

Data Week Online 2020

Making data work for everyone

bristol.ac.uk/golding

Data Week Online 2020

The Jean Golding Institute

- A central hub for data science and data-intensive research
- One of 5 University of Bristol research institutes
- Connect multidisciplinary experts across the University and beyond
- Events, training, funding, Ask JGI, The Alan Turing Institute

Our priorities

- 1. Societal challenges
- 2. Data visualisation
- 3. Reproducibility & data governance
- 4. Fundamental research

Making data work for everyone

bristol.ac.uk/golding

Data Week Online 2020

Date	Event	Speaker
Monday 15 June	Data science and COVID 19 & Data Week Introduction	Kate Robson Brown, JGI Director
Monday 15 June	Intermediate Python	Advanced Computing Research Centre
Tuesday 16 June	Talk: Working at and with The Turing Institute: experiences as a Fellow	Jon Crowcroft, Turing Fellow & University of Cambridge
Tuesday 16 June	Talk: increasing engagement with data	Michael Green, Luna 9
Tuesday 16 June	Introduction to data analysis in Python	Advanced Computing Research Centre
Wednesday 17 June	Do you want to be a data Rockstar?	Luke Stoughton, The Information Lab
Wednesday 17 June	Applied data analysis in Python	Advanced Computing Research Centre
Thursday 18 June	Talk: New data on COVID-19 is undermined by old statistical problems	Gibran Hemani, University of Bristol
Thursday 18 June	Managing sensitive research data: from planning to sharing	Library Research Services
Thursday 18 June	Introduction to deep learning	Advanced Computing Research Centre
Friday 19 June	Deep Learning for Health and Life Sciences	Valerio Maggio, University of Bristol
Friday 19 June	Tour of the Tidyverse	Max Kronborg, Mango Solutions
Friday 19 June	Best practices in software engineering	Advanced Computing Research Centre

Making data work for everyone

bristol.ac.uk/golding

Tour of the Tidyverse

Max Kronborg

In This Workshop, you'll learn....

What the **tidyverse** is & why bother using it

What tools are available in the **tidyverse**

A brief overview of core functionality

What data are we using?

- Funding of Olympic sports
- UK Sport World Class Performance
 Programme
- Data from Sydney (2000) to Rio de Janeiro (2016)

For the exercises:

• uni_result.csv – received by email

What is the tidyverse?

Unified packages!

- Packages that cover the data analysis workflow.
- All built on the same principles.

Tidy philosophy

- Reuse existing data structures
- Combine functions with the **pipe**
- Embrace functional programming
- Design for humans

Program

What's in the tidyverse?

Core packages

library(tidyverse) loads in the 6 core tidyverse packages:

There's loads more of the 'tidyverse-adjacent' packages that are installed at the same time as the tidyverse.

A Dive Into The Packages

Program

Import

- readr
- haven
- httr
- jsonlite
- readxl
- rvest
- xml2

Reading Web Data: rvest

Read_html(<u>www.myWebPage.co.uk</u>)

• Includes lots of functions for extracting specific elements from a web page.

Read Olympic Data

funding <- read_html("https://www.uksport.gov.uk/our -work/investing-in-sport/ historical-funding-figures")

funding <- html_table(funding, header = TRUE)</pre>

Importing Tabular Data

read_csv("path/to/file.csv")

Other variants:

- read_tsv
- read_delim

Importing Data from MS Excel:

Use the **readxl** package

Other cases

Use haven for **spss/sas** data

Use xml2 for **xml** files

jsonlite for json files

Exercise!

1.Read in the uni_results.csv using the appropriate package and function.

Program

Tidy

- tibble
- tidyr

tibble?

- A tibble is an updated data frame
 - Can be created using the **tibble** package
- Extra features:
 - Only prints top 10 rows
 - Doesn't create row names removes them if they're already there
 - Character columns not converted to factor
- Often created without you realising!

tibble functions

- glimpse useful overview of data
- tibble/tribble creation of tibbles
- add_row/add_column helpful functions for adding elements to an existing tibble
- There are also a number of functions for converting rownames if needed

Creating a tibble Row-wise

```
years <- tribble(
```

```
~Location, ~Year, ~Month, ~Day,
"Sydney", 2000, 9, 15,
"Athens", 2004, 8, 13,
"Beijing", 2008, 8, 8,
"London", 2012, 7, 27,
"Rio de Janeiro", 2016, 8, 5
```


Tidy data

- The **tidyverse** is designed to work with tidy data
- A single structure that is common to all of the packages
 - Makes it easy to move from manipulation to visualisation to modelling without changing the data

Tidy Data Principles

- Each variable has its own column
- Each observation has its own row
- Each value has its own cell

Using tidyr

- tidyr is used to get our data to follow the tidy data principles.
- pivot_longer used to gather multiple columns into 1
- pivot_wider used to spread a single column across multiple
- separate separates a column into 2 columns

Tidying the Olympic Data

```
summer <- pivot_longer(
    data = summer,
    cols = -Sports,
    names_to =
    "Location",
    values_to =
    "Funding")</pre>
```


Working with Missing Values

summer <- replace_na(summer,
 replace = list(Funding=0))</pre>

Exercise!

1.Using the uni_results data that you read in during the last exercise, transform the data so that there is only one column of test scores. (Use the pivot_longer function)

Program

Transform

- dplyr
- forcats
- stringr
- hms
- lubridate

Data Manipulation with *dplyr*

- 5 main dplyr verbs:
 - filter
 - select
 - arrange
 - mutate
 - summarise
- group_by allows actions to be performed by group

Filtering a dataset

noFunding <- filter(summer, Funding == 0)</pre> First argument is the filter by dataset

Followed by conditions to

Joining related Data sets

dplyr provides functions for joining two data sets:

- full_join
- left/right_join
- inner_join
- anti_join
- semi_join

Joining our summer and years data

summer <- full_join(summer, years)</pre>

Exercise!

Using the tidied uni_results data:

- 1. Obtain all the records corresponding to females
- 2. Sort the initial dataset by descending test_score
- 3. Find the mean test_score for test a and b for each course

Manipulating Factors: forcats

- Factors are a representation of categorical data.
- Forcats allows us to easily manipulate factors, you can:
 - Change names
 - Group levels
 - Reorder levels

Without Manipulation

Changes in Number of Sports Not Provided UK Sport Funding

Funding Provided by UK Sport World Class Performance Programme

Data taken from uksport.gov.uk

Ordering the Location variable by Year

```
numberNoFund <- noFunding %>%
    count(Location) %>%
    left_join(years) %>%
    mutate(Location = fct_reorder(Location,
Year))
```

With Manipulation

Changes in Number of Sports Not Provided UK Sport Funding

Funding Provided by UK Sport World Class Performance Programme

Data taken from uksport.gov.uk

Manipulating Characters: stringr

- Stringr provides consistent functions for manipulating character strings
- Manipulations include:
 - Concatenation
 - Pattern search and replace
 - Subset with strings

Manipulating Dates: *lubridate*

- Easy to use functions to convert characters to date format:
 - ymd
 - mdy
 - dmy
- Extract elements from dates
- Arithmetic of time and dates

Creating Olympic Start Dates

```
summer <- mutate(summer,
Date = str_c(Year, Month, Day, sep = "-"),
Date = ymd(Date)
```


Data taken from uksport.gov.uk

Exercise!

- Convert the test variable to a factor, rename the values to "A" and "B".
- 2. Make sure that the graduation_date variable is indeed a date object. (You can check this using class(uni_results\$graduation_date))

Program

Visualise

• ggplot2

Creating graphics: ggplot2

- Create quick plots with qplot
- Specify the type of plot using the geoms
- Add titles and labels with labs

Using **qplot**

qplot(data = summer, x = Funding, y = Sport,
 geom = 'boxplot')

Sport

Using ggplot

```
ggplot(data = summer,
        mapping = aes(x = fct_reorder(Location,Year),y = Funding,
        group = Sport, colour = Sport)) +
    geom_line() +
    ggtitle("Funding by Sport Over Summer Olympics") +
    xlab("Location of Olympics") +
    scale y continuous(labels = scales::comma)
```


Funding by Sport Over Summer Olympics Sport 30,000,000 -Modern Pentathlon Archery Athletics Rowing Badminton Sailing Basketball Shooting Boxing Swimming 20,000,000 -Funding Canoeing Synchronised Swimming Cycling Table Tennis Diving Taekwondo Equestrian Triathlon 10,000,000 -Fencing Volleyball Gymnastics Water Polo Handball Weightlifting Wrestling Hockey Judo 0 -Sydney Athens Beijing London Rio de Janeiro Location of Olympics

geom_bar

```
ggplot(data = noFunding,
            mapping = aes(x = Location)) +
    geom_bar(fill = "lightblue") +
    ggtitle("Counts of Sports with No Funding by Olympics") +
    ylab("Number of sports without funding")
```


Counts of Sports with No Funding by Olympics

Thus a Mania bi

Exercise!

- Using the ggplot function, create a box plot of test score by test.
- 2. Ensure the plot is well labelled
- 3. Colour the plot by course

Program

Model

- modelr
- broom

Fitting Models: *modelr*

- Functionality for bootstrapping/ cross validation
- Model metrics rsquare, rmse
- Extracting predictions and residuals

Predicting Olympic Funding

Data taken from uksport.gov.uk

Investigating Model Residuals

Data taken from uksport.gov.uk

Assessing Model Quality: broom

- Provides functions for extracting details on the model fit
 - Model coefficients tidy
 - Model diagnostics glance
- Useful for working with multiple models to compare fit

Fit of Olympics Models

tidy(fundingModel)

glance(fundingModel)

Exercise!

- Create a linear model from your uni_results dataset that uses course and test to predict test_score.
- 2. Add the predictions from your model to the uni_results dataset.
- 3. Apply tidy and glance to your model

Program

• purrr

Iterating: *purrr*

- Iterate (over a vector of values) or apply to multiple set/subsets of data
- Output can be one of many types based on the function used:
 - map
 - map_df
 - map_dbl
 - ...

Model For Each Sport

```
sportData <- summer %>%
group_by(Sport) %>%
nest()
```

Exercise!

Iterate over the mtcars dataset – finding the mean value for each column

2. For each course – find the variance (using the var function) of the test scores.

Program

Communicate

- There are no tidyverse packages directly aimed at communicating results (other than creating graphics)
- There are lots of packages that can be used to present results:
 - shiny
 - rmarkdown
 - flexdashboard
 - ...

Summary

Living in the Tidyverse

- Single unified approach to manipulating and analysing data
- Provides packages for all stages of the analysis lifecycle

More resources!

- Rstudio Cheat Sheets:
 <u>https://www.rstudio.com/resources/cheatsheets/</u>
- R for Data Science, *Hadley Wickham & Garrett Grolemund, O'Reilly:* <u>http://r4ds.had.co.nz/</u>

We **empower organisations** to make **informed decisions**, using advanced **analytics** and **AI/ML** techniques to meet their objectives and deliver **data-driven value**. We do this through our unique combination of people, values and strategic priorities.

@MangoTheCat

www.mango-solutions.com

info@mango-solutions.com

+44 1249 705450

Chippenham Office

Mango Solutions 2 Methuen Park Chippenham SN14 0GB

London Office

Dawson House 5 Jewry Street London EC3N 2EX

Data Week Online 2020

Share your participation

#Dataweekonline2020

bristol.ac.uk/golding

Keep in touch

@JGIBristol jgi-admin@bristol.ac.uk bristol.ac.uk/golding