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Summary. 

 

Repeated measures and repeated events data have a hierarchical structure which can be 

analysed using multilevel models.  A growth curve model is an example of a multilevel 

random coefficients model, while a discrete-time event history model for recurrent events can 

be fitted as a multilevel logistic regression model.  The paper describes extensions to the 

basic growth curve model to handle autocorrelated residuals, multiple indicator latent 

variables and correlated growth processes, and event history models for correlated event 

processes.  The multilevel approach to the analysis of repeated measures data is contrasted 

with structural equation modelling. The methods are illustrated in analyses of children’s 

growth, changes in social and political attitudes, and the interrelationship between partnership 

transitions and childbearing. 
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1. Introduction 

 

Over the past twenty years multilevel modelling has become a standard approach in the 

analysis of clustered data (Goldstein, 2003).  Longitudinal data are one example of a 

hierarchical structure, with repeated observations over time (at level 1) nested within 

individuals (level 2).  By viewing longitudinal data as a two-level structure, researchers can 

take advantage of the large body of methodological work in this area, including extensions to 

more complex hierarchical and non-hierarchical structures, categorical and duration 

responses and multivariate mixed response types.  The aim of this paper is to outline the 

multilevel modelling approach, demonstrating how traditional growth curve models can be 

framed as multilevel models, and to describe more recent developments such as multilevel 

structural equation models for the analysis of repeated hypothetical constructs measured by 

multiple indicators and for the simultaneous analysis of multiple correlated processes.  

 

Studies using longitudinal data are generally concerned with either the change over time in 

one or more outcome variables, or the timing of events (Singer and Willett, 2003).  Examples 

of research questions concerned with change include enquiries about child development, 

changes in the social or economic circumstances of households or areas, and changes in 

individual attitudes or behaviour.   In each case, analysis would be based on repeated 

measurements on a single outcome or set of outcomes.  Examples where the outcome is the 

duration to the occurrence of an event include studies of the timing of death, births, 

partnership dissolution or a change in employment status.  Event history data may be derived 

from current status data that are prospectively collected in successive waves of a panel study, 

e.g. marital or employment status, or from the dates of events that are usually collected 

retrospectively. 

 

Methods for the analysis of change include growth curve models, also known as latent 

trajectory models, and autoregressive models. In the growth curve approach the repeated 

measures are viewed as outcomes that are dependent on some metric of time (e.g. wave or 

age).  In an autoregressive model the outcome at occasion t  is a function of lagged outcomes, 

for example the outcome at 1−t  in a first-order model.  Both types of model can be viewed 

as special cases of either a multilevel model or a structural equation model.  Event history 

analysis, also known as survival or duration analysis, is used to model the timing of events, 

allowing for the possibility that durations may be partially observed (censored) for some 
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members of the sample.  Multilevel models can be applied when events are repeatable to 

allow for correlation between the durations to events experienced by the same individual, or 

when individuals are clustered into higher- level units.   

 

This paper provides an overview of multilevel models for the analysis of change and event 

processes.  The multilevel modelling and structural equation modelling approaches to growth 

curve analysis, and their relative advantages, are discussed. Generalisations of the basic 

growth curve model and event history model are described, including growth curve models 

that allow for autocorrelated residuals, factor analysis models for multiple indicators, and 

event history models for competing risks and multiple states.  Models for multiple change or 

event processes are also discussed. The multilevel modelling approach is illustrated in 

analyses of repeated height measurements on children, changes in social and political 

attitudes, and the interrelationship between partnership transitions and childbearing. 

 

 

2. Analysing Change 

 

Denote by tiy  the response at measurement occasion t  ( iTt ,...,1= ) for individual 

i ( ni ,...,1= ).  Repeated measures have a two-level hierarchical structure with measurements 

at level 1 nested within individuals at level 2.  The number of measurement occasions may 

vary across individuals, for example due to attrition.  The timing of measurements may also 

vary, for example if there is variation in the age of children taking an educational test at a 

given occasion.  

 

In this section, we discuss growth curve models for tiy  with extensions to handle 

autocorrelation, multiple indicators in a measurement model, and multivariate responses. 

 

2.1 Growth curve models 

 

We denote by tiz  the time of measurement occasion t  for individual i , where the most 

commonly used time metrics are calendar time and chronological age.  In the case of panel 

data where z  refers to calendar time, and variation in the interview date at a given wave can 

be ignored, then tti zz = .  More generally, and particularly in the context of growth studies 
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where z  is age, the timing of measurement at a particular occasion may vary across 

individuals and we would usually wish to account for this variation in the model.   

 

In the simplest model for a continuous response a linear trajectory is fitted for each 

individual:  
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which is sometimes written in single-equation (or reduced) form as 
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where tix is a vector of covariates that may be time-varying or individual characteristics, iu0  

and iu1  are individual-specific residuals (or random effects), and tie  are residuals at the 

measurement occasion level.  The time variable tiz  is treated as an additional covariate.  The 

average line describing the relationship between y  and z  at 0x =ti  is given by tiz10 αα + , 

and iu0  and iu1  are individual departures from the intercept and slope of this line. It is usually 

assumed that all residuals are normally distributed, and residuals defined at the same level 

may be correlated, i.e. ),0(~ 2
eti Ne σ  and ),(~][ 10 u

T
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and 2
0uσ  and 2

1uσ  are the between-individual variances in the intercepts and slopes of the 

individual growth trajectories.   It is common practice to centre tiz .  For example, if tiz  is 

calendar time and there are five equally spaced measurement occasions, the centred tiz  would 

be coded -2, -1, 0, 1 , 2 and 2
0uσ  is then interpreted as the between- individual variance in y  at 

the mid-point. 01uσ  is the covariance between the intercepts and slopes of the individual 

trajectories, where a positive (negative) covariance implies that individuals with a high value 

of y  at 0=tiz  tend to have a high (low) growth rate. 

 



 5 

The between-individual variance in the expected value of y , conditional on covariates tix , is 

given by  

 
22
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 i.e. a quadratic function of time. 

 

From (2) it can be seen that, because 2
0uσ  and 2

1uσ  must both be greater than zero, a positive 

01uσ  implies that the between- individual variance increases after the mid-point 0=tiz , i.e. 

the individual values of y  will start to diverge after this time.  Conversely, a negative 01uσ  

implies that the between- individual variance decreases (a convergence in individual y -

values) for at least some time after 0=tiz .  Specifically, the quadratic function in (2) reaches 

its minimum value at 2
101 / uutiz σσ−= ; if such a value lies within the observed range of tiz , 

the between- individual variance will increase after this point. Thus, individuals with a low 

y -value at 0=tiz  tend to have the highest growth rates and, at some point beyond 0=tiz , 

they may catch up with, or even overtake, individuals who had a high value of y  at 0=tiz .  

In the event that an individual with a low y -value at 0=tiz  overtakes someone with a higher 

value at 0=tiz , their growth trajectories will cross each other.  If this occurs for a sufficient 

proportion of individuals, the individual y -values will start to diverge and the between-

individual variance will increase.  

 

Elaborations to Model (1) include fitting different functions of tiz , and allowing for further 

levels of clustering.  For instance, a polynomial growth curve is specified by including as 

explanatory variables powers of tiz , and a step function is fitted by treating tiz  as categorical.  

More complex hierarchical or non-hierarchical structures arise when individuals are nested 

within higher level units or a cross-classification of different types of unit, for example 

children within schools, or within a cross-classification of schools and neighbourhoods.   

Further details of the random effects approach to repeated measures analysis can be found in 

Laird and Ware (1982), Diggle et al. (2002), Raudenbush and Bryk (2002), and Goldstein 

(2003). 
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Model (1) can also be framed as a structural equation model (SEM) (Muthén, 1997; Curran, 

2003; Bollen and Curran, 2006).  The SEM approach to growth curve analysis involves 

fitting a type of two-factor confirmatory factor model to { tiy }, which are treated as multiple 

indicators of two latent factors, iu0  and iu1 : 

 

tiititti
T

tti euuy ++++= 11000 λλµ xß    (3) 

 

where t0µ  are occasion-specific intercepts, and t0λ  and t1λ  are factor loadings.  To see the 

equivalence of  (1) and (3) when tti zz = , we can substitute tt z100 ααµ += , 10 =tλ  for all t , 

and tt z=1λ  in (3).  Thus the growth curve model is fitted by setting the loadings of the 

intercept factor iu0  to one and, in the case of equally spaced measurements, the loadings of 

the slope factor iu1  to 0, 1, 2 etc (see Bollen and Curran (2006) for further details).   A 

hierarchical level above the individual can be accommodated using multiple-group analysis 

(see Muthén, 1994).   

 

Where there is individual variation in the timing of measurements at a given occasion, it is 

more difficult to fit (1) as a SEM.  One approach would be to construct an expanded 

multivariate response vector with an element for each possible value of tiz  (observed for any 

individual) but where, for individual i , all but iT  of these responses are missing.  This is a 

special case of the more general problem of how to incorporate a continuous level 1 predictor 

in a SEM where not all values of the predictor are observed for all level 2 units. (See Curran 

(2003) for a brief discussion of a possible solution using definition variables.)   

 

Model (1) can be estimated using maximum likelihood, and the same results would be 

obtained regardless of whether it is treated as a multilevel model or a structural equation 

model.  However, one approach may be preferred over the other for certain types of data or 

extensions to (1).  It is common in panel studies to have a variable number of responses 

across individuals, due to attrition or non-monotone patterns of missingness, leading to an 

unbalanced data structure.  If a SEM is used, some method must be used to compensate for 

missing data, e.g. full information maximum likelihood (Arbuckle, 1996) or multiple 

imputation (Schafer, 1997). In a multilevel model cluster sizes are not required to be equal 
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and therefore, when applied to repeated measures data, individuals with missing responses 

can be included without any adjustment provided the data can be assumed missing at random.  

It is also straightforward to allow for between- individual variation in the timing and spacing 

of measurements in a multilevel framework because the timing of each measurement 

occasion tiz  is treated as an explanatory variable.  We can therefore combine data from 

individuals with very different measurement patterns, some of whom may have  been 

measured only once and others at several irregularly spaced intervals.  Further advantages of 

the multilevel approach are the facility to allow for more general hierarchical and non-

hierarchical structures, non-normal responses and mixed response types in a multivariate 

setting (see Section 2.4).  Finally, multilevel models can now be fitted in a number of 

specialist and mainstream software packages (a set of software reviews, with syntax for 

fitting a range of multilevel models, can be downloaded from 

http://www.cmm.bris.ac.uk/Learning_Training/Software_MM).   

 

The SEM approach is useful when the outcome of interest cannot be directly observed, but is 

measured indirectly through a set of indicators }{ ktiy  at each occasion.  A structural equation 

model for ktiy  includes a measurement component that links the observed indicators to one or 

more latent variable, depending on the dimensionality of the latent construct.   Other 

generalisations that might benefit from estimation via SEM are models with predictors 

measured by multiple indicators and structural models that decompose total effects into direct 

and indirect effects (Curran, 2003). 

 

Example: Modelling repeated height measurements 

 

We illustrate the application of growth curve modelling in an analysis of height 

measurements taken on 26 boys on nine occasions, spaced approximately 0.25 years apart 

between the ages of 11 and 14.  (The data are described and analysed in Goldstein et al. 

(1994).)  The height tiy  of boy i  at occasion t  can be modelled as a cubic polynomial 

function of age, tiz :  
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where 2)var( ukkiu σ=  and '' ),cov( ukkikki uu σ= , kk ′≠ . 

 

The analysis was carried out using MLwiN (Rasbash et al., 2004). Table 1 shows results from 

a series of likelihood ratio tests of the nature of variation in boys’ growth rates.  In Model 1 

of Table 1 only the intercept is permitted to vary across boys.  This model is clearly rejected 

in favour of Model 2 which allows for individual variation in growth rates, but only in the 

linear term i1α .  Model 3 is, in turn, found to be a significantly better fit to the data than 

Model 2.  However, allowing the cubic effect to vary across individuals, as in Model 4, 

shows no significant improvement in model fit. Table 2 shows estimates for the selected 

model (Model 3) which includes random coefficients for z  and 2z , but not for 3z . Age has 

been centred so that the intercept variance 2
0uσ  is interpreted as the between- individual 

variance in heights at age 12.25 years.  The between- individual variance is a fourth-order 

polynomial function in age, which is a generalisation of (2) where both tiz  and 2
tiz  have 

random coefficients.  As expected, the variation in boys’ heights increases with age (Figure 

1).   

 

 

2.2 Autocorrelation 

 

In Model (1) the occasion- level residuals tie  are assumed to be uncorrelated.  In practice, 

however, measurements that are close together in time will have similar departures from that 

individual’s growth trajectory, leading to autocorrelation between the tie .  We can extend (1) 

by adding a model for the tie , leading to a multilevel time series model (Goldstein et al., 

1994; Diggle et al., 2002).  A general model for measurements spaced s  units apart can be 

written 

 

)(),cov( 2
, sfee eistti σ=−   

 

where )(sf  is a function of the distance between measurements.  In most situations the 

autocorrelation will decrease with s , and it is convenient to characterise the decay process as  
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)exp(),cov( 2
, see eistti γσ −=−     (5) 

 

where γ >0.  Model (5) is a continuous-time analogue of the discrete-time first-order 

autoregressive, AR(1), model. 

 

Model (5) was fitted to the boys’ height data, extending the polynomial growth model (4).  

Using MLwiN we obtain 56.8ˆ =γ (SE=3.28), which implies predicted autocorrelations at lags 

0.25, 0.5 and 1 of 0.12, 0.01 and 0.002 respectively.  However, allowing for autocorrelation 

does not significantly improve model fit (?  -2 log L = 1.1, 1 d.f.). 

 

 

2.3 Repeated latent variables with multiple indicators  

 

Suppose the outcome of interest is a hypothetical or latent construct *
tiy  that cannot be 

measured directly by a single variable, but is measured indirectly on several occasions by a 

set of K  observed indicators }{ ktiy .  The multiple indicators ktiy  may be linked to the latent 

variable *
tiy  through a factor or measurement model: 

 

,,...,1,*
10 Kkvyy ktikitikkkti =+++= ελλ   (6) 

 

where k0λ are indicator-specific intercepts and k1λ  are factor loadings; ),0(~ 2
vkki Nv σ  and 

),0(~ 2
kkti N εσε  are residuals at the individual and occasion individual level (also called 

‘uniquenesses’) which are assumed to be uncorrelated across indicators.  We also assume that 
*
tiy  is normally distributed. 

 

We are usually interested in examining change in the latent variable rather than in its 

observed indicators, and therefore define a growth curve model for *
tiy , which has the same 

form as (1) with tiy  replaced by *
tiy :  
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where tie , iu0  and iu1  are normally distributed as before.   

 

Equation (7) is called a structural model, and  (6) and (7) together define a multilevel SEM. 

Extensions to this model include the addition of covariates to (6), and adding further latent 

variables to the measurement model to explain the association between the }{ ktiy .  Where 

there is more than one latent variable, the structural model may be extended to allow for 

dependencies between them.   It is also possible to allow for covariate measurement error by 

treating covariates as latent variables. See Bollen and Curran (2004; 2006) for further 

discussion of growth curve models for repeated latent variables and Skrondal and Rabe-

Hesketh (2004) for a detailed treatment of more general multilevel SEMs. 

 

 

Example: Modelling change in social and political attitudes 

 

The multiple indicators growth curve model is applied in an analysis of six social and  

political attitude items collected at five waves of the British Household Panel Study in 1992, 

1994, 1996, 1998 and 2001 (UK Data Archive, 2004).   The items are measured on a five-

point scale which indicates attitude towards the following statements (coded 1=strongly 

agree, 2=agree, 3=neither agree nor disagree, 4=disagree, 5=strongly disagree): 

 

1. Ordinary people share the nations wealth 

2. There is one law for the rich and one for the poor  

3. Private enterprise solves economic problems 

4. Public services ought to be state owned 

5. Government has an obligation to provide jobs 

6. Strong trade unions protect employees 

 

For the purposes of this illustration, we restrict the analysis to the 3787 individuals who 

responded at each wave and treat the items as if they were measured on a continuous scale. 

The SEM described by (6) and (7) is modified in two ways.  First, individual change in 
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opinion is modelled as a step function by including as explanatory variables in (7) dummy 

variables for waves 2-5 with coefficients 41 ,, αα K , rather than a linear function in tiz .  

Second, we simplify (7) to a random intercept model by eliminating the term iu1  from the 

equation for i1α , i.e. we assume that the rate of change is constant across individuals.   Two 

identification cons traints are applied in order to fix the scale of the latent variable *
tiy .  First, 

the factor loading for item 1 in (6), 11λ , is fixed at one, which constrains the factor to have the 

same variance as this item.  Second, the central location of *
tiy  is fixed at the mean response 

value for the reference year 1992 (wave 1) by constraining the intercept in (7), 0α , to equal 

zero. 

 

The model was fitted using Gibbs sampling, a Markov chain Monte Carlo (MCMC) method, 

in WinBUGS (Spiegelhalter et al., 2000).  Non- informative priors were assumed for all 

parameters.  Table 3 shows results from 15,000 samples with a burn-in of 1000.  Starting 

with the measurement model, we find that all but items 1 and 3 load negatively on the 

underlying factor *
tiy . This may be explained by differences in the direction of question 

wording: compared to the other items, agreement with items 1 and 3 suggests more right-of-

centre attitudes.  We might therefore interpret *
tiy  as a summary measure of social and 

political attitudes, ranging from right-of-centre (low values of *
tiy ) to left-of-centre (high 

values).  All loadings are close to 1 in magnitude, suggesting that the items have 

approximately equal discriminatory power.  After accounting for the common factor *
tiy , 

there remains a large amount of between and within individual variation in the responses on 

each item, i.e. the items have low communality.  Turning to the structural model, we find 

evidence of higher values of *
tiy  (more left-of-centre attitudes) in 1994 and 1996, with a 

move towards more right-of-centre attitudes in the waves following the start of the Labour 

government in 1997.  

 

In this illustrative example, we have omitted respondents with missing data at any wave. 

Attrition is a pervasive problem in panel studies, and restricting the analysis to complete 

cases is likely to lead to bias if drop-outs are a non-random sub-sample of the baseline 

sample.  In a Bayesian framework, missing values can be treated as additional parameters and 

a step can be added to the MCMC algorithm to generate values for the missing responses 
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(Browne, 2004, Chapter 17).  An alternative approach is to use multiple imputation, ensuring 

that the imputation model allows for the dependency between measurements from the same 

individual (Schafer and Yucel, 2002; Carpenter and Goldstein, 2004). 

 

2.4 Causal models for multivariate responses 

 

Suppose there are longitudinal data on two outcome variables, )1(y and )2(y , which we 

believe are related although the causal direction may be unclear.  For example we may have 

observations on different dimensions of child development, such as cognitive and emotional 

indicators, measured at several points in time. Model (1) can be elaborated to allow for 

reciprocal causation between )1(y and )2(y  leading to 
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specific covariate vectors.  Model (8) is a simultaneous equation model in which each growth 

process depends on the lagged outcome of the other process.  The two processes are 

additionally linked by allowing for correlation between residuals across equations.  A 

between-process residual correlation would arise if there were shared or correlated influences 

on the two processes that were not adequately accounted for by covariates.  In the most 

general model we allow for correlation between the following pairs of residuals: ),( )2()1(
titi ee , 

),( )2(
0

)1(
0 ii uu and ),( )2(

1
)1(

1 ii uu , which allows for correlation between the time-varying or 

individual-specific unobservables that affect each process.  As before, any pair of random 

effects defined at the same level and appearing in the same equation may be correlated.  Thus 

),cov( )1(
1

)1(
0 ui uu   and ),cov( )2(

1
)2(

0 ui uu  are freely estimated. 

 

The equations in (8) define a multilevel bivariate response model which can be framed as a 

random slopes model and therefore estimated using multilevel modelling software.  The data 

have a three-level hierarchical structure with responses (level 1) nested within measurement 

occasions (level 2) within individuals (level 3).  Alternatively, the model can be viewed as a 
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confirmatory factor model for a set of )1(2 −iT  responses consisting of the two responses )1(
tiy  

and )2(
tiy   for occasions iT,,3,2 L .  The factors are the random effects, and the model is 

confirmatory because ),( )1(
1

)1(
0 ii uu  have zero loadings for )2(

tiy  and, similarly, ),( )2(
1

)2(
0 ii uu  have 

zero loadings for )1(
tiy .  

 

A variant of (8) is the commonly used cross- lagged model in which ti
l
i

l
i z)(

1
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0 αα +  is replaced 

by an autoregressive term )(
,1

)(
1

)(
0

l
it

l
i

l
i y −+αα  ( 2,1=l ). Alternatively both latent growth and 

autoregressive terms can be included, leading to an autoregressive latent trajectory model. 

(See Bollen and Curran (2004) for further details and a discussion of model identification.)  

The model can be extended to allow for further levels of clustering.  For example, Muthén 

(1997) applies a simultaneous growth curve model to measures of mathematics achievement 

and attitudes to mathematics, allowing the intercept of one growth process to affect the slope 

of the other and controlling for within-school correlation in both outcomes.  Measurement 

error in either or both outcomes can be handled in a multilevel SEM, i.e. a synthesis of (6)-

(8). 

 

 

3. Analysing Event Occurrence 

 

In the previous section we considered models for studying change in an outcome tiy  over 

time.  The other main strand of longitudinal research is concerned with the timing of events.  

Event history data may be in the form of event times, usually collected retrospectively, or a 

set of current status indicators from waves of a panel study.  Both forms of data collection 

will usually lead to interval-censored rather than continuous duration data because the precise 

timing of event occurrence is generally unknown.  Durations derived from retrospective data 

are typically recorded to the nearest month or year, depending on the saliency of the event to 

respondents, while panel data are collected prospectively at infrequent intervals.   Thus, 

although events in the process under study can theoretically occur at any point in time, 

durations are actually measured in discrete time.  We therefore restrict the following 

discussion to discrete-time models.  Another reason for adopting a discrete-time approach is 

that very general models for repeated events, competing risks, multiple states and multiple 

processes can be estimated using existing procedures for discrete response data. 
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3.1 Discrete-time event history analysis 

 

We begin with a brief description of a simple discrete-time model for a single event time (see 

Allison (1982) for further details).  For each individual i  we observe a duration iy  which 

will be right-censored if the event has not yet occurred by the end of the observation period.  

In addition we observe a censoring indicator iδ , coded 1 if the duration is fully observed (i.e. 

an event occurs) and 0 if right-censored. The first step of a discrete-time analysis is to expand 

the data so that for each time interval t  up to iy , we define a binary response tiy  coded as: 
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For example, if an individual has an event during the third time interval of observation their 

discrete responses will be ),,( 321 iii yyy = (0,0,1), while someone who is censored at t =3 will 

have response vector (0,0,0).   

 

We model the hazard function for interval t , defined as the conditional probability of an 

event during interval t  given that no event has occurred in a previous interval, i.e. 

 

),0|1Pr( tsyyh sititi <=== . 

 

The hazard is the usual response probability for a binary variable.  Therefore, after 

restructuring the data, the event indicator tiy  can be analysed using any model appropriate for 

binary responses, such as a logit model: 
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where )(tα  captures the nature of the dependency of the hazard function on t , and tix  is a 

vector of covariates which may be time-varying or fixed individual characteristics.   The 
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baseline logit-hazard )(tα  is specified by including some function(s) of t  as explanatory 

variables.  For example, a quadratic function is fitted by including t  and 2t , and a step 

function is obtained by treating t  as a categorical variable. 

 

 

3.2 Multilevel event history model for repeated events 

 

Many events that we study in social research may occur more than once to an individual over 

the observation period.  For example, individuals may move in and out of co-residential 

relationships multiple times, they may have more than one child, and they may have several 

changes of job.  If repeated events are observed we can model the duration of each episode, 

where an episode is defined as a continuous period during which an individual is at risk of 

experiencing a particular event.   When an event occurs, a new episode begins and the 

duration ‘clock’ is reset to zero.  In discrete-time, we define a binary response tjiy  for each 

interval t  of episode j  for individual i , and denote the corresponding hazard function by 

tjih . 

 

When events are repeatable, event history data have a two-level hierarchical structure with 

episodes (level 1) nested within individuals (level 2).  Thus repeated events may be analysed 

using multilevel models.    A random effects logit model, also known as a shared frailty 

model, may be written 

 

itji
T

tji uth ++= xß)()logit( α   (10) 

 

where the covariates tjix  may be time-varying, or characteristics of episodes or individuals; 

and ),0(~ 2σNui  is a random effect representing individual-specific unobservables.   Model 

(10) may be extended in a number of ways.  Competing risks arise if an episode can end in 

more than one transition or type of event, in which case tjiy  is categorical and (10) can be 

generalised to a multinomial logit model (Steele et al., 1996).  Another extension is to 

simultaneously model transitions between multiple states, for example employment and 

unemployment.  A general multilevel discrete-time model for repeated events, competing 

risks and multiple states is described by Steele et al. (2004).  
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3.3 Causal event history models 

 

Although most event history analyses focus on a single event process, it is common to 

include as time-varying covariates outcomes of another process.  For example, a model of 

marital dissolution might include indicators of the presence and age of children, and studies 

of the timing of partnership formation typically allow for effects of enrolment in full-time 

education.  In both cases, these covariates are outcomes of a related, contemporaneous event 

process, and the timing of events in the two processes may be jointly determined.  For 

instance, the number of children by time interval t  constitutes an outcome of the fertility 

process, and childbearing and partnership decisions may be subject to shared influences, 

some of which will be unobserved.  In other words, fertility outcomes may be endogenous 

with respect to partnership transitions which, if ignored, may lead to biased estimates of the 

effects of having children on the risk of marital dissolution. 

 

One way to allow for such endogeneity is to estimate a simultaneous equation model, also 

called a multiprocess model, which is an event history version of model (8) for bivariate 

repeated measures data.   Suppose that there are repeated events in both processes, e.g. 

multiple marriages and births in the above example. We denote by )1(
tjih  and )2(

tjih  the hazard 

functions for the two correlated processes.  The outcomes of processes 1 and 2 by interval t  

are denoted by )1(
tjiw  and )2(

tjiw .  These prior outcomes may refer only to episode j  (e.g. the 

number of children with a given partner j ), or they be accumulated across all episodes up to 

and including j  (e.g. the total number of children from all partnerships up to time t ).  A 

simultaneous equation model which allows for effects of prior outcomes of one process on 

the timing of events in the other process is 

 

,)(]logit[

)(]logit[
)2()1()2()2()2()2()2(

)1()2()1()1()1()1()1(

itji
T

tji
T

tji

itji

T

tji

T

tji

uth

uth

+++=

+++=

w?xß

w?xß

α

α
  (11) 
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where ),(~][ )2()1( O0u Nuu T
iii = , and the random effect covariance is denoted by )12(σ .  A 

non-zero random effect covariance suggests a correlation between the unobserved individual-

specific determinants of each process.   

 

Model (11) can be estimated using methods for multilevel binary response data.  The 

bivariate responses ),( )2()1(
tjitji yy  for each interval t  are stacked into a single response vector 

and an indicator variable for each response )( l
tjiy  is interacted with )( l

tjix  and )( l
tjiw  ( 2,1=l ).  

Full details are given in Steele et al. (2005).  The model is identified by either the presence of 

individuals with repeated events or covariate exclusions such that )1(
tjix  and )2(

tjix  each include 

at least one variable not contained in the other (Lillard and Waite, 1993; Steele et al., 2005).  

For instance, Lillard and Waite (1993) used data on multiple marriages and births to identify 

a simultaneous equation model of marital dissolution and childbearing in the USA, and 

include state- level measures of the ease and acceptability of divorce (which predict the 

hazard of dissolution but not a conception) to identify the effect of marital stability on the 

probability of a conception. 

 

Example: Partnership dissolution and fertility  

 

Steele et al. (2005) used a simultaneous equation event history model to study the 

interrelationship between fertility and partnership transitions among married and cohabiting 

British women, building on previous work in the US which considered the link between 

marital fertility and marital dissolution (Lillard and Waite, 1993).   The aim of the analysis 

was to estimate the effect of the presence and age of children on the risk of partnership 

breakdown, or the conversion of cohabitation into marriage, at time t .   A simultaneous 

equation model was used to allow for the possibility that the decision to have a child with a 

partner is jointly determined with the decision to end the partnership or to marry a cohabiting 

partner.  If the unobserved factors driving each process are correlated, and this is ignored in 

the analysis, estimates of the effect of having children will be biased. The model used by 

Steele et al. (2005) is an extension of (11) with five equations: three for partnership 

transitions (dissolution of cohabitation and marriage, and conversion of cohabitation to 

marriage) and two for fertility (distinguishing marriage and cohabitation).  Each equation 

includes a woman-specific random effect and these may be correlated across equations to 
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allow for residual correlation between processes.  Of particular interest are the correlations 

between the hazard of a particular partnership outcome and the hazard of a conception.  

 

The data came from the National Child Development Study which has as its respondents all 

those born in a particular week in March 1958 (Shepherd, 1997).  Partnership and pregnancy 

histories were collected retrospectively from respondents at ages 33 and 42. The analysis was 

based on 5142 women who had 7032 partners during the study period. Prior to analysis, the 

data were restructured to obtain two responses for each six-month interval of each partnership 

between ages 16 and 42: 1) an indicator of whether the partnership had dissolved or, for 

cohabitations, been converted to marriage, and 2) an indicator of a conception.   A conception 

date was calculated as the date of birth minus nine months.   Still births and pregnancies that 

ended in abortion or miscarriage were not considered, mainly because these outcomes do not 

lead to the presence of children which can affect partnership transitions.   

 

Table 4 shows selected elements of the estimated random effects covariance matrix from 

Steele et al.’s (2005) analysis.   For illustration, we focus on the correlations between 

partnership dissolution and fertility, distinguishing marriage and cohabitation. There are 

significant, positive correlations between the chance of conceiving in cohabitation and the 

risk of dissolution from both marriage and cohabitation.  However, the correlations between 

the chance of a marital conception and dissolution from either form of partnership are both 

small and non-significant.  These findings suggest that women with an above-average risk of 

dissolution (that is, prone to unstable partnerships) tend to have an above-average chance of 

conceiving during cohabitation.  

 

Estimates of the effects of the presence of children on the logit-hazard that a cohabitation 

breaks down are given in Table 5.  Controls for partnership duration at t  and family 

background are also included in the model, but their coefficients have been suppressed (see 

Steele et al. (2005) for further results).  The results from two model specifications are 

compared. In the first model, a standard multilevel event history model, the residual 

correlations between partnership transitions and fertility were constrained to zero which is 

equivalent to estimating the partnership equations independently of the conception equations.  

The second model is the simultaneous equation model in which all random effect correlations 

were freely estimated.  From either model, we would conclude that pregnancy or having 

young children together reduces a cohabiting couple’s risk of separation.  Nevertheless, the 
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effects obtained from the multiprocess model are slightly more pronounced, due to the 

positive residual correlation between the chance of a conception and the risk of dissolution 

(Table 4).  In the single-process model, the negative effects of pregnancy and the presence of 

children are subject to selection bias.  The disproportionate presence of women prone to 

unstable partnerships in the ‘pregnancy’ and ‘having children with the current partner’ 

categories inflates the risk of separation in these categories.  Thus, the “true” negative effects 

of these time-varying indicators of fertility are understated. 

 

The findings for this British cohort contrast with those of Lillard and Waite (1993) for the 

USA.  They found a strong negative residual correlation (ρ =-0.86, SE=0.15) between the 

risk of marital dissolution and the probability of conception within marriage.  A negative 

correlation implies that women with an above average risk of experiencing marital 

breakdown (on unmeasured time-invariant characteristics) are also less likely to have a child 

within marriage.  Allowing for this source of endogeneity revealed a stabilising effect on 

marriage of having more than one child. 

 

4. Discussion 

 

It is now widely recognised that observational studies require information on individual 

change and the relative timing of events in order to investigate questions about causal 

relationships. Consequently there has been a large amount of investment in the collection of 

longitudinal data, in the form of both prospective panel data and retrospective event history 

data.  These data have a hierarchical structure which can be analysed using a general class of 

multilevel models. The aim of this paper has been to show how multilevel modelling – which 

is fast becoming a standard technique in many social and medical researchers’ repertoire – 

can be used to exploit the richness of longitudinal data on change and event processes.  

 

The simplest model for change fits a growth curve to each individual’s repeated measures, 

and is an example of a two-level random coefficient model.  Generalisations to more complex 

data structures, discrete responses, and simultaneous analysis of multiple change processes 

are straightforward applications of established multilevel modelling techniques.  One 

example of longitudinal discrete responses is interval-censored event history data.  Methods 

for the analysis of multilevel discrete response models can be applied in the analysis of 
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repeated events, with extensions to handle competing risks, transitions between multiple 

states, and correlated event processes. All of these analyses can now be performed using 

mainstream and specialist statistical software. Repeated measures data can also be 

conceptualised as multiple indicators of underlying latent variables.  A structural equation 

modelling approach is especially fruitful when responses or predictors are measured 

indirectly by a set of indicators.   

 

Previous authors have demonstrated the equivalence of the multilevel and structural equation 

modelling approaches to fitting certain types of growth curve models, and in recent years 

these powerful techniques have converged further.  On the multilevel modelling side, early 

work by McDonald and Goldstein (1989) on multilevel factor analysis has been extended to 

handle mixtures of continuous, binary and ordinal indicators (Goldstein and Browne, 2005; 

Steele and Goldstein, 2006) and structural dependencies (Goldstein et al., 2007).  Structural 

equation models have been extended to allow for hierarchical structures using multiple-group 

analysis (Muthén, 1989).  Both types of model can be embedded in the generalised linear 

latent and mixed modelling (GLLAMM) framework proposed by Rabe-Hesketh et al. (2004) 

and implemented in the gllamm program via Stata (StataCorp, 2005).  The GLLAMM 

approach does not distinguish between random effects in multilevel models and factors in 

structural equation models, but allows complete flexibility in the specification of the loadings 

attached to latent variables.  Thus a multilevel random effect is fitted by defining a latent 

variable with all loadings constrained to equal one, and a common factor is fitted by allowing 

at least one of the loadings to be freely estimated.  
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Table 1. Likelihood ratio tests, comparing difference growth curves models fitted to boys’ 

heights  

 
Model No. parameters 

in uO  
-2 log L ?  -2 log L d.f. p-value 

1: Variance only in 0α  1 929.7 - -  

2: 1+Variance in 1α  3 675.5 254.2 2 <0.001 

3: 2+Variance in 2α  6 628.5 47.0 3 <0.001 

4: 3+Variance in 3α  10 620.9 7.6 4 0.109 
 
Note: Each model extends the previous model by allowing for an extra random coefficient.  
For example, Model 1 includes only a random intercept term iu0 , while Model 2 has an 
additional random effect iu1 for the coefficient of tiz .  ?  -2 log L relates to the decrement in 
the -2 log- likelihood value between the relevant model and the model in the previous row. 
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Table 2. Cubic polynomial growth curve fitted to boys’ heights 
 
Parameter Estimate (SE) 
Fixed   

0α  (intercept) 149.01 (1.54) 

1α  (age)   6.17 (0.35) 

2α  (age2)   0.75 (0.18) 

3α  (age3)   0.46 (0.16) 
Random   
Between- individual variation   

2
0uσ  (intercept) 61.58 (17.10) 

10uσ   8.00  (3.03) 
2
1uσ  (age) 2.76 (0.78) 

20uσ  1.37 (1.41) 

21uσ  0.88 (0.34) 
2

2uσ  (age2) 0.63 (0.22) 

Within- individual variation   
2
eσ  0.22 (0.02) 
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Table 3. Multilevel structural equation model fitted to social and political items from five 
waves of the British Household Panel Study 
 
Measurement model 

k0λ a (SE)b 
k1λ  (SE) 2

ukσ  (SE) 2
kεσ  (SE) 

1. Ordinary people share wealth 3.55 (0.01) 1c - 0.18 (0.01) 0.45 (0.01) 
2. One law for rich, one for poor 2.40 (0.01) -1.11 (0.03) 0.22 (0.01) 0.45 (0.01) 
3. Private enterprise is solution 2.96 (0.01) 1.04 (0.03) 0.21 (0.01) 0.43 (0.01) 
4. Public services to be state owned 3.00 (0.01) -1.09 (0.03) 0.24 (0.01) 0.57 (0.01) 
5. Govt obliged to provide jobs 3.06 (0.01) -1.05 (0.04) 0.43 (0.01) 0.48 (0.01) 
6. Strong unions protect employees 2.84 (0.01) -1.08 (0.04) 0.37 (0.01) 0.46 (0.01) 
         
Structural model Est. (SE)       

1α  (1994 vs. 1992) 0.10 (0.01)       

2α  (1996 vs. 1992) 0.16 (0.01)       

3α  (1998 vs. 1992) 0.02 (0.01)       

4α  (2001 vs. 1992) 0.05 (0.01)       
2
0uσ  0.20 (0.01)       

2
eσ  0.03 (0.002)       

 
                                                 
a Point estimates are means of parameter values from 15,000 MCMC samples. 
b Standard errors are standard deviations of parameter values from MCMC samples. 
c Constrained parameter. 
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Table 4. Selected residual covariances from a multiprocess model of partnership transitions  
and fertility among women of the National Child Development Study, age 16-42 
 
 Dissolution of cohabitation Dissolution of marriage 
Conception in cohabitation 0.131a 

(0.027, 0.243)b 
0.316c 

0.217 
(0.074, 0.357) 

0.425 
Conception in marriage -0.009 

(-0.0045, 0.025) 
-0.048 

-0.017 
(-0.062, 0.027) 

-0.071 
 
Source: Extract from Table 5 of Steele et al. (2005). 
 
a The point estimate of the covariance (the mean of the MCMC samples) 
b The 95% interval estimate for the covariance 
c The point estimate of the correlation (the mean of the correlation estimates across samples). 
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Table 5. Multilevel discrete-time event history analysis of the effects of fertility outcomes on 
the logit-hazard of dissolution of cohabitation among women of the NCDS, age 16-42 
 
 
 Single process model Multiprocess model 
 Estimatea (SE)b Estimate (SE) 
Currently pregnant -0.639 (0.150) -0.701 (0.156) 
No. preschool with current partner     
  1 -0.236 (0.120) -0.290 (0.120) 
  2+ -0.753 (0.261) -0.877 (0.270) 
No. older with current partner     
  1 -0.032 (0.202) -0.058 (0.208) 
  2+  0.239 (0.333)  0.136 (0.341) 
Preschool child(ren) with previous partner -0.330 (0.218) -0.335 (0.224) 
Older child(ren) with previous partner -0.012 (0.128) -0.022 (0.130) 
Child(ren) with non co-resident partner -0.019 (0.191) -0.018 (0.194) 
 
Source: Extract from Table 7 of Steele et al. (2005). 
 
a Parameter estimates are means of parameter values from 20,000 MCMC samples, with a burn-in of 5000. 
b Standard errors are standard deviations of parameter values from MCMC samples. 
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Figure 1.  Between- individual variance in boys’ heights as a function of age 
 
 

 
 
 
 


