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My research focuses on deriving precise asymptotics for problems in high-dimensional statistics with the
aim of understanding their computational / statistical limits and potential gaps between them.

Consider the problem of estimation from a generalized linear model (GLM) y = ϕ(Xβ⋆) specified by
a given nonlinearity1 ϕ : R → R. Given a random design matrix X ∈ Rn×d and the response y ∈ Rn, the
statistician seeks an estimate β̂ ≡ β̂(X, y) ∈ Rd of the regression coefficients β⋆ ∈ Rd that maximizes the
asymptotic overlap, i.e.,

O := lim
d→∞

sup
β̂

E

[
|⟨β̂, β⋆⟩|2

∥β̂∥22∥β⋆∥22

]
∈ [0, 1].

Research over the last decade or so reveals that as n, d → ∞, the solution to this problem undergoes a
phase transition as δ := limn/d varies. That is, if δ is at most a critical value δ⋆, O is zero, indicating a
complete failure in estimation due to a shortage of data; if δ exceeds δ⋆, O becomes positive, indicating the
possibility of nontrivial estimation. The abrupt change in estimation performance at δ⋆ is reminiscent of the
transformation between different states of a large particle system, e.g., water freezes at temperature 0◦C,
transitioning discontinuously from liquid to solid.

I am interested in characterizing, for various problems in high-dimensional statistics, the precise asymptotic
value of fundamental quantities such as the overlap, generalization error, input-output mutual information,
etc. An appealing feature of results of this type is that the characterization becomes increasingly accurate as
the system size grows, distinguishing itself from many existing bounds in non-asymptotic statistics whose
accuracy typically degrades with dimensions.

Deriving precise asymptotics requires insights and tools from recent advances in random matrix theory
and statistical physics.

Random matrix theory. Modern machine learning practice operates on high-dimensional datasets in
which the number of features is comparable to the number of samples. Random matrix theory offers a suite of
powerful tools for assessing high-dimensional data through their spectral statistics including the distributions
of singular values and singular vectors. In statistical inference, characterization of estimation / generalization
error may require

• studying limiting spectral distribution of sum / product of “asymptotically free”2 matrices,

• computing spherical integrals against the Haar measure over orthogonal matrices,

• concentrating the product of multiple correlated resolvent matrices, etc.

To these ends, input from random matrix theory is handy.
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1By notational convention, the function ϕ is applied component-wise to its vector argument.
2Informally, asymptotic freeness of random matrices is akin to independence of random variables.
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Statistical physics. Recent research reveals intimate connections between precise asymptotics in high-
dimensional statistics and mean-field approximation for spin glasses — a certain disordered system extensively
studied in statistical physics. A useful tool that emerges from these connections is an abstract family
of algorithms known as approximate message passing (AMP). AMP formally resembles nonlinear power
iteration in numerical linear algebra, with the crucial distinction of an additional one-step memory term
that finds its root in Onsager correction in Thouless–Anderson–Palmer equation for mean-field spin glasses.
An important utility associated with AMP is the so-called state evolution that precisely characterizes the
empirical distribution of the iterates in the high-dimensional limit. Again, this mirrors the replica saddle
point equation in spin glasses. Besides being an efficient algorithm that finds numerous applications and is
conjectured optimal among a large family of algorithms, AMP can also be employed as a proof technique for
analyzing problems with random data.

I seek motivated students with backgrounds in statistics / mathematics / theoretical physics / computer
science to work on the following aspects of the research program outlined above.

Beyond i.i.d. Gaussian data. Existing theory of precise asymptotics is largely confined to data that
are entry-wise i.i.d. and/or normally distributed. A significant portion of my current research addresses
problems involving orthogonally invariant data. In the prototypical GLM, this means that the distribution of
the design matrix X remains unchanged under conjugation of Haar orthogonal matrices, thereby modelling
generic singular spaces yet completely general singular value spectrum.

Computational limits. In high dimensions, a perfect understanding of statistical optimality does not
transfer to that of computational optimality. Models with structures such as sparsity can exhibit an intriguing
phase where the problem is information theoretically solvable but not (believed to be) computationally
efficiently so. The frameworks of statistical query model and low-degree polynomial propose to probe the
computational power of general polynomial-time algorithms through specific families of abstract algorithms. It
is of great interest to derive formal evidence to computational bottlenecks that precisely match the asymptotic
performance of best-known efficient algorithms.

Debiasing in the inconsistency regime. As the saying goes, “all models are wrong”. Practically, our
statistical model may not be exactly specified and may contain unknown nuisance parameters. Consider
again the example of GLM and suppose that X has i.i.d. rows from N (0d,Σ) (a.k.a. correlated Gaussian
design). The covariance matrix Σ here cannot be estimated consistently, if unknown (hence the name
“inconsistency regime”). Though Σ is not of interest for estimation, missing its knowledge can cause bias to
popular estimation procedures such as LASSO. Developing debiasing procedures and understanding optimality
guarantees in the inconsistency regime constitute another project.
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