Figure 18: Study-level forest plot for the Social Anxiety example showing results of the threshold analysis for treatments included in the CEA 

only, sorted with smallest thresholds first. Only contrasts with a threshold smaller than 3 SMD are shown here for brevity. The base-case 

treatment recommendation is 36. 

NT = no threshold; no amount of bias adjustment in this direction will change the first place ranking. 
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estimates. There is only one study estimate with a threshold less than 0.8 SMD, in the 12 vs. 2 contrast of study 18. 

Here a negative bias of –0.75 SMD in favour of treatment 12 results in treatment 12 being recommended. There are 

no study estimates with thresholds that lie within the 95% CI, indicating that the treatment decision restricted to 

treatments included in the CEA is not sensitive to the imprecision of any estimates. 

We also repeat the analyses for generic pharmacological and psychological treatment biases, when the treatment 

decision is restricted to treatments included in the CEA. These results are displayed in Figure 19. A bias adjustment 

reducing the efficacy of all psychological treatments compared with inactive by 0.96 SMD, or a bias adjustment 

increasing the efficacy of all pharmacological treatments compared with inactive by 1.02 SMD both result in treatment 

23 (phenelzine) being recommended. In order for treatment 2 to become recommended from adjusting for a 

pharmacological treatment bias, a reduction in efficacy of 2.17 SMD of all pharmacological treatments is required – 

which is likely implausible, as this would result in all drugs being deemed detrimental compared to an inactive 

treatment. In general, the treatment recommendation restricted to CEA treatments is less sensitive to these bias 

adjustments than the treatment recommendation based on all treatments. 

Figure 19: (L) The invariant interval for all psychological treatments against an inactive comparator, where all contrasts are considered to be 

bias adjusted by the same amount simultaneously. (R) The invariant interval for all pharmacological treatments against an inactive comparator, 

considered to be bias adjusted by the same amount simultaneously. The base-case recommended treatment is 36 when restricted to treatments 

included in the CEA. 
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Figure 20 shows the invariant interval for the restricted treatment decision for bias adjustment in the cognitive therapy 

arms of studies carried out by Professor David M. Clark. There is no negative threshold in this case, meaning that 

adjustments increasing the efficacy of CT (treatment 36) compared to inactive treatment can never result in a new 

treatment decision. However, we now see that a positive bias adjustment of 0.41 SMD, reducing the efficacy of CT 

compared to inactive treatment, results in treatment 23 (phenelzine) becoming the new recommendation. This 

threshold lies inside the 95% CI for each study estimate, meaning that the treatment recommendation is sensitive to 

the imprecision in these estimates. If the effect of CT is exaggerated in Clark studies by this amount or greater, any 

bias adjustment to account for this would result in phenelzine being recommended.  

4. THRESHOLDS FOR NET BENEFIT 

In the preceding sections we have explored the effects of bias adjustments on treatment recommendations based on 

efficacy, where the recommendation may be formed directly from the joint Bayesian posterior of the treatment 

parameters resulting from the NMA. However it is commonplace in guideline development that treatment 

recommendations are not based upon efficacy alone; instead, any potential gains in efficacy are considered alongside 

incurred costs, and evaluated together in a Cost-Effectiveness Analysis (CEA) [31]. Treatment recommendations are 

then made based on expected (incremental) net benefit. That is, if NBk  is the net benefit of the k -th treatment, then 

in the notation of equation (2) we have  , NBkF k θ  and decisions are made based on  NBkθ . 

In this section we explore how threshold method is extended to assess sensitivity to bias adjustments for treatment 

decisions made based on net benefit, as the result of a probabilistic CEA. We focus on probabilistic rather than 

deterministic cost-effectiveness analyses, since the former fully accounts for all parameter uncertainty [32, 33]. A 

probabilistic CEA is based on the posterior distribution of the treatment effect parameters, and effectively transforms 

the posterior distribution over efficacy into a distribution over net benefit using the CEA model. In practice this 

 
Figure 20: The invariant interval for a treatment decision based on treatments included in the CEA only for bias adjustment in the CT arms of 

Clark trials. The base-case treatment recommendation is 36.  

NT = no threshold; a bias adjustment in this direction can never change the treatment decision. 
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transformation may be coded directly in WinBUGS at the same time as the NMA is performed, or written in Excel 

and applied to realisations of the MCMC chains from WinBUGS; both methods provide samples from the joint 

posterior distribution of net benefit, upon which treatment recommendations are then made. 

Firstly, we explain the impact of linearity in the CEA model: in fully linear cases, the transformation results in a 

posterior for net benefit which is of a known, analytically tractable form, and thresholds may be derived directly; 

linear models involving odds ratios also result in a net benefit posterior which is in a known form, however numerical 

methods must be used to evaluate some quantities in order to evaluate thresholds; when the CEA model is complex, 

non-linear, or even unknown / impractical to write down, a generalised numerical approach may be employed. 

Technical details are available on request. We then illustrate these cases in practice using examples. 

4.1 EXTENDING TO CEA AND THE IMPACT OF MODEL LINEARITY 

4.1.1 NET BENEFIT LINEAR IN TREATMENT EFFECT PARAMETERS 

When the net benefit NBk  parameter for a treatment k  can be written as a linear function of the treatment effect 

parameter kd , that is 

 NBk k k kd    

for some parameters k  and k , then the posterior distribution of the net benefit parameters is known and we can 

derive thresholds algebraically using the same ideas as for efficacy decisions. 

4.1.2 NET BENEFIT LINEAR IN PROBABILITY WHEN TREATMENT EFFECT IS AN ODDS RATIO 

Suppose that the net benefit NBk  parameter for a treatment k  can be written as a linear function of a probability 

kp  of which the treatment effect parameter kd  is the log odds ratio versus the reference treatment, that is 
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In this case the posterior distribution of the net benefit parameters is known, however it is not analytically tractable; 

evaluation of the expected net benefit for a treatment requires numerical integration. We can therefore find thresholds 

for treatment decisions based on this form of net benefit function using numerical methods. This is not a brute-force 

approach requiring expensive re-evaluation of the entire NMA and CEA models – this would in many cases be so 

computationally expensive and time consuming as to be infeasible – but instead utilises the analytic properties of the 

posterior to inform a fast, efficient calculation of thresholds by finding roots of the net benefit contrasts numerically. 
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4.1.3 A GENERAL SOLUTION FOR COMPLEX, NON-LINEAR, OR UNKNOWN NET BENEFIT FUNCTIONS 

Frequently in cost-effectiveness analysis the net benefit function is non-linear, perhaps involving several non-

independent parameters, or is either analytically intractable or infeasible to write down, possibly due to the size and 

complexity of the model. In such scenarios we cannot take the analytic and semi-analytic approaches detailed in 

sections 4.1.1 and 4.1.2.  

One possibility is a brute-force solution where the NMA and CEA models are re-run many times changing the data 

slightly each time, along the same lines of our previous work on threshold analysis (see section 1.1.2 and [24]). 

Although possible in theory, this may be far too computationally expensive and time consuming to be feasible in 

practice. If it is to be attempted, the CEA model should be run in, for example, R, calling WinBUGS to carry out the 

NMA. It would be much more difficult if the CEA is implemented separately from the NMA in Excel. A general 

solution to perform threshold analyses for treatment recommendations based on net benefit is therefore highly 

desirable.  

We have been able to make considerable progress towards a general solution in which the analysis is carried out in 

two stages. The first stage uses Generalised Additive Models [34-36] or Gaussian Process Emulators [37, 38] to fit 

the net benefit functions. In the second stage numerical quadrature is employed to find the expected net benefit, 

followed by efficient numerical root-finding. This general method is an ongoing area of research.  

4.2 EXAMPLES 

We apply these ideas to examples of CEAs in order to derive bias-adjustment thresholds and invariant intervals. In 

the first example we continue with the headaches NMA from section 2.1, which has a simple linear CEA to which we 

apply the technique of section 4.1.1. We then return to the social anxiety example from section 2.2.3, for which a more 

complex CEA was performed; to this we apply the technique of section 4.1.2. 

4.2.1 HEADACHES: NET BENEFIT LINEAR IN ALL TREATMENT EFFECT PARAMETERS 

The headaches clinical guideline introduced as an example in section 2.1 included a probabilistic cost-effectiveness 

analysis, to reach a treatment recommendation based on net benefit. Not every treatment from the NMA was included 

in the CEA; only treatments which the guidelines committee judged to have sufficient evidence of clinical 

effectiveness from the NMA were included in the CEA. The resulting treatment network is shown in Figure 21. The 

base-case treatment recommendation is propranolol (treatment 7), with an expected (incremental) net benefit of £405 

compared to placebo. 
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The CEA model is a simple linear function of the treatment effects: 

 incQALYincNB incCostk k k    

which can be rearranged into the form incNBk k kd   . We therefore have the situation described in section 

4.1.1 and derive thresholds algebraically. 

Figure 22 shows the results of a contrast-level threshold analysis for the net benefit treatment recommendation. As 

with net benefit as the decision function, the treatment recommendation is highly sensitive to small changes in the 

data; indeed, the cost effectiveness analysis is even more sensitive to bias than the treatment efficacy recommendation. 

In the worst case, a positive bias in the relative number of headache days per month on topiramate vs. amitriptyline (6 

vs. 3) of 0.01 results in amitriptyline being recommended on the basis of net benefit, equivalent to an increase in 

headache duration of just 20 minutes per month on topiramate compared to amitriptyline. The bias thresholds for the 

combined evidence on the other three contrasts are of similar magnitude: –0.05 for topiramate vs. placebo (6 vs. 1), 

0.04 for propranolol vs. placebo (7 vs. 1), and 0.02 for propranolol vs. topiramate (7 vs. 6). At each of these thresholds 

the new treatment with greatest net benefit is amitriptyline (3). Each of these thresholds lies within the 95% CrI for 

Figure 21: Treatment network for headaches example, restricted to treatments included in the CEA. Edges indicate study evidence between 

two treatments, and numbers on the edges show the number of studies making the comparison. Numbers inside the nodes are the treatment 

codings. The bold loop is formed by a single three-arm study. 

Figure 22: Forest plot showing the results of the contrast-level net benefit threshold analysis, based on the reduced network. Invariant intervals 

are shaded, and the new recommended treatment is shown at either end of the interval in column 4. All contrasts have thresholds that lie within 

the 95% CrI, and are smaller than the minimally important difference (0.5 days). The base-case recommended treatment is 7 (propranolol). 
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the contrast and is smaller than the minimally important difference of 0.5 days; as such the net benefit treatment 

recommendation is highly sensitive to bias adjustments. This is perhaps not surprising, as propranolol has only 47% 

probability of being most cost-effective, alluding to the uncertainty present in the base-case result. 

A study-level threshold analysis, shown in Figure 23, tells the same story: the treatment recommendation based on 

efficacy is highly sensitive to bias adjustments and to the level of imprecision in every piece of evidence. In this case, 

such sensitivity likely arises due to the small number of studies. 

4.2.2 SOCIAL ANXIETY: 1 YEAR DECISION TREE WITH LOG ODDS RATIO TREATMENT EFFECT 

The social anxiety clinical guideline presented as an example in section 2.2.3 includes a probabilistic cost-

effectiveness analysis of 28 treatments out of the full network; to arrive at a final treatment recommendation based on 

net benefit. Thirteen treatments were excluded from the CEA; for example if there was insufficient evidence on the 

Figure 23: Forest plot showing the results of the study-level net benefit threshold analysis, based on the reduced network. Invariant intervals 

are shaded, and the new recommended treatment is shown at either end of the interval in column 4. Bold text indicates contrasts where bias 

thresholds lie inside the 95% CI. The base-case recommended treatment is 7 (propranolol). 

† indicates contrasts with bias thresholds less than the minimally important difference (0.5 days).  

NT = no threshold; no amount of bias adjustment in this direction will change the treatment recommendation.  
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efficacy of a treatment, or if a treatment was not available in the UK. The base-case recommendation from the 1-year 

decision tree CEA was treatment 23 (phenelzine). 

The CEA model has two stages: a decision tree for the first year after treatment, using probabilities of recovery derived 

from the SMD treatment effects via a conversion to log odds ratios, after which a two-state Markov model was used 

for four further years of follow-up. The guideline makes its final recommendations based upon the full 5-year model; 

however we shall consider only the first stage of the model here. Considering just the decision tree results in a net 

benefit function that is a linear function of the recovery probability, obtained by linearly transforming the original 

treatment effects, which are SMDs, into LORs. As such we have the situation described in section 4.1.2.  

Figure 24 shows the results of the contrast-level threshold analysis. All of the invariant intervals are wide; the smallest 

threshold is for the 8 vs. 5 contrast, where a positive bias adjustment of 1.57 to the SMD in favour of treatment 5 

(book self-help, no support) results in treatment 5 being recommended. Notice that at the negative threshold for this 

contrast treatment 5 again becomes optimal – this highlights the non-linear nature of these net benefit functions, which 

may not even be monotonic in the treatment parameters. Several contrasts had neither negative nor positive thresholds, 

and made no contribution to the net benefit decision; this occurs because treatments have been excluded from the 

CEA.  

The results of the study-level threshold analysis are shown in Figure 25. Once again, all of the invariant intervals are 

wide. At the study level, the smallest threshold is for the 12 vs. 2 estimate of study 18, where a negative adjustment 

of –1.75 SMD in favour of treatment 12 will result in treatment 12 (mirtazapine) being recommended.  

Altogether, the contrast- and study-level threshold analyses support the robustness of a treatment recommendation 

made based on net benefit from the 1-year decision tree CEA. There are no individual studies or combined evidence 

on contrasts to which the decision is particularly sensitive; this should defend the recommendation from concerns 

raised about individual studies or combined contrast evidence. Although not presented here, it is entirely possible for 

the extended analyses described in sections 3.1–3.4 to be considered, with no greater difficulty than before. Indeed, 

the numerical methods used in this section need only be performed once, as the threshold calculations can then be 

reused for the extended analyses. 
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Figure 24: Contrast-level forest plot for the Social Anxiety example showing results of the threshold analysis for net benefit. Invariant intervals 

are plotted as thick shaded lines, and in the table are shown with the new recommended treatments at the thresholds at either side of the interval 

in column 4. Only contrasts that have at least one threshold (i.e. affect the recommendation) are shown. The base-case recommended treatment 

based on net benefit is treatment 23 (phenelzine).  

NT = no threshold; no amount of bias adjustment in this direction will change the treatment recommendation. 
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Figure 25: Study-level forest plot for the Social Anxiety example showing results of the threshold analysis for net benefit. Invariant intervals 

are plotted as thick shaded lines, and in the table are shown with the new recommended treatments at the thresholds at either side of the interval 

in column 4. Only contrasts with a threshold smaller than 10 SMD are shown here for brevity. The base-case recommended treatment based 

on net benefit is 23 (phenelzine).  

NT = no threshold; no amount of bias adjustment in this direction will change the treatment recommendation. 
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5. PLAUSIBLE MAGNITUDE OF BIASES 

The threshold analysis is designed simply to calculate whether changes in the data, of a size and direction that might 

reasonably be attributed to bias or error, would result in changes in treatment recommendation, whether based on 

clinical efficacy alone or cost-effectiveness. The question of how large a bias is “reasonable” is a totally separate 

question, although of central importance if the threshold analysis is to be clinically interpretable, and especially if it 

leads to an updated NMA model to include bias modelling and adjustment, which might then lead to changes in the 

recommendation (see Section 6.2). In this next section we set out what is known about the sizes of biases. 

5.1 INTERNAL AND EXTERNAL BIAS 

A key reference giving a very clear account of internal and external bias is by Turner [39]. It is important to emphasise 

that the “bias” which is of concern to the meta-analysis, is bias relative to the target parameter of interest. 

To study internal bias in a trial report, we consider whether the way the trial was conducted and analysed could 

introduce bias in its estimate of the treatment effect in its chosen target population, whatever that might be. Among 

the potential causes of internal bias are: inadequate randomization; failure to conceal randomization, which might lead 

to allocation bias and confounding;  lack of blinding, which could affect outcome assessment (performance bias); 

missing data, which could be different in each arm (attrition bias) and lack of complete outcome reporting. Thus, 

internal biases are considered with respect to the trial’s target parameter, which may not be the target parameter for 

the NMA. 

External bias reflects whether the target parameter for the trial differs from the target parameter for the evidence 

synthesis. External biases may have their origins in factors such as: a difference between the trial population and the 

target population; differences between the treatments in the trial – either active treatment or the control – and the 

treatment of interest in the NMA; differences in outcome definition, including different follow-up times.  

In the conception of bias-adjustment discussed by Turner [39], a trial’s results would be first adjusted for internal bias, 

and then if there were issues about the trial’s target population, also for external bias. 

5.2 META-EPIDEMIOLOGICAL FINDINGS OF INTERNAL BIAS 

There have been several attempt to study internal biases quantitatively, but the databases of several of the earlier 

studies were combined in a large and systematic exercise under the BRANDO initiative (Bias in Randomised and 

Observational studies) [40, 41], and we outline the key findings from this study here. 

1. Lack of allocation concealment and lack of blinding were both independently associated with exaggerated 

treatment effects of active treatments relative to control. 

2. The extent of this bias was highest with subjective outcomes (patient- and clinician-reported outcomes) and 

lowest with mortality. Objective outcomes such as blood pressure or cholesterol measurements were 

intermediate but closer to mortality. 
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3. The extent of bias in trials with lack of allocation concealment or lack of blinding varied across trials, 

subjective outcomes were the most variable and mortality the least. There was variation both between trials 

within meta-analyses, and between meta-analyses. 

Table 2 gives the main results. With subjective outcomes, inadequate or unclear allocation concealment decrease the 

risk of a negative outcome by an odds ratio of 0.85, lack of double blinding or unclear double blinding by 0.82, and 

both together by 0.70. 

Allocation concealment has virtually no impact on objective outcomes, but lack of double blinding reduces the 

estimated risk of negative outcomes by about 0.9.  

Table 2: Estimated relative odds ratios and 95% credible intervals for the influence of reported study design characteristics on average intervention 

effects. Reproduced from [41] (Table 18, p.30). 

Model, study design characteristic and outcome ROR 95% CrI 

Inadequate or unclear allocation concealment (vs adequate) 

All 0.93 0.87 to 1.00 

Mortality 1.00 0.89 to 1.13 

Objective 0.97 0.84 to 1.13 

Subjective 0.85 0.76 to 0.96 

Lack of double blinding or unclear double blinding (vs double blind) 

All 0.88 0.79 to 0.97 

Mortality 0.92 0.80 to 1.06 

Objective 0.90 0.71 to 1.15 

Subjective 0.82 0.68 to 0.96 

Implied average bias in trials with high risk of bias for both characteristics 

All 0.83 0.74 to 0.92 

Mortality 0.92 0.78 to 1.09 

Objective 0.87 0.68 to 1.12 

Subjective 0.70 0.57 to 0.84 
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5.3 POSSIBLE EXTENT OF EXTERNAL BIAS 

Much less work has been done on quantifying external biases, which by definition are highly dependent on the context. 

The degree of heterogeneity typically found in meta-analyses might give some kind of guide, and there are publications 

providing quantitative estimates from meta-analyses undertaken by the Cochrane Collaboration [42], but these 

estimates include variation due to internal biases as well as external biases, and so they would represent very extreme 

upper bounds. In addition, the sets of trials that are used to generate NMAs in the context of guideline development 

at NICE generally have a far more tightly defined PICO specification – particularly regarding the Population, 

Intervention and Comparator aspects – than evidence syntheses published by the Cochrane Collaboration. The fact 

that NMAs allow different doses and different members of a class of treatments to be considered as separate 

treatments, rather than being “lumped” [43] also greatly reduces the potential for external biases in NICE CGs. In 

considering external biases, it is essential that guideline developers observe the advice on NMA analyses, which 

stresses that the initial review process should include careful consideration of known effect modifiers, which may 

have been examined in the analyses of individual trials. 

Nevertheless, external biases may exist. Arguments that specific trials or contrasts are more likely than not to be 

biased, in a specific direction, must be based on the specifics of the trial and the target population, backed up by 

reasoned argument or evidence.  

6. ROLE OF THRESHOLD ANALYSIS IN GUIDELINE DEVELOPMENT 

This section is restricted to a consideration of how, in general terms, threshold analysis could enter into guideline 

development.  We begin by making the fundamental observation that threshold analysis, like all forms of sensitivity 

analysis, is not undertaken with a view to changing base-case treatment recommendations. The purpose of sensitivity 

analysis in general is to find out exactly what is “driving” results. This can be seen as part of a general “reality check” 

of the model, as well as providing an opportunity to review the model and the way treatment recommendations are 

derived from it in a fresh way, throwing particular emphasis on sensitivity to possible biases in the trial evidence. The 

threshold analyses proposed here were originally developed as a more coherent way of asking questions about the 

reliability of conclusions drawn from NMA, and particularly questions about the reliability of the data inputs. 

Whatever the result of the threshold analysis, there is no implication that the base-case recommendation should 

necessarily be changed.  

Above all, threshold analysis must not be seen as an opportunity to change the treatment recommendation to conform 

to any initial preconceptions or preferences on the part of those making a treatment recommendation. 

In this section, we firstly outline a series of ways in which threshold analysis could contribute to guideline 

development. We then make some suggestions regarding the conditions under which threshold analysis can lead to a 

change in the base-case treatment recommendation. Recognizing the overriding need for transparency in guideline 

development, we place particular emphasis on how the results should be reported.   
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6.1 USES OF THRESHOLD ANALYSIS 

6.1.1 REACTIVE USE 

One of the most common criticisms of a draft guideline at consultation, or after publication, and particularly of the 

NMA analyses, relates to the inclusion of specific trials or sets of trials. A threshold analysis concerning individual 

trials, or sets of trials as exemplified in Section 3, can address this directly. Furthermore, threshold analysis may be 

used in reaction to more complex criticisms. For example, in sections 3.1–3.3 we demonstrated that threshold analysis 

could be used to allay concerns over the impact of possible generic pharmacological or psychological treatment biases, 

and in section 3.4 we used threshold analysis to establish the robustness of the treatment recommendation to possible 

exaggeration of effect in studies by a particular investigator. 

6.1.2 PRE-EMPTIVE USE 

In a similar vein, GDGs collectively should be aware of any vulnerability that their recommendations might have to 

criticism, and should be able to anticipate the kinds of criticism that are likely to be levelled at the trial evidence during 

and after consultation. Ideally, if these criticisms relate to inclusion of one or more trials, or to generic biases in sets 

of trials, they could be pre-empted by threshold analysis. Or, if a degree of sensitivity is detected, it can be made 

exactly clear how large biases could be without impacting on a decision.  

6.1.3 PHRASING THE RECOMMENDATIONS 

In cases where the base-case recommendation A would be over-turned in favour of a second treatment B following 

slight changes to the data, a GDG might consider phrasing their recommendation in terms such as “Choose A as a first 

option, but switch to B if patients do not do well on A”. Typically it would already be obvious from the original 

analysis that the NMA failed to clearly establish superiority of A over B and would show B as the second best option.  

6.1.4 THRESHOLD ANALYSIS AS A STIMULUS FOR A NEW NMA 

It is possible that a threshold analysis might lead guideline developers to reconsider the possibility of bias in one or 

more data elements. One possibility, rather than issue recommendations based on the original NMA and the threshold 

analysis, would be to run a new NMA in which the biases were deliberately modelled and adjusted for in the NMA. 

6.1.5 RESTRICTING THE NEED FOR APPLICATION OF GRADE TO SOURCE DATA 

A different kind of application of threshold analysis would be in limiting the need for a GRADE analysis of all the 

trial data; in-depth GRADE assessments may be confined to the studies or contrasts in which threshold analysis reveals 

a sensitivity to bias adjustment. It is worth noting that with a small evidence base, the base-case decision is more likely 

to be vulnerable to relatively small changes in the data, so there would be little saving. However, as the evidence base 

is increased, the robustness of the decision to small changes in evidence sources becomes more and more apparent, 

and the potential saving in time becomes very substantial. In addition, while GRADE is usually performed separately 
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for different outcomes and outcomes at different times, the more these can be synthesized together in a single model, 

the more robust the recommendations will be, leading to still more impressive saving of time. This is illustrated in 

Table 3. Here, for illustrative purposes we have adopted a set of quite conservative estimates of how the time required 

for GRADE analyses might be reduced, based upon criteria for the size of plausible bias. The criteria used here are: 

±2.5 MCIDs; ±0.5 SMDs, which is described by Cohen [30] as a “moderate” effect, and ±0.9 on a log OR, log relative 

risk, or log hazard ratio scale, which is equivalent to a SMD of ±0.5. These are only suggested criteria used for 

illustration; guideline developers should make an informed judgement on the size of plausible bias for their specific 

treatment scenario. 

Taking advantage of this possibility would obviously entail only undertaking the GRADE exercise after the NMA and 

threshold analyses were completed. 

Table 3: Reductions in the number of GRADE analyses required after a threshold analysis, based on conservative criteria for the magnitude of 

plausible bias. Sensitive thresholds 
a
smaller than ±2.5 MCID; 

b
smaller than ±0.9 LOR; 

c
smaller than ±0.5 SMD. 

Analysis 

Number 

of studies 

Number 

sensitive 

Proportional reduction in 

GRADE analyses required 

after threshold analysis 

Headaches (Efficacy)
a
 11 9    0.18 

Headaches (CEA)
a
 11 8    0.27 

Tocolytics
a
 51 0    1.00 

Urinary Incontinence
b
 22 10    0.55 

Social Anxiety (Efficacy)
c
 100 2    0.98 

Social Anxiety (CEA)
c
 100 0    1.00 

    

6.2 CHANGING THE BASE-CASE RECOMMENDATION  

If concerns have been raised about the presence of bias to which a threshold analysis reveals the base-case treatment 

recommendation would be sensitive to, there are two possible courses of action. Firstly, the GDG could decide, based 

on the balance of evidence that such a bias exists, to change the treatment recommendation to the alternative given by 

the threshold analysis. Alternatively, an updated NMA can be performed which models and accounts for the suggested 

bias, and decisions are then made based on the updated analysis. The latter option is strongly preferred on statistical 

grounds, as the former is equivalent to simply changing the original data and re-running the NMA, whereas the bias 

modelling approach accounts for the (substantial) uncertainties in the magnitude of bias. Furthermore, the new 

treatment recommendations at the thresholds are only valid at that precise value of bias adjustment; the 

recommendation may well change again beyond the threshold value, but such changes are not presented in this 

analysis. Despite these shortcomings, and against our recommendation that changes to treatment decisions should be 
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based on a new NMA, we lay out guidelines for changing the base-case recommendation based on the threshold 

analysis alone. As noted above, a change in base-case treatment recommendation following a threshold analysis would 

require the most careful consideration, and the rationale for such a step would have to be fully documented (see section 

6.3).  

The threshold analysis, in effect, allows the decision makers to isolate a set of studies or contrasts in which a plausible 

change to the data would change the recommendation. However, establishing that the change is “plausible” is not in 

itself a sufficient reason, even if a small change within the level of uncertainty of the data would lead to a change in 

decision – in such a scenario it is likely that the GDG would give a compound recommendation anyway due to the 

lack of sufficient evidence for recommending one treatment over another exclusively. In order to establish the case 

for changing the base-case recommendation, it would be necessary for the GDG to agree that not only was a bias of 

such a size and direction “plausible”, but, on the balance of the evidence, the GDG’s opinion was that the data element 

in question was in fact biased by that amount, or more.  

To carry this argument through it would be necessary to produce and document a convincing argument that the data 

involved were indeed biased. This could be based on one or both of two types of consideration: 

First, the GDG could appeal to the kind of meta-epidemiological data presented in Section 5, to the effect that bias of 

such a size or more was more likely than not. However, if this was a type of bias that would be expected to affect 

other data elements in the study (e.g. novelty bias for newer treatments), then a further threshold analysis for this 

specific type of bias (see sections 3 and 6.1.1), or an updated NMA with such bias modelled and adjusted for (see 

section 6.1.4), would need to be considered. 

A second form of argument that would refer to specific features the particular study or studies in question, such as 

their inclusion criteria, outcome assessment, or missing data. Critical to a claim along these lines is that it must be 

impartially applied. If a certain study is believed to be vulnerable to a specific form of bias, all studies of the same 

type should be considered vulnerable to the same bias – leading perhaps to a generic bias adjustment. Similarly, one 

might attribute bias to a particular feature of a trial population or setting. But again, any adjustment would have to be 

applied to all trials with that kind of population or setting, leading perhaps to a generic adjustment by meta-regression.  

6.3 REPORTING THRESHOLD ANALYSES 

However threshold analysis is used in guideline development, it needs to be fully reported. The plots used in this 

report could simply be included in the appendices of the full guideline document, and conclusions to be drawn from 

the analysis could be briefly noted. The existence of the threshold analyses and any key findings and conclusions 

would be reported in the main text. By the same token, unless or until threshold analysis becomes routine in guideline 

development, the reasons why it was undertaken should be discussed in advance and documented in the full guideline 

document. 
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To the extent that threshold analysis is simply a form of sensitivity analysis, the use of threshold analysis in guideline 

development, and documentation of findings, should follow the same principles as for any other form of sensitivity 

analysis. Every use of the threshold analysis, whether it results in no change to recommendation, to a new NMA, or 

to amended recommendation must be fully reported in order to ensure transparency. 

7. FURTHER RESEARCH 

There is still a great deal of research to be done on threshold analysis for NMA.  At the technical end there is a need 

to develop rapid and reliable methods for applying threshold analysis to any CEA, however complex the net benefit 

function, and indeed for the cases where the net benefit function cannot be readily written down (see section 4.1.3). 

At the less technical end there is also a need for a better understanding of how to present this powerful method to 

GDGs, and how it is best used in guideline development. To some extent this might be “packaged” within a more 

general framework for sensitivity analysis. 
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A. TECHNICAL APPENDIX 

A.1 OUTPUTTING POSTERIOR SUMMARIES AND CORRELATIONS FROM WINBUGS 

Threshold analysis is based upon the joint posterior distribution of the treatment effect parameters, and requires that 

this is sufficiently specified, both in terms of mean and variance of each parameter, as well as the 

correlation/covariance between parameters. There are two options for obtaining these from WinBUGS: 

1. Saving the means, variances, and correlations directly from WinBUGS and then reading these into R, or 

2. Importing the CODA to R and calculating the posterior there. 

In our experience, the second option is preferable, requiring less effort and with greater ease of reproducibility. To 

export the CODA once the model has been run, select “CODA” from the Inference > Samples menu. Save the resulting 

output as .txt files, which may then be read into R using the coda package [44]. Means, medians, quantiles, and other 

statistics may be calculated using the summary function. The covariance matrix is calculated using cov. Since reading 

the CODA and calculating the required quantities may take a few minutes, we recommend saving the computed 

outputs to an R data file using save; any subsequent analyses using the posterior need only read this data file using 

load, which is instant. Whichever of the two methods is chosen, we recommend that long MCMC samples are used 

to reduce the Monte Carlo Error, in order that the covariance structure which is critical to the derivation of thresholds 

may be distinguished from residual MCMC correlations; Monte Carlo Errors on the order of at least 
310

 or smaller 

are advised. 

A.2 R FUNCTIONS FOR PERFORMING AND PRESENTING THE RESULTS OF THRESHOLD ANALYSES 

We have developed R functions to perform threshold analysis and to present the results; these are available in a 

separate attachment to this report. We describe these functions and their use in the following appendix A.3. 
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A.3 PERFORMING THRESHOLD ANALYSIS IN R 

A.3.1 STUDY LEVEL ANALYSIS: FE MODELS 

To perform a threshold analysis on fixed effects models, we provide the function nma_thresh. The syntax is: 

nma_thresh( 

X,       # = Design matrix. 

mean.dk, # = Posterior means of basic treatment parameters d_k 

lhood,   # = Likelihood (data) covariance matrix. 

post,    # = Posterior covariance matrix of all parameters (including 

         #   nuisance study means if study level). 

opt.max, # = Should the optimal decision be the maximal treatment effect  

         #   (TRUE, default) or the minimum (FALSE). 

trt.rank,# = Rank of the treatment to derive thresholds for. Defaults to 1, 

         #   thresholds for the optimum treatment. 

trt.code,# = Treatment codings of the reference trt and in the parameter 

         #   vector d_k. Use if some are missing (perhaps excluded) or  

         #   re-ordered. Default is equivalent to 1:K. 

trt.sub, # = Only look at thresholds in this subset of treatments in trt.code, 

         #   e.g. if some are excluded from the ranking. Default is equivalent 

         #   to 1:K. 

verbose  # = Print intermediate matrices? Default is FALSE. 

) 

The four main inputs are the design matrix X , the posterior means of the treatment effect parameters  d , and 

the likelihood and posterior covariance matrices V  and Σn . The result is a data frame containing the negative and 

positive threshold values for each data point, along with the new treatment recommendations at the thresholds. This 

function works for both relative and absolute effects data, and models with extra parameters, so long as the treatment 

effect parameters are the first 1K   parameters in the covariance matrix. 

A.3.2 STUDY LEVEL ANALYSIS: RE MODELS 

To perform a threshold analysis on random effects models, we provide the function nma_threshRE. The syntax is 

similar to the function nma_thresh, and also outputs a data frame with the positive and negative thresholds and the 

new treatment recommendations at each. 
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nma_threshRE( 

X,       # = Design matrix. 

mean.dk, # = Posterior means of basic treatment parameters d_k 

lhood,   # = Likelihood (data) covariance matrix. 

post,    # = Posterior covariance matrix of all parameters (including 

         #   nuisance study means if study level). 

mu.design,    # = Design matrix for any extra parameters. Defaults to NULL (no 

              #   extra parameters). 

delta.design, # = Design matrix for random effects delta, defaults to the NxN 

              #   identity matrix (random effect for every data point). 

opt.max, # = Should the optimal decision be the maximal treatment effect  

         #   (TRUE, default) or the minimum (FALSE). 

trt.rank,# = Rank of the treatment to derive thresholds for. Defaults to 1, 

         #   thresholds for the optimum treatment. 

trt.code,# = Treatment codings of the reference trt and in the parameter 

         #   vector d_k. Use if some are missing (perhaps excluded) or  

         #   re-ordered. Default is equivalent to 1:K. 

trt.sub, # = Only look at thresholds in this subset of treatments in trt.code, 

         #   e.g. if some are excluded from the ranking. Default is equivalent 

         #   to 1:K. 

verbose  # = Print intermediate matrices? Default is FALSE. 

) 

There are two additional parameters over the function nma_thresh: mu.design and delta.design. The first is 

for the matrix M  in [27], which if specified is the design matrix for any additional parameters in the model (for 

example study-level baseline parameters for absolute effects data). The second is for the matrix L  in [27], and is a 

design matrix for the random effects parameters; by default this is the identity matrix so that all data points have a 

random effect, but changing this allows specification of other models for example including absolute effects data 

where only the non-reference arms have random effects. 

A.3.3 CONTRAST LEVEL ANALYSIS: ALL MODELS WITH NORMAL POSTERIOR 

Contrast-level threshold analysis may be applied to any model, regardless of data type(s), complexity, hierarchical 

nature, or even whether the study-level data is known, as long at the posterior distribution of the treatment effect 

parameters is sufficiently specified and may be assumed (approximately) multivariate normal. We provide R functions 

which make contrast-level threshold analysis straightforward. Firstly, the hypothetical likelihood covariance matrix 

must be reconstructed (see [27]). The function recon_vcov achieves this using non-negative least squares, and 

returns the approximated covariance matrix. The syntax is: 
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recon_vcov( 

post,       # = Posterior covariance matrix of the treatment effect  

            #   parameters. 

prior.prec, # = Prior precision. Defaults to .0001 which is a common flat 

            #   prior for NMA. Not used if prior.vcov is specified. 

prior.vcov, # = Prior covariance matrix. Defaults to a diagonal matrix of the  

            #   same size as post, with elements 1/prior.prec 

X,          # = Contrast design matrix. If omitted a complete network is  

            #   assumed. 

verbose     # = Print intermediate matrices? Default is FALSE. 

) 

The parameters prior.prec and prior.vcov are mutually exclusive; if prior.vcov is specified it overrides the 

value of prior.prec. A single value for prior.prec may be given, specifying the prior precision of the treatment 

effect parameters. The parameter prior.vcov takes a full prior covariance matrix for the treatment effect parameters, 

and may be used to specify differing (co)variances for the treatment parameters. The design matrix X  is for the 

hypothetical independent data points representing the combined direct evidence on each contrast for which there is 

study data (i.e. all edges in the treatment network); it is particularly important that care is taken to specify this correctly, 

in order that the approximation fits the correct underlying covariance structure. A common mistake is to not specify 

all the contrasts on which a multi-arm trial provides direct evidence; for example, a three-arm trial on A, B, and C 

provides direct evidence on three contrasts: AB, AC, and BC, all of which should be included in the design matrix. In 

our experience, cross-checking with the network diagrams at this stage is valuable. 

Once the hypothetical likelihood covariance matrix has been reconstructed with recon_vcov, analysis proceeds 

under the fixed effects model using the function nma_thresh. 

A.3.4 PRESENTING THE RESULTS OF THRESHOLD ANALYSIS 

To present the results of threshold analyses clearly and succinctly, we provide a function thresh_forest which outputs 

forest plots as seen throughout this report. The main function inputs are the results of nma_thresh or nma_threshRE, 

along with study or contrast estimates and confidence/credible intervals. Other parameters provide easy customisation 

of the output figure. The syntax is: 
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thresh_forest( 

means,        # = Study estimates or posterior means of contrasts 

t.lo,         # = Negative threshold values 

t.hi,         # = Positive threshold values 

kstar.lo,     # = New k* optimal treatments for negative threshold 

kstar.hi,     # = New k* optimal treatments for positive threshold 

CI.lo,        # = Lower values of CIs (optional) 

CI.hi,        # = Upper values of CIs (optional) 

CI.title,     # = Title for CI column, default "95% Credible Interval" 

label,        # = Row labels 

label.title,  # = Column title for labels (e.g. "Contrast" or "Study") 

mean.title,   # = Column title for means, default "Posterior Mean" 

xlab,         # = Label for x-axis 

xlim,         # = View limits for x-axis 

xlim.p,       # = Instead of setting xlim explicitly, this tuning parameter in  

              #   (0,1] sets the view to display roughly a proportion of the  

              #   invariant intervals. Default 0.75. 

main,         # = Main title for plot (optional) 

sigfig,       # = Significant figures to display in the table. Default is 3. 

digits,       # = Decimal places to display in the table. Default is NULL,  

              #   displaying using sigfig instead. If set overrides sigfig. 

refline,      # = X position for reference line, or NULL to not show line.  

              #   Default NULL. 

greyscale,    # = Use greyscale colour palette? Default is FALSE, use vibrant  

              #   full colour. 

clinsig,      # = Set the clinical significance level. Mark rows with a dagger  

              #   that have thresholds less than this. Default NULL (none  

              #   marked). 

cutoff,       # = A single value or vector pair. Thresholds larger than this  

              #   value or outside the interval pair will be cut off and  

              #   display NT. Default is NULL (no cut off). 

...           # = Additional parameters to pass to plotting functions. 

) 
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