HiSPARC in the Classroom

Kaj Schadenberg

Goal of HiSPARC

Special outreach project

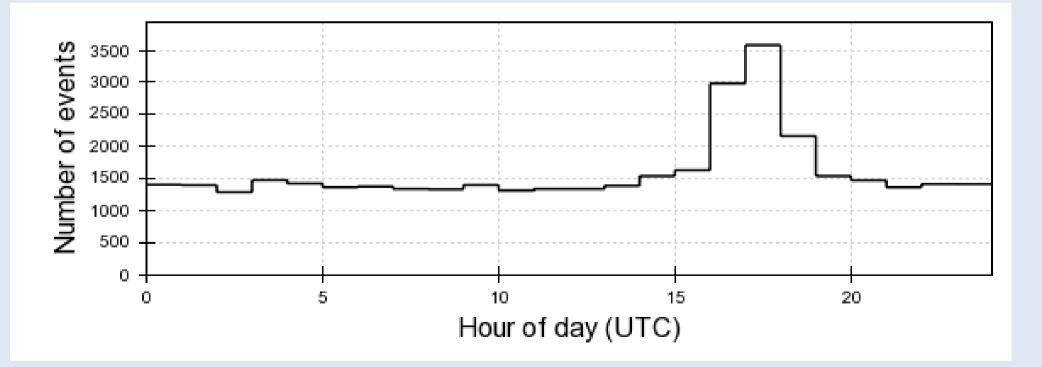
Get students to experience real science and research

- More physics students (also girls)
- Improve opinion of science
- Improve scientific literacy
- etc

Research questions

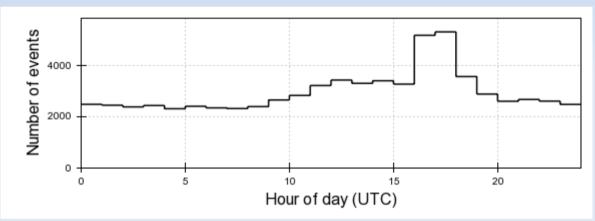
Questions from researchers and students Both large and small Examples:

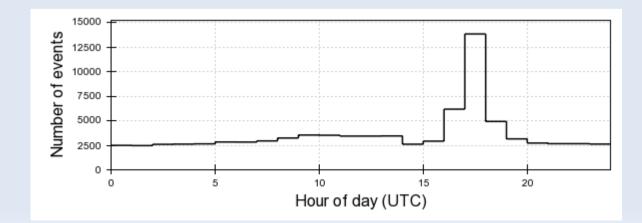
- What is the origin of cosmic radiation?
- How does it get its energy?
- Is there a maximum to the energy?
- What forces in de universe influence the path of cosmic radiation and how?


- What happens in our atmosphere?
- Does the weather on earth affect airshowers?
- What is the composition of airshowers?
- What do the HiSPARC detectors measure?

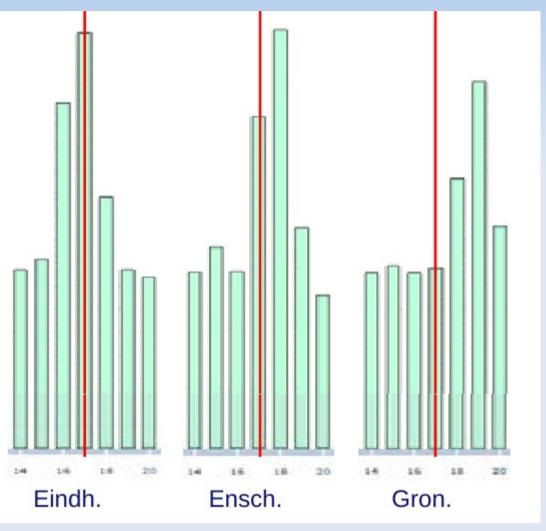
Examples in this presentation

- Weather effects
- Gerasimova-Zatsepin effect
- Detector efficiency
- Teaching materials
- Work from students symposium 2012
 - Airshowers and atmospheric conditions
 - Particle detection
 - Angle reconstruction


Students regularly inspect data for abnormalities


Sint Joris College Eindhoven 14 Jul 2010

Check with other stations in region


Also at university and in Tilburg (~30 km away)

Gather all the data and look for explanations

- Multiple stations
- No 'bad' data
- Clear pattern

South ~150 km ~150 km North

What happened on 14th of July?

Weather on 14 July

http://www.youtube.com/watch?v=uewixfetzHg

Extreme heavy weather with lots of thunder

Literature study

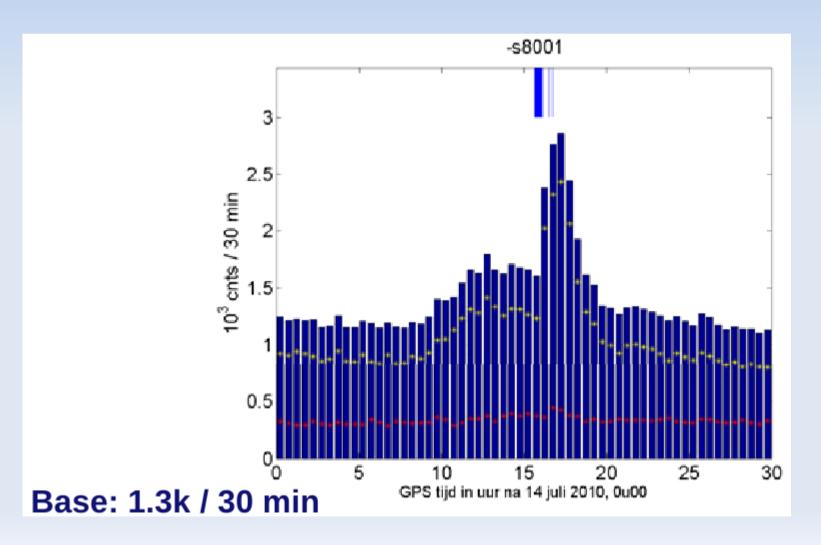
Science, 2005

Terrestrial Gamma-Ray Flashes Observed up to 20 MeV

David M. Smith,^{1*} Liliana I. Lopez,² R. P. Lin,³ Christopher P. Barrington-Leigh⁴

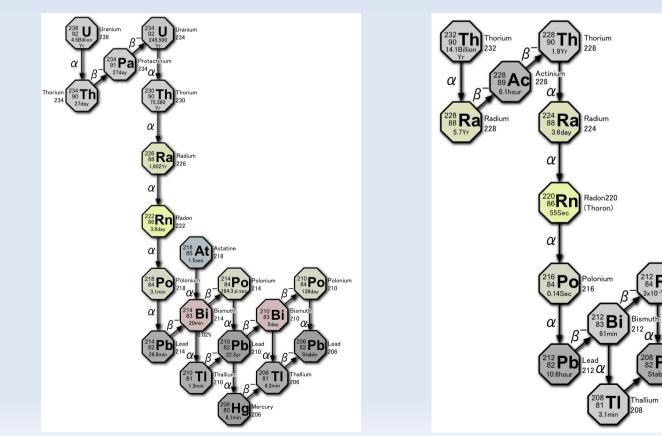
Terrestrial gamma-ray flashes (TGFs) from Earth's upper atmosphere have been detected with the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) satellite. The gamma-ray spectra typically extend up to 10 to 20 megaelectron volts (MeV); a simple bremsstrahlung model suggests that most of the electrons that produce the gamma rays have energies on the order of 20 to 40 MeV. RHESSI detects 10 to 20 TGFs per month, corresponding to – 50 per day globally, perhaps many more if they are beamed. Both the frequency of occurrence and maximum photon energy are more than an order of magnitude higher than previously known for these events.

Correlate data



Cloud-cloud

Time difference!



Report findings to community:

- On 14th of July HiSPARC measured increased activity
- Possible explanation: Heavy thundercloud
 - Delayed response of ~1 hour
 - Sometimes sharp peak, not always
 - No explanation for coincidences
 - Still under investigation

Different theory - Radon daughters in the atmosphere

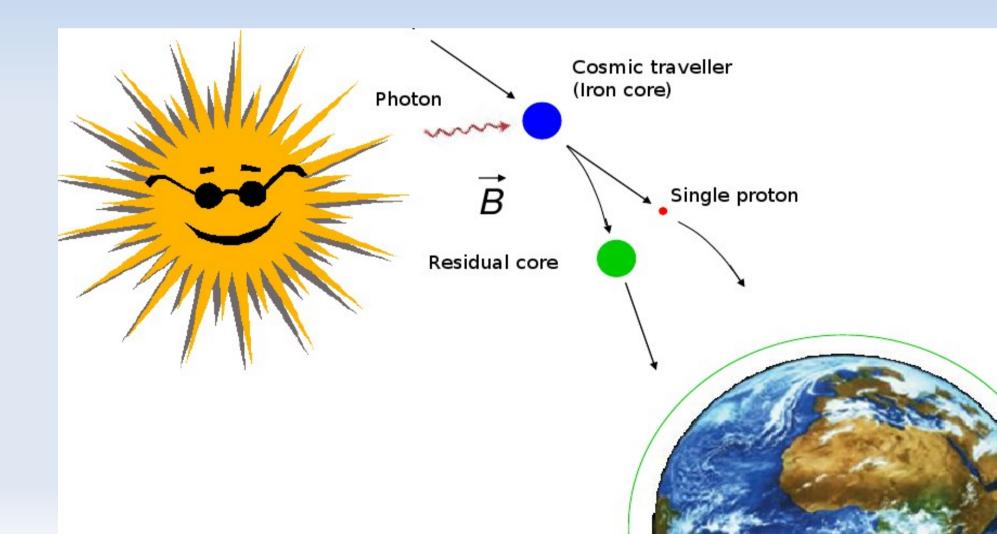
 Variations in outdoor radiation levels in the Netherlands. Blauwboer et. al. 1996

Model to explain results:

Rain collects underneath the detectors

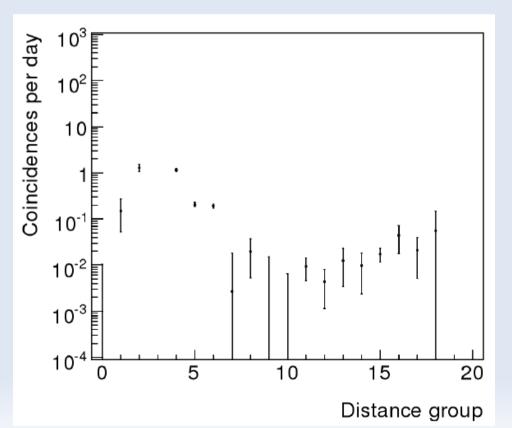
- Uncorrelated emission of radiation
- But creates (large) increase in background radiation
- More random coincidences
- Visible in data (more events with high Δt)
- Time delay consistent with t_{1/2} of ²¹⁴Pb and ²¹⁴Bi

Two models, which one is correct?


Obtained new information about detector network

- Network might be used to register thunder
- Natural background radiation fluctuates and might influence readings
- Time difference between plates might give usefull information (other than shower angle)

Presented at 2011 symposium


Gerasimova-Zatsepin effect

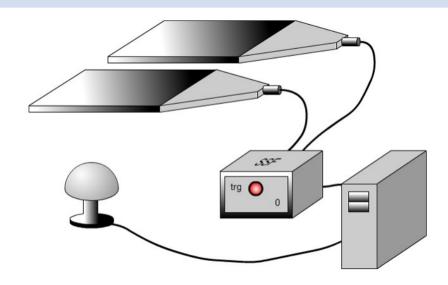
Two showers, correlated in time and space

Gerasimova-Zatsepin effect

- Clear indication of Gerasimova-Zatseping effect at small distances
- Software (and support) available for students to continue search at larger distances
- Expanding array to make this possible

Yearly task for students

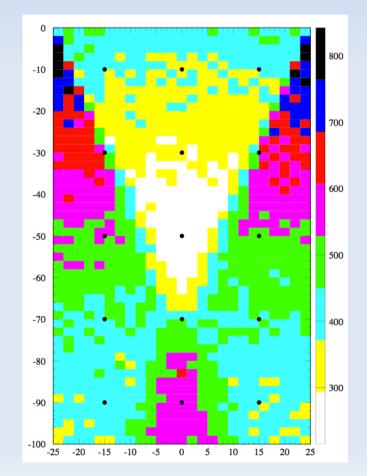
Calibration



Yearly task for students

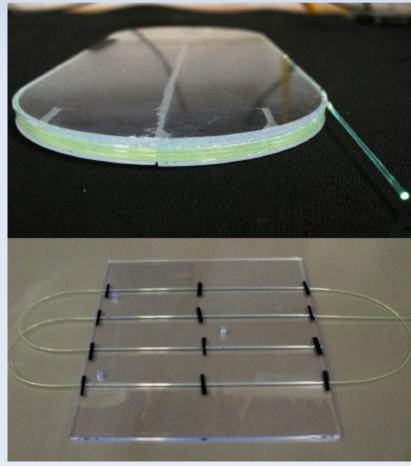
Calibration

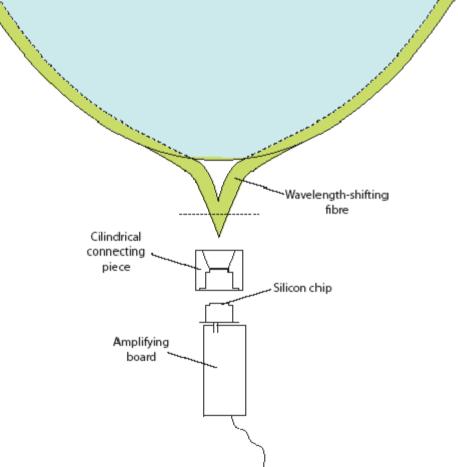
and monitor efficiency



Yearly task for students

Calibration




and monitor efficiency

Possible new design

Research done by 17 year old student at Cavendish Laboratory (Cambridge)

Book to get students started

Aimed at small (~15 hours) practical research assignment

Kosmische Straling

een module NLT

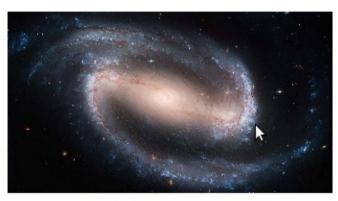
H3 De dampkring als detector

We hobben in Hoofdstuk 2 gezien dat er in de ruimte allerlei hoogenergetische deeltjes geproduceerd worden. Alles bij elkaar, vanaf de deeltjes die de zon produceert to de meest energetische deeltjes ooit omdekt, vormen ze een constaute deeltjesstroom van zo'n 100.000 deeltjes per vierkante meter per seconde! Deze deeltjestroom aan de borenkant van onze aardne atmosfeer vormt de primaire konnische straling. In de atmosfeer botsen de geladen deeltjes op moleculen. De gevolgen daarvan kunnen we aan het aardoppervlak meten.

In dit hoofdstuk gaan we kijken naar wat er zich in de atmosfeer afspeelt.

§3.1 Botsingen in de atmosfeer.

Na een lange reis door de ruimte komen er hoogenergetische deeltjes op de Aarde af. Eenmaal in de dampkring schiet zo'n deeltje langs een heleboel atomen en moleculen tot het uiteindelijk tegen een ander deeltje aanbotst. De kans is natuurlijk het grootst dat dit een stikstofmolecuul is. Door de grote snelheid van het binnenkomende deeltje gaan de brokstukken ook hoofdzakelijk in dezelfde richting verder. Maar er gebeurt ook iets aparts. Er onstaan elementaire deeltjes.


§3.2 Elementaire deeltjes

In de atmosfeer gebeurt hetzelfde als wat fysici in CERN willen onderzoeken: als je deeltjes met heel veel energie op elkaar laat botsen ontstaan er allerlei nieuwe deeltjes, die je normaal niet tegenkomt. Bij CERN gebeurt dit onder gecontroleerde omstandigheden. Maar in de atmosfeer kunnen de botsingsenergieën een factor 1000 hoger zijn! Het resultaat van de botsing is een hele regen van nieuwe deeltjes. Deze deeltjes zijn niet de brokstukken van de oorspronkelijke kern van het atoom maar hele nieuwe deeltjes. (Het is geen Marssonde die te pletter stort en uiteenvalt in talloze kleine deeltjes. En ook geen bom die nieuwe moleculen maakt uit grotere moleculen of energie meegeeft aan bestaande moleculen. Er worden echt nieuwe deeltje gecreëerd.)

Om deze nieuwe deeltjes te maken is energie nodig. Dat is wat we sinds Einstein weten: $E = mc^2$! Als we deze wet in woorden uitdrukken dan staat er dat massa (in kg) en energie (in D in elkaar zijn om te zetten en dat de

- Lesson book for project on radiation in Key Stage 3
- Subjects include:
 - Waves
 - Particles
 - Magnetism
- Orders of magnitude
 Also aimed at practical work

straling

HiSparc-project voor klas 2

Lesson letters forming a route of knowledge Can be used by students without help from teacher

Derde klas	Lenzen	Parabolische spiegels Lenzen slijpen				
Derue Kids	Teles De hemel	copen Het heelal Kleur	Het uitdijend heelal	Radiotelescopen	Astronomisch profielwerkstuk	
Viende blee	De Zon	Zonnewind	Kosmisch	ne straling	Kosmische straling profielwerkstuk	
Vierde klas	s van der Waa Sterevolutie	Onderzoek	Bronnen			
	Bots	ingen		Tsjerenkov	•	
	Michelson en Morley	Relativiteit			Detedor	
	Detecteren	de Broglie	Fluore	escentie	pr allo	
Vijfde klas	Elementaire deeltjes	Muon-verval Simulatie	Airshowers	nsla	ation, almost	
	Deeltjes in het standaardmodel	Krachten in het standaardmodel	Deeltjes in een airshower	Traindapta	Pr and ation almost almost almost onplete test onplete to test schools to test schools to test materiale material	
	Periodieke data verwerken	Niet-periodieke data verwerken		aucre	cchools to	
Zesde klas	Detector	Detector bouwen	Detector testen	Detectiestated	a ateverkstuk	
	Detectiestation installeren	Detectienetwerk	Richting primair deeltje	EneNie prima ir deeltje	MICELWEIKSLUK	

Routenet contains letters about:

- Telescopes and optics
- Relativity
- Compton scattering
- Cherenkov radiation
- The Standard Model
- Muon decay
- De Broglie

- Building detector
- Testing detector
- Inner workings of detector
- Analysing data
- Using Excel
- Detection network

Routenet example

2 Cherenkov

Pavel Alekseyevich Cherenkov (1904-1990) was a Sovjet physicist who shared the Nobel Prize in Physics in 1958 with Ilya Frank and Igor Tamm for the discovery of Cherenkov radiation made in 1934.

Cherenkov was researching the radiation emitted by nuclear reactors containing water which is used both as a cooling agents as well as a neutron moderator. $^{\rm 1}$

As we have seen with the Geigercounter, moving particles can knock away electrons from a medium. The electron can jump to a higher energy state within the atom or be made completely free from the atom (also a form of higher energy state). With Cherenkov radiation the electron immediately returns to its ground state, emitting its excess energy in the form of a photon. If this happens in water then photon won't have the the speed of light in vacuum, but it will move slower $c_{medium} = \frac{c}{N_{medium}}$. The particle that knocked the electron into a higher energy state could have had a higher velocity than

 c_{medium} .

¹A moderator is a medium that reduces the speed of fast neutrons inside nuclear reaction. This deceleration is necessary to maintain the nuclear reaction. Without the moderator the fast neutrons will escape the reactor vessel without interacting with other nuclei. This will cause the reactor to shut down. Too many slow neutrons is also a problem. This is rapidly increase the number of nuclear reactions causing overheating, if this is not stopped soon enough the reactor could be damages by a melt-down (Harrisburg and Chernobyl).

Routenet example

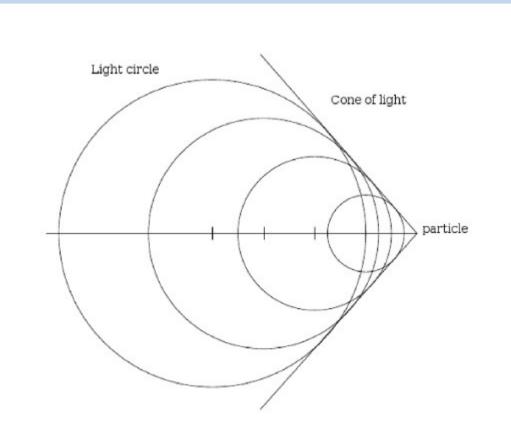


Figure 1: Schematic representation of the emission of Cherenkov radiation.

Student work symposium 2012

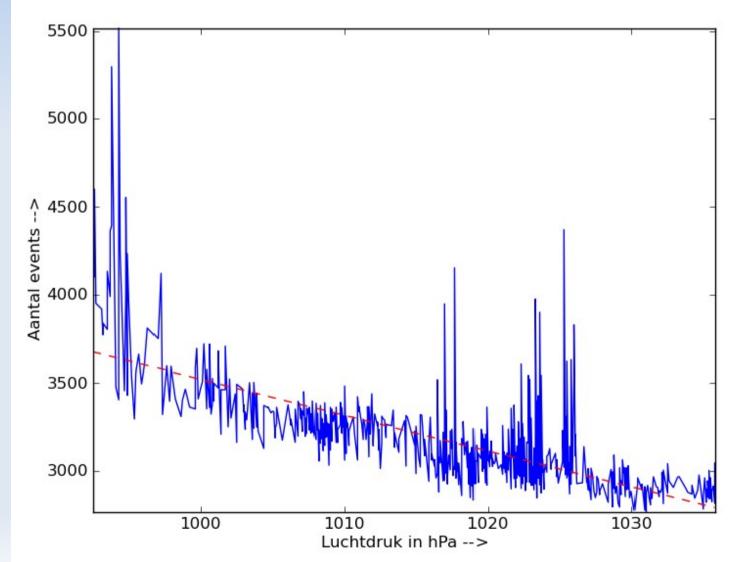
Robin de Vries

- Correlation Airshowers and atmosferic conditions
- Luciano van der Veekens & Dylan Cruz
 - Built their own Cloud Chamber
- Gijs Bouman, Sam Huizing & Cees de Wit
 - Angle reconstruction

Airshowers and atmospheric conditions

Robin de Vries wrote his own software to import data from data-website and schools weather station # import the libraries
import csv
import urllib2
from pylab import *

#download weather


```
weatherurl = "http://www.stmichaelcollege.nl/weersmc/data/jan-11.csv"
file = urllib2.urlopen(weatherurl)
r = csv.reader(file,delimiter=";")
data = [row for row in r]
pressure = [float(r[3]) for r in data]
```

```
#set event url without day number
eventurl = "http://data.hisparc.nl/django/show/source/eventtime/101/2011/1/"
#january 2011 has 31 days, in range 1-32
for i in range(1,32):
   # i is an integer, but we use it as a string
   url = eventurl + str(i) + "/"
   file = urllib2.urlopen(url)
   r = csv.reader(file,delimiter=";")
   data = [row for row in r][7:-1]
    tmp = [int(r[1]) for r in data]
    #print i
    #print tmp
   if(i == 1):
       nevents = tmp
   else:
       nevents.extend(tmp)
#combine the data
```

```
data = zip(pressure, nevents)
```

Airshowers and atmospheric conditions

And then looked at different possible correlations

Building your own particle detector

Luciano van der Veekens & Dylan Cruz built their own Cloud Chamber

Angle reconstruction

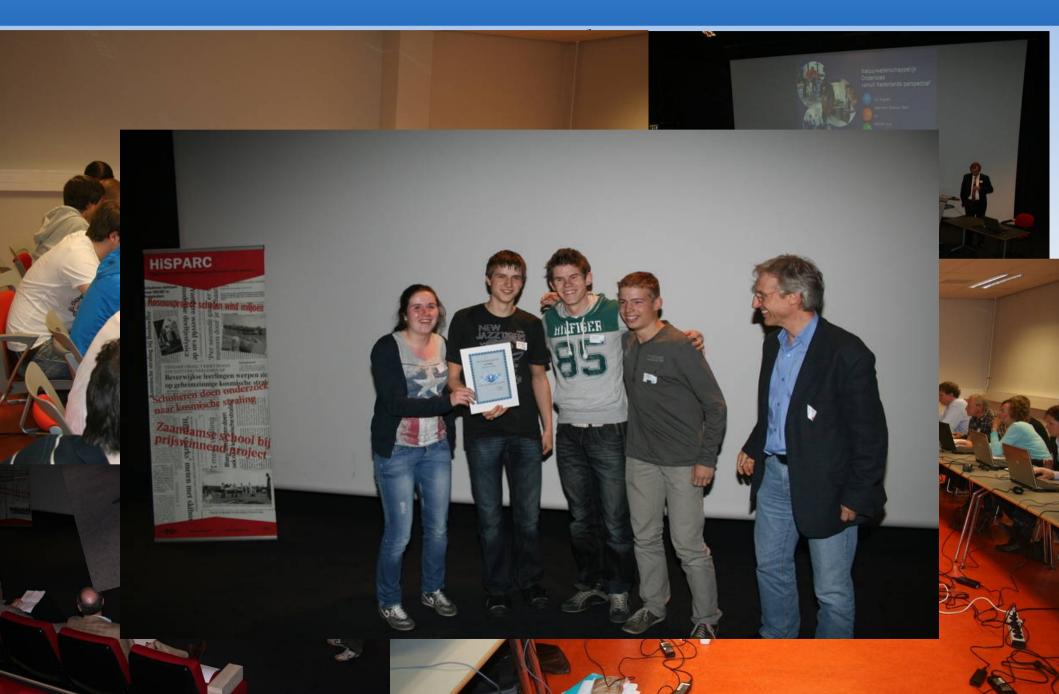
Gijs Bouman, Sam Huizing, and Cees de Wit started with lots of formulas

JAZTI = V.CE By-M.Bx 1 Vm2H = V.BE A V= 4.15-2+1 By-m.Bx V= BE. JAZTI By-m.Bx Cy-m.Cx By-m.Bx - CE. JANY Cy. Beithin - m. Cx. Bt. Joter = By. Ct. Jost +1-m.Bz. Good (y.BE-M.Cx.BE= By.LE-M.Bx.CE -m. (x. BE+m. Bx. CE= By. CE- Cy. B+ (BxC+-Cx-Bt) m= By. Gt - Cy-13x Bylt-Cy. By M= Bx-C+-Cx-b+ $\frac{B_{Y} \cdot C_{t-} \cdot C_{Y} \cdot B_{T}}{me} \frac{-1}{P_{X} \cdot C_{t-} - C_{X} \cdot B_{T}} \frac{-1}{-1} = \frac{C_{Y} \cdot B_{T} - B_{Y} \cdot C_{t}}{C_{X} \cdot B_{T} - B_{X} \cdot C_{t}}$

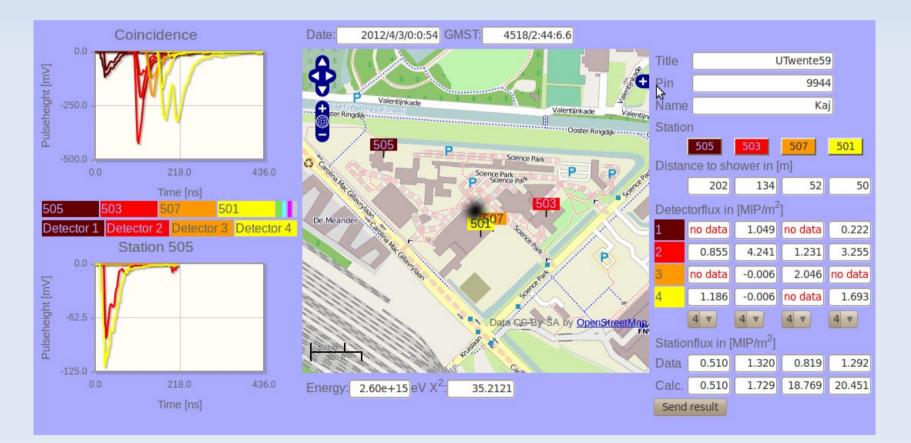
Angle reconstruction

Ended up with a simple to use Excel sheet

	Α	В	С	D	E	F	G	Н	Ι	J
1										
2	<u>hoek t.o.v. N</u>	5					invoer			
3							relatieve tijden en de volgorde die daaruit volgt			
4							coördinaten			
5	detector		<u>rel. tijden (s)</u>				coördinaten re			
6	<u> </u>	999					coördinaten A, B en C zonder translatie			
7	2	30	· · ·				coördinaten A,		(0,0,0)	
8	3	22,5					uitkomsten m,	v,geng		
9	<u>4</u>	25	2,50E-09	2						
10	Callanten									
11 12	<u>Coördinaten</u>									
12	1	<u>×</u> 0		<u> </u>						
14	<u> </u>	-0,5031718918	_							
15		-5,7357643635								
16		4,2261826174								
17		4,2201020114	0,0000110104							
18	А	-5,7357643635	-8,1915204429	0						
19		4,2261826174								
20	<u>c</u>		-5,7512810408							
21										
22	<u>A</u>	0	0	0						
23	<u>B</u>		-0,8715574275							
24	<u>C</u>	5,2325924717	2,4402394021	7,50E-009						
25										
26	<u>m</u>	-0,2050403901								
27	<u>v</u>	4,59E+08								
28										
29	φ	-101,58734706								
30	θ	34,6475326208								
31	hoek t.o.v. N oostwaarts	191,58734706								



september 2010. • Gekeken naar pieken en vergeleken met andere scholen in Eindhoven. • 14 juli sprong uit de resultaten. Ik gebruik 14 juli als voorbeeld in de presentatie.



Shower location and energy

JSparc

Competition between students

http://www.hisparc.nl/en/hisparc-data/jsparc/

Does not work in Internet Explorer