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Multiple imputation is increasingly recommended in epidemiology to adjust for the bias and loss of information
that may occur in analyses restricted to study participants with complete data (‘‘complete-case analyses’’). How-
ever, little guidance is available on applying the method, including which variables to include in the imputation
model and the number of imputations needed. Here, the authors used multiple imputation to analyze the preva-
lence of wheeze among 81-month-old children in the Avon Longitudinal Study of Parents and Children (Avon,
United Kingdom; 1991–1999) and the association of wheeze with gender, maternal asthma, andmaternal smoking.
The authors examined how inclusion of different types of variables in the imputation model affected point estimates
and precision, and assessed the impact of number of imputations on Monte Carlo variability. Inclusion of variables
associated with the outcome in the imputation model increased odds ratios and reduced standard errors. When
only 5 or 10 imputations were used, variability due to the imputation procedure was substantial enough to affect
conclusions. Careful preliminary analysis identified the scope for multiple imputation to reduce bias and improve
efficiency and provided guidance for building the imputation model. When data are missing, such preliminary
analyses should be routinely undertaken and reported, regardless of whether multiple imputation is used in the
final analysis.

imputation; longitudinal studies; missing data

Abbreviations: ALSPAC, Avon Longitudinal Study of Parents and Children; FAI, Family Adversity Index; MAR, missing at random;
MCAR, missing completely at random; MNAR, missing not at random.

Missing data are ubiquitous in longitudinal studies,
because of item, questionnaire, or visit nonresponse and
subject attrition (1, 2). It is well established that analyses
restricted to study participants with complete data
(‘‘complete-case’’ analyses), which are the default way of
dealing with missing data in statistical software, can be both
biased and inefficient. Multiple imputation has been pro-
posed as a remedy for these problems, and its incorporation
into routine practice has been recommended (3, 4).

In the presence of missing data, the validity of an analysis
depends on the unknown missing-data mechanism and the
variables included in the analysis. Missing-data mechanisms
are usually characterized using the typology introduced by
Rubin (5), as ‘‘missing completely at random’’ (MCAR),
‘‘missing at random’’ (MAR), or ‘‘missing not at random’’

(MNAR). A complete-case analysis is valid if the probabil-
ity of being a complete case is independent of the outcome
variable, given the covariates in the model (6). With stan-
dard approaches to multiple imputation, results are valid
under the assumption that the data are MAR. However,
estimation based on multiple imputation is not always
less biased than complete-case analyses (7). For example,
complete-case analysis for a model in which a covariate is
MNAR but missingness is unrelated to the response will be
unbiased. In this situation, an analysis based on multiple
imputation can be biased (8, 9).

Multiple imputation allows for uncertainty about the
missing data by creating multiple copies of the data set in
which missing values are replaced by imputed values sam-
pled from a posterior predictive distribution, itself estimated
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from the partially observed data (5, 6, 10–13). Each imputed
data set is analyzed and the results are combined, with stan-
dard errors that incorporate the variability in results between
the imputed data sets (6, 10). Methods for multiple imputa-
tion include chained equations (14) and multivariate normal
imputation (7) and are implemented in various software
packages (15–20).

Results from analyses based on multiple imputation are
increasingly being reported in the epidemiologic and med-
ical literature (3). However, little published guidance is
available on the choices to be made when using the method,
including whether the multiple imputation model should
include variables associated with the probability of data
being missing, variables predictive of those variables that
are subject to missing data, or both. Analysts must also de-
cide how many imputed data sets to create. A small number
of imputed data sets has been suggested as adequate (typi-
cally 5; for example, see Schafer (21)), but this has recently
been questioned (22).

We used multiple imputation to analyze the prevalence of
wheeze among 81-month-old children in the Avon Longitu-
dinal Study of Parents and Children (ALSPAC) and associ-
ations of wheeze with gender and maternal asthma and
smoking. We examined how the choice of imputation model
affected estimates of prevalence and association, and how
the number of imputations used influenced the Monte Carlo
variability of the results. Here we describe the implications
for the use of multiple imputation in epidemiology.

MATERIALS AND METHODS

ALSPAC is a population-based prospective study that in-
cluded all pregnant women living in Avon, United
Kingdom, with an expected date of delivery between April 1,
1991, and December 31, 1992 (23). A total of 14,541
mothers enrolled, and there were 14,062 livebirths; 13,988
of those infants were still alive at 1 year. ALSPAC children
have been followed up since recruitment using question-
naires and clinical assessments. The response rate for the
81-month questionnaire was 61% (n ¼ 8,578). Details on
measures, procedures, sample characteristics, and response
rates are available on the study’s Web site (www.alspac.bris.
ac.uk). Ethical approval for the study was obtained from the
ALSPAC Law and Ethics Committee and the local research
ethics committees.

Our outcome of interest was asthma in childhood.
Wheeze in young children is difficult to ascribe to a single
diagnostic entity and may be transient. Therefore, we used
as our outcome whether the child was reported to have
wheezed during the 12 months prior to age 81 months. This
was defined as a positive response to either of 2 question-
naire items: 1) whether the child had wheezed since the
previous questionnaire (administered at age 69 months)
and a doctor had been consulted and 2) whether there had
been any periods of wheezing with whistling in the chest
when the child breathed. The prognostic variables consid-
ered here were gender, maternal asthma, and maternal
smoking during pregnancy. Information on maternal history
of asthma was obtained from a questionnaire administered

early in pregnancy, and information on maternal smoking
was obtained from whether a mother reported being a current
smoker on a questionnaire filled out in midpregnancy.

The prevalence of wheeze at age 81 months was esti-
mated, with a 95% confidence interval. Mutually adjusted
associations of wheeze at age 81 months with gender, ma-
ternal asthma, and maternal smoking were estimated using
logistic regression. The outcome variable (wheeze at age
81 months) and 2 of the prognostic variables (maternal
smoking and maternal asthma) were subject to missing data.
We used multiple imputation to address the potential bias
and loss of precision that could result from complete-case
analysis. Odds ratios estimated using logistic regression
should be asymptotically unbiased (in small samples, esti-
mates are systematically biased away from the null (24)).

We considered additional variables not in the analysis
model for inclusion in the imputation model. Previous work
on ALSPAC suggested that children from lower socioeco-
nomic groups were more likely to drop out of the study (25).
Therefore, we used a group of 10 binary socioeconomic
status variables on which information was collected during
pregnancy (the Family Adversity Index (FAI) (26)), for each
of which a code of 1 indicated adverse circumstances.
Binary indicators of wheeze since the previous time point
at ages 6, 18, 30, 42, 54, and 69 months were created in
a manner analogous to wheeze at 81 months. We used 4
separate logistic regression models to examine which of
these variables predicted the occurrence of missing data in
the outcome variable and each of the 3 prognostic variables,
and we used a further logistic regression model to examine
which variables were predictive of the values of the variable
with the most missing data (wheeze at age 81 months).

We investigated whether the multiple imputation model
should include variables associated with the probability of
data being missing, variables predictive of those variables
that were subject to missing data, or both by comparing 3
imputation models. The first model included all variables
found to be related to the probability of missing data on the
outcome or any of the prognostic variables (model 1). The
second included all of the predictors of values of wheeze at
age 81 months (model 2), and the third included both of the
above sets of variables (model 3). Each model also included
wheeze at age 81 months and the 3 prognostic variables
(gender, maternal asthma, and maternal smoking). For each
of these 3 models, we used multiple imputation with chained
equations (14). In each chained equation cycle, each missing
value in each variable is imputed on the basis of a predictive
distribution derived from a regression on all other variables
in the imputation model. At the end of 10 cycles, 1 imputed
data set is created. We repeated this process to create 200
imputed data sets. The results of analyses on each individual
data set were combined using Rubin’s rules (6, 10). The
estimated fraction of missing information was calculated
for each model, as the ratio of the between-imputation var-
iance to the sum of the between- and within-imputation
variances (27).

Ideally, any analysis should produce the same results if it
is repeated on the same data set. The random variability
inherent in the imputation process means, in addition to
the variability between results of analyses from different
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imputed data sets, that the results of multiple imputation
analyses will vary when repeated. We investigated the ex-
tent of this variability by repeating the whole process, vary-
ing the number of imputed data sets used (50 replications
each of 5, 10, 20, 40, and 200 data sets). These analyses
were restricted to the model including both the variables
predictive of missingness and the variables predictive of
wheeze at age 81 months (model 3 above).

All analyses were performed using Stata, version 10
(Stata Corporation, College Station, Texas) (28).

RESULTS

A total of 13,983 children were included in the data set.
Table 1 shows the most frequent patterns of missing data:
5,494 children (39.3%) had complete data on all variables
(outcome, prognostic variables, 10 FAI variables and 6
wheeze variables), while only 409 children (2.9%) had com-
plete data apart from wheeze at age 81 months. The most
common patterns of missing data were caused by attrition
(n ¼ 4,045). A total of 1,532 children had no measurement

of wheeze during follow-up. Although these children were
included in the analyses, their inclusion made little differ-
ence in the results (confirmed by sensitivity analyses).

Table 2 shows the extent of missingness in the outcome
variable and the prognostic and FAI variables and the pro-
portion of children with each characteristic. All children had
their gender recorded, while 12,303 (88%) of the mothers
reported whether they had asthma and 13,163 (94%) re-
ported whether they had smoked during pregnancy. There
were 8,402 children (60%) who had the outcome variable
observed, while 8,037 (57%) had complete data on the out-
come and all 3 prognostic variables.

To investigate which variables predicted missingness, we
estimated associations (mutually adjusted) between the out-
come, prognostic, and FAI variables and missing data on
wheeze at age 81 months, maternal asthma, and maternal
smoking, based on analyses of persons with complete data
on the predictor variables included in each model (Table 2).
Maternal smoking and 7 of the 10 FAI variables were asso-
ciated with increased odds of missing data on wheeze at age
81 months. Fewer variables were predictive of missing data

Table 1. Twenty Most Frequent Patterns of Missingness of Data on Variables Related to

Wheeze at Age 81 Months (n¼ 13,983), Avon Longitudinal Study of Parents and Children, Avon,

United Kingdom, 1991–1999a

Presence/Absence
of Data on

Maternal Asthma

Presence/Absence
of Data on

Maternal Smoking
FAIb

Presence/Absence of Data on
Wheeze at the Following

Month:
No. of

Children
% of

Children

6 18 30 42 57 69 81

þ þ þ þ þ þ þ þ þ þ 5,494 39.3

þ þ � þ þ þ þ þ þ þ 609 4.4

� þ � � � � � � � � 518 3.7

þ þ þ þ þ þ þ þ þ � 409 2.9

þ þ þ � � � � � � � 359 2.6

þ þ þ þ þ þ þ þ � � 337 2.4

þ þ þ þ þ � � � � � 309 2.2

� � � � � � � � � � 305 2.2

þ þ þ þ þ þ þ þ � þ 303 2.2

þ þ þ þ þ � þ þ þ þ 295 2.1

þ þ þ þ � � � � � � 280 2.0

þ þ þ þ þ þ þ � � � 272 1.9

þ þ � � � � � � � � 255 1.8

þ þ þ þ þ þ � � � � 196 1.4

þ þ þ þ þ þ þ � þ þ 178 1.3

þ þ þ þ þ þ � þ þ þ 122 0.9

þ þ þ þ � þ þ þ þ þ 117 0.8

þ þ þ � þ þ þ þ þ þ 109 0.8

þ þ � þ � � � � � � 107 0.8

þ � � � � � � � � � 95 0.7

Abbreviation: FAI, Family Adversity Index.
a A plus sign indicates that the variable was observed; a minus sign indicates that data on the

variable were missing. A total of 3,314 children (23.7%) had a missingness pattern other than one

of those shown (there were 457 additional missingness patterns not shown in the table).
b A plus sign in the FAI column indicates that all FAI variables were present; a minus sign

indicates that data on at least 1 FAI variable were missing.
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Table 2. Associations of Wheeze at Age 81 Months (Outcome Variable) and Prognostic and Family Adversity Index Variables With Missingness in the Outcome and Prognostic Variables,

Avon Longitudinal Study of Parents and Children, Avon, United Kingdom, 1991–1999

Whole Data Set
Children With 4 Key Variables

Measureda

Odds of Missingness in Key Variablesb

Wheeze at Age 81
Months (Outcome)

Maternal Asthma Maternal Smoking

No. With
Measurements

% With
Measurements

% With
Characteristic

No. With
Measurements

% With
Characteristic

OR 95% CI OR 95% CI OR 95% CI

Wheeze at age 81 months 8,402 60 13.4 8,037 13.3 1.34 0.98, 1.82 1.70 1.12, 2.59

Male gender 13,983 100 51.6 8,037 51.4 0.98 0.90, 1.07 0.68 0.46, 1.00 1.11 0.73, 1.70

Maternal asthma 12,303 88 11.6 8,037 11.3 1.05 0.91, 1.20 0.96 0.50, 1.87

Maternal smoking 13,163 94 19.9 8,037 15.4 1.44 1.29, 1.61 0.69 0.41, 1.17

FAI variables measured
during pregnancy

Early parenthood 13,983 100 8.1 8,037 4.7 1.87 1.57, 2.22 1.14 0.57, 2.27 1.13 0.51, 2.53

Housing inadequacy 13,399 96 7.4 7,992 4.7 1.54 1.28, 1.85 1.50 0.78, 2.90 0.42 0.13, 1.43

Basic living conditions 13,087 94 3.0 7,928 2.6 1.08 0.84, 1.40 0.81 0.25, 2.60 1.59 0.58, 4.39

Low educational attainment 12,503 89 14.2 7,927 11.4 1.30 1.15, 1.48 1.23 0.74, 2.04 1.93 1.15, 3.23

Financial difficulties 12,094 86 10.0 7,736 7.9 1.28 1.11, 1.49 1.24 0.71, 2.17 1.93 1.07, 3.50

Large family size 13,222 95 1.6 7,998 1.2 1.13 0.76, 1.68 0.36 0.05, 2.77 1.08 0.14, 8.44

Affective psychopathology 13,018 93 26.1 7,873 22.7 1.26 1.14, 1.39 1.84 1.22, 2.78 0.78 0.46, 1.30

Crime trouble with police 11,938 85 3.0 7,445 1.9 1.60 1.23, 2.07 0.60 0.18, 1.97 —c

No social support from
partner

12,086 86 13.0 7,884 10.7 1.09 0.95, 1.25 1.86 1.15, 2.99 1.18 0.64, 2.18

Lack of social network 12,414 89 7.6 8,021 5.6 1.51 1.28, 1.78 2.15 1.25, 3.68 1.17 0.55, 2.52

Abbreviations: CI, confidence interval; FAI, Family Adversity Index; OR, odds ratio.
a For FAI variables, number of children with 4 key variables and the FAI variable measured.
b Adjusted for other prognostic variables and, where applicable, the FAI variable.
c The association between ‘‘crime trouble with the police’’ and missingness of data on maternal smoking could not be estimated, because all women who smoked had missing data on that

question.

M
u
ltip

le
Im

p
u
ta
tio

n
in

L
o
n
g
itu

d
in
a
l
S
tu
d
ie
s

4
8
1

A
m

J
E
p
id
e
m
io
l
2
0
1
0
;1
7
2
:4
7
8
–
4
8
7

 at University of Bristol Information Services on October 15, 2010 aje.oxfordjournals.org Downloaded from 

http://aje.oxfordjournals.org/


on maternal asthma or smoking during pregnancy. Wheeze
at age 81 months was associated with missing data on both
maternal asthma and smoking.

Table 3 shows the number of children with measurements
and the percentage of those with the characteristic for the
prognostic and wheeze variables. The number of children
with measurements of wheeze declined from 11,409 at age
6 months to 8,402 at age 81 months. The prevalence of
wheeze among children with the 4 key variables observed
was lower than that among all those children who were
observed at each time point. Wheeze at age 81 months
was associated with maternal asthma, with weak evidence
of associations with gender and maternal smoking. The
strength of associations between earlier wheeze and wheeze
at 81 months increased with age (for wheeze at age
69 months, adjusted odds ratio ¼ 14.1, 95% confidence in-
terval: 11.2, 17.8). This high odds ratio permits accurate
prediction of wheeze at 81 months for those children (n ¼
404) who are missing data on wheeze at 81 months and have
observed data on wheeze at 69 months. There was little
evidence of association between wheeze at 81 months and
the FAI variables (odds ratios were 0.72–1.24; data not
shown). There was also little evidence of association be-
tween earlier wheeze and missing data on the outcome or
prognostic variables (odds ratios were 0.41–2.28; data not
shown), although children with wheeze at 69 months were
more likely to have missing data on wheeze at 81 months
(odds ratio ¼ 1.49, 95% confidence interval: 1.08, 2.06).

The associations examined in Table 2 (predictors of the
probability of being missing) and Table 3 (predictors of
values of variables with missing data) are summarized in
Figure 1. Maternal smoking and wheeze at age 69 months
were associated with both the outcome (wheeze at age
81 months) and the probability that it was missing. There-
fore, it was not plausible to assume that the data were
MCAR. If, however, given the (approximate) strata formed
by these variables, we assume that the distributions of ob-
served and missing 81-month wheeze data are similar, then

81-month wheeze is MAR. Under such an assumption, anal-
yses will be unbiased, provided that both of these variables
are included in complete-case analyses or that they are both
included in the imputation models (24).

Table 4 shows estimates of the prevalence of wheeze at
age 81 months and its association with the prognostic
variables, based on both complete-case analyses and the 3
approaches to multiple imputation. All imputation models
included gender, maternal asthma, maternal smoking, and
1) FAI variables only (model 1, predicting the probability of
missingness); 2) wheeze variables only (model 2, predicting
the values of variables with missing data); and 3) both FAI
and wheeze variables (model 3, predicting both sets of
variables). Assuming that the MAR assumption holds and
that all models are correctly specified, the differences
between imputed prevalence and association estimates and
the corresponding complete-case estimates represent bias
corrections. Under this assumption, the estimates from each

Table 3. Associations of Prognostic Variables and Previous Measurements of Wheeze With Wheeze at Age 81 Months (Outcome Variable),

Avon Longitudinal Study of Parents and Children, Avon, United Kingdom, 1991–1999

Whole Data Set
Children With 4 Key Variables

Measured Odds Ratio for
Wheeze at Age
81 Monthsa

95%
Confidence
IntervalNo. With

Measurements
% With

Measurements
% With

Characteristic
No. With

Measurements
% With

Characteristic

Male gender 13,983 100 51.6 8,037 51.4 1.16 0.94, 1.44

Maternal asthma 12,303 88 11.6 8,037 11.3 1.63 1.22, 2.18

Maternal smoking 13,163 94 19.9 8,037 15.4 1.21 0.89, 1.65

Previous measurement
of wheeze at:

6 months 11,409 82 26.4 7,738 24.3 1.12 0.88, 1.44

18 months 10,976 78 27.5 7,706 26.2 1.20 0.93, 1.55

30 months 9,990 71 22.6 7,391 21.4 1.37 1.05, 1.78

42 months 10,004 72 17.6 7,579 16.7 2.12 1.62, 2.78

57 months 9,411 67 18.9 7,532 18.0 3.14 2.43, 4.07

69 months 8,600 62 15.5 7,339 15.0 14.10 11.2, 17.8

a Adjusted for other prognostic variables and, where applicable, the wheeze variable.

Wheeze at 81 Months 

Sex Maternal 
Asthma 

Missing Data on 
Wheeze at 81 Months FAI

Wheeze at 69 
Months

Maternal 
Smoking 

Figure 1. Associations between wheeze at age 81 months (out-
come variable), covariates (gender, maternal smoking, and maternal
asthma), and missingness of data, Avon Longitudinal Study of Par-
ents and Children, Avon, United Kingdom, 1991–1999. FAI, Family
Adversity Index.
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of the 3 imputation models show a bias correction in a con-
sistent direction, with estimates from imputation models
being higher than those from corresponding complete-case

analyses. The largest change in estimates occurs when the
wheeze variables (which predict the outcome) are included
in the imputation model. Estimated prevalence increases

Table 4. Prevalence and Associations of Wheeze at Age 81 Months With Prognostic Variables

Based on Complete-Case Analyses and on 3 Approaches to Multiple Imputation, Avon

Longitudinal Study of Parents and Children, Avon, United Kingdom, 1991–1999

Analysis Prevalence, % 95% CI
SE of

Prevalence

Estimated
Fraction of
Missing

Information, %

Prevalence

Complete cases 13.3 12.5, 14.0 0.38

Multiple imputation

FAI (predicts probability
of missingness)

13.7 12.9, 14.5 0.40 48.1

Wheeze at ages 6–69
months (predicts values
for missing data)

14.1 13.4, 14.8 0.37 36.5

Combined FAI and wheeze
(predicts probability of
missingness and values)

14.1 13.3, 14.8 0.38 39.1

OR 95% CI SE of Log OR

Association with gender

Complete cases 1.29 1.14, 1.47 0.066

Multiple imputation

FAI (predicts probability of
missingness)

1.32 1.16, 1.50 0.067 41.8

Wheeze at ages 6–69
months (predicts values
for missing data)

1.39 1.23, 1.57 0.062 36.6

Combined FAI and wheeze
(predicts probability of
missingness and values)

1.38 1.22, 1.56 0.063 38.9

Association with maternal
asthma

Complete cases 2.20 1.86, 2.61 0.087

Multiple imputation

FAI (predicts probability of
missingness)

2.23 1.87, 2.65 0.088 45.7

Wheeze at ages 6–69
months (predicts values
for missing data)

2.24 1.91, 2.62 0.081 38.5

Combined FAI and wheeze
(predicts probability of
missingness and values)

2.26 1.92, 2.65 0.082 40.3

Association with maternal
smoking

Complete cases 1.24 1.05, 1.47 0.087

Multiple imputation

FAI (predicts probability of
missingness)

1.25 1.06, 1.47 0.085 55.1

Wheeze at ages 6–69
months (predicts values
for missing data)

1.32 1.14, 1.53 0.076 46.5

Combined FAI and wheeze
(predicts probability of
missingness and values)

1.32 1.14, 1.52 0.074 40.9

Abbreviations: CI, confidence interval; FAI, Family Adversity Index; OR, odds ratio; SE, stan-

dard error.
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from 13.3% in the complete-case analysis to 14.1% using
the full imputation model (including the prognostic, FAI,
and wheeze variables, predicting both the probability of
missingness and the values of variables with missing data).
Using the full imputation model increases the odds ratios for
the associations between wheeze at age 81 months and gen-
der, maternal asthma, and maternal smoking by 7%, 3%, and
6%, respectively (Table 4) in comparison with complete-
case analyses. There was little difference between results
from the full imputation model (model 3) and the simpler
model including only variables related to the value of the
outcome (model 2).

The distributions of all variables were similar for ob-
served and imputed data (Table 5), indicating no obvious
problems with the imputation process.

Imputation including the wheeze variables (predicting
values of variables with missing data) increased the effi-
ciency of the analyses, assuming MAR holds (Table 4).
The ratios of standard errors of log odds ratios comparing
the imputation models including both wheeze and FAI vari-
ables with complete-case analyses were 0.96, 0.94, and 0.85
for the associations with gender, maternal asthma, and ma-
ternal smoking, respectively. These correspond to ratios of
variances of 0.91, 0.89, and 0.78 and hence to hypothetical
sample size increases of 10%, 12%, and 28%, respectively.
The estimated fraction of missing information decreased
from the complete-case analysis to the imputation model
including the wheeze variables from age 6 months to age
69 months (predicting values of variables with missing
data).

To quantify the variability due to the random sampling
inherent in multiple imputation procedures, we calculated
the standard deviations of 50 estimates, each from 1 multi-
ple imputation analysis (model 3, predicting both the prob-
ability of missingness and the values of variables with
missing data), varying the number of imputed data sets on
which these estimates were based (50 estimates each from 5,
10, 20, 40, and 200 imputed data sets (Table 6)). When only

5 imputations were used, the standard deviations of the 50
imputation-based estimates of each association (Table 6)
were approximately one-quarter of the magnitude of the

Table 5. Distributions of Outcome, Prognostic, Wheeze, and

Family Adversity Index Variables for Observed and Imputed Data

Sets, Avon Longitudinal Study of Parents and Children, Avon, United

Kingdom, 1991–1999

% With Characteristic

Observed
Data

Imputed
Data

Wheeze at age 81 months 13.4 15.0

Maternal asthma 11.6 12.8

Maternal smoking 19.9 22.8

Wheeze at:

6 months 26.3 29.4

18 months 27.5 30.6

30 months 22.6 24.9

42 months 17.6 20.0

54 months 18.9 20.9

69 months 15.5 17.2

FAI variables measured
during pregnancy

Housing inadequacy 7.4 9.7

Basic living conditions 3.0 3.3

Low educational attainment 14.2 18.2

Financial difficulties 10.0 12.3

Large family size 1.6 1.7

Affective psychopathology 26.1 29.2

Crime trouble with police 3.0 4.1

No social support from
partner

13.0 17.0

Lack of social network 7.6 10.2

Abbreviation: FAI, Family Adversity Index.

Table 6. Between-Imputation-Procedure Standard Deviations for 50 Sets of Imputations Under

the Full Imputation Model, for Varying Numbers of Imputed Data Sets per Imputation Procedure,

Avon Longitudinal Study of Parents and Children, Avon, United Kingdom, 1991–1999

No. of Imputations

5 10 20 40 200

Prevalence (proportion) of
wheeze at age 81
months (SEa, 0.38)

0.0884 0.0564 0.0458 0.0372 0.0170

Log odds ratio for
association between:

Gender and wheeze at 81
months (SE, 0.063)

0.0162 0.0099 0.0078 0.0050 0.0026

Maternal asthma and
wheeze at 81 months
(SE, 0.082)

0.0242 0.0162 0.0123 0.0093 0.0038

Maternal smoking and
wheeze at 81 months
(SE, 0.074)

0.0227 0.0186 0.0117 0.0097 0.0041

Abbreviation: SE, standard error.
a Standard error of estimate.
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standard error from the set of 200 imputations. When 40
imputations were used, the ratio fell to approximately
one-tenth.

DISCUSSION

Multiple imputation has the potential to reduce bias and
increase efficiency (reduce standard errors) in analyses of
epidemiologic data, compared with complete-case analyses
(3). However, its ability to reduce bias in a particular anal-
ysis depends on the existence of measured variables that are
associated with both missingness and the outcome variable
(7, 29–31). Preliminary analyses of such associations, and
graphical displays summarizing them, can be used to inves-
tigate the plausibility of the assumptions underlying both
complete-case and multiple-imputation-based analyses.
Multiple-imputation-based analyses will not always reduce
bias in comparison with complete-case analyses. Prelimi-
nary analyses thus inform the choice of analysis method
and of variables to be included in any imputation model.
Analyses using multiple imputation should often be based
on 25 or more imputed data sets rather than the 3 or 5 that
are often used, in order to reduce the impact of the random
sampling inherent in multiple imputation procedures.

Changes in estimates were greater for prevalence than for
association, with the complete-case analysis underestimat-
ing the prevalence of wheeze at age 81 months. Changes
in odds ratios were not substantial but suggested that the
complete-case analyses underestimated the associations be-
tween gender, maternal asthma, and maternal smoking and
wheeze at 81 months. Marginal means (such as prevalence)
are likely to show greater bias in complete-case analysis
than estimates of association, because marginal means are
always biased if data are MAR (rather than MCAR),
whereas conditional associations may not be (if we condi-
tion on the MAR mechanism variables, as we did here). Bias
corrections in estimates of association may be more sub-
stantial than those seen here when there are more measured
variables that are strongly related to both missingness and
the values of variables with missing data (30). Conversely, if
most variables were weakly correlated with the variables
with missing data, there would be little information to re-
cover, and thus imputation would not substantially reduce
bias. In our example, including the variables related to the
values of the variable with the most missing data made the
most difference in the estimates: Estimates from the full
imputation model (additionally including variables related
only to the probability of missingness) made little additional
difference in the estimates.

Here, the outcome variable was the main variable with
missing data. When only the outcome is missing, complete-
case analysis is unbiased provided that missingness is un-
related to the outcome variable, given the covariates (6, 7).
Our preliminary analyses (Figure 1) showed that wheeze at
age 69 months and maternal smoking were related to both
the outcome (wheeze at age 81 months) and the probability
of the outcome being missing. If the analysis model in-
cluded both of these variables and the outcome was MAR
given these variables, we would expect complete-case anal-

ysis to be unbiased. Because wheeze at age 69 months was
not included as a covariate in the complete-case analyses,
the complete-case analyses will be biased. However, if in
Figure 1 wheeze at age 69 months was unrelated to the
probability of the outcome being missing, given maternal
smoking status, then a complete-case analysis with wheeze
at age 81 months as the outcome and maternal smoking as
a covariate would be unbiased (7).

Where there are nontrivial amounts of missing data
in covariates, both preliminary analyses and imputation
models will become more complex. An MAR assumption
may often become more plausible after the inclusion in the
imputation model of additional variables that are not in our
analysis model (because they are on the causal pathway, for
example). Thus, multiple imputation models should typi-
cally be more complex than the analysis model. Including
variables that are not related to the variable being imputed in
the imputation models may slightly decrease efficiency but
should not cause bias (29, 31). Model diagnostics should be
used to highlight any implausibility in the imputed values.
For example, the distributions of observed and imputed data
should be compared and the plausibility of any differences
examined. Imputation models should also preserve the
structure of the analysis model (32). For example, where
the substantive analysis exploits the hierarchical nature of
longitudinal data (e.g., using a multilevel model), the impu-
tation model should be similarly structured. Here, the lon-
gitudinal nature of the data allowed us to include variables
(previous wheezing) that predicted the values of the variable
with the most missing data (wheeze at 81 months) in impu-
tation models.

As well as correcting bias, multiple imputation will of-
ten improve efficiency compared with complete-case anal-
yses. Here, in estimating both prevalence and associations,
the standard errors from complete-case analyses were
larger than those from the full imputation model, with
improvements in efficiency corresponding to hypothetical
sample size increases of up to 28% relative to complete-
case analyses, for the association between maternal asthma
and wheeze at age 81 months. Inclusion in the imputation
model of variables that are strongly related to the variable
with missing data (even if unrelated to missingness) will
usually improve efficiency (31). Here, the variable most
related to wheeze at age 81 months was wheeze at age
69 months. The standard errors for estimates where the
imputation model included wheeze at 69 months were
lower in all cases than those from the complete-case
analyses and those where the imputation model did not
include wheeze at 69 months.

When there are factors related to both the outcome and
missingness that are not included in imputation models, the
data are MNAR and multiple imputation using standard
procedures cannot (fully) remove bias. For example, the
data analyzed here would be MNAR if mothers of children
with wheeze at 81 months were less likely to return the
questionnaire, even after allowing for all measured vari-
ables. Our preliminary analyses allow some insight into
the direction of the association between missingness and
wheeze—for example, children who had wheeze at 69
months were more likely to have missing data on wheeze
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at 81 months, after allowing for other variables such as
maternal smoking status. Given the strong positive associa-
tion also shown here between wheeze at 69 months and
wheeze at 81 months, this suggests that mothers of children
with wheeze at 81 months may be less likely to complete
questionnaires about wheeze and thus that the true preva-
lence of wheeze is higher than estimated here.

Once the multiple imputation model is chosen, the number
of imputations must be decided. The variability between sets
of imputations depends on both the number of imputations
used and the fraction of missing information (27). However,
the fraction of missing information is itself estimated using
the between- and within-imputation variances, and thus may
have substantial variability when estimated from small num-
bers of imputations. Monte Carlo variation among sets of
small numbers of imputations can be substantial enough to
materially affect conclusions, particularly where the original
data set is small (14, 27). One approach might be to estimate
the Monte Carlo variation (33) and use that to decide the
appropriate number of imputations. For example, the desired
precision of the estimate could be decided, a small number of
imputations (20, for example) could be carried out to obtain
a jackknife estimate of the Monte Carlo variance, and then
the number of imputations required to achieve the desired
precision could be calculated (33).

Multiple imputation is increasingly used, and it has been
suggested that ‘‘if correctly and thoughtfully applied, impu-
tation methods should reduce bias and increase precision in
everyday use’’ (4, p. 356). However, correct application is
not simple, and multiple imputation is not less biased than
complete-case analysis in all circumstances (7). In this pa-
per, we have shown that useful information for constructing
the imputation model, on the likely extent of the bias cor-
rection, and on the potential efficiency gains from multiple
imputation can be obtained from careful preliminary anal-
yses. These should include exploration of the factors related
to missingness and their association with variables in the
analysis model, as well as exploration of variables predic-
tive of variables in the analysis model (even if not predictive
of missingness). We found that imputation including vari-
ables related to the values of the variable with the most
missing data had the greatest impact on the estimates and
their standard errors; additionally including variables re-
lated only to the probability of missingness had little addi-
tional impact. In our example, preliminary analyses would
have highlighted the importance of including earlier wheeze
variables, while indicating that the FAI variables (being re-
lated only to the probability of missingness) need not be
included. Thus, such analyses should be reported in papers
using or considering multiple imputation, either as justifica-
tion for the variables used in the multiple imputation (4)
or as reasons for preferring complete-case analysis over
multiple imputation.
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