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1. Introduction

Bayesian statistics is a popular framework for carrying out statistical inference
wherein uncertainty about parameters is encoded in a probability distribution called
the posterior distribution. In all but the simplest cases, the posterior distribution
does not lie in a standard parametric family; as such, in order to answer inferential
questions, it is necessary to make use of numerical methods.

Among these methods, perhaps the most widely-used is Markov chain Monte
Carlo (MCMC), a class of stochastic algorithms for generating approximate sam-
ples from the posterior distribution through an iterative approach (see e.g. [9]
for some introduction). Given approximate samples of sufficient quality, one can
then use these to form { statistical estimators, uncertainty sets, etc. }. It is thus
of key practical and theoretical interest to identify algorithms in this class which
can converge effectively, with rigorous complexity bounds depending favourably on
problem parameters (e.g. dimension, number of observations, etc.).

For ‘nice’ statistical models in which covariates and observations are fully-observed,
and data sets are of moderate size, there are several ‘default’ MCMC approaches
for which convincing complexity analyses are now available, see e.g. [4] for some
overview. Nevertheless, in the face of large-scale data and high-dimensional mod-
els, the practicality of these naïve approaches faces serious challenges. This has
necessitated the development of more refined and scalable MCMC solutions, for
which quantitative theoretical validation has thus far been more limited.

2. Project Proposal

The plan for this project would be to develop a theoretical framework for the
quantitative analysis of scalable and ‘exact’ MCMC algorithms which are based
around the use of subsampling strategies. In contrast to cruder ‘stochastic gradient
MCMC’ strategies (see e.g. [6, 10, 3]), these algorithms employ certain ingenious
constructions which allow for issues of asymptotic bias to be side-stepped, while
retaining low per-iteration cost and favourable convergence properties. A number
of such procedures have been developed in recent years (see e.g. [8, 5, 11]), and
this project would seek to obtain robust quantitative guarantees for some of these,
facilitating rigorous comparisons between competing methods.

Recent work [1] has demonstrated that for MCMC algorithms developed for a
related class of intractable models (so-called ‘pseudo-marginal’ MCMC), the tech-
nique of Markov chain comparison theorems offers an attractive route to proving
robust and interpretable estimates on their convergence behaviour, and follow-up
works (e.g. [2, 7]) have demonstrated the broad applicability of this framework.
For the present project, we would hope to adapt and extend these theoretical tools
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to handle large-scale inference tasks, and the range of MCMC algorithms which
have been designed for that setting.
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