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COMMENTARY

Is Mendelian randomization ‘lost in translation?’: Comments on
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Wehby et al. suggest that researchers use the term ‘instrumental variable analysis with genetic
instruments’ rather than ‘Mendelian randomization’ for studies that use genetic variants that proxy
for modifiable risk factors to investigate the causal effects of these risk factors [1]. They state
that ‘Using common language between disciplines applying IV analysis with genetic variants is
essential to increasing collaborations and fostering the application of this method’ [1]. However,
we would argue that truly translational research requires direct collaboration between individuals
from different disciplines, clear definitions of discipline-specific terminology and the willingness
to learn from each other. Any attempts to develop a common language must reflect this reality and
may be less important than being able to translate between disciplines.

In the limited context of ‘Mendelian randomization’ developing the necessary multidisciplinary
approach clearly goes well beyond the term used to describe these studies. What is required is
capitalizing on the insights that all disciplines can bring and not arguing over which discipline
should be the one with terminological hegemony. It is notable, for example, that throughout their
commentary Wehby et al. refer to ‘endogenous’ variables, without any explanation of this term
in language that would be understood by clinicians, epidemiologists, geneticists, basic scientists
or indeed many biomedical statisticians for whom this term will be unknown. Similarly, they use
the term ‘direct’ where most epidemiologists and clinicians would specify ‘causal’ (the latter also
having a clearer understanding for lay readers of research).

Others have also suggested alternative terms for ‘Mendelian randomization’ including
‘Mendelian deconfounding’ [2] and ‘Mendelian triangulation’ [3], so which name should be given
prominence? We are not particularly committed to the name ‘Mendelian randomization’ and have
discussed the origin of this term in previous publications [4, 5]. However, it is now recognized

∗Correspondence to: Debbie A. Lawlor, MRC Centre for Causal Analysis in Translational Epidemiology, Department
of Social Medicine, University of Bristol, Canynge Hall, Whiteladies Rd, Bristol BS8 2PR, U.K.

†E-mail: d.a.lawlor@bristol.ac.uk

Copyright q 2008 John Wiley & Sons, Ltd.



COMMENTARY 2751

within epidemiology, biostatistics, genetic epidemiology, molecular genetics and clinical practice
and is listed and defined in Wikipedia (http://en.wikipedia.org/wiki/Mendelian randomization). For
example, it is included as a study type in the hierarchy of evidence (placed between prospective
cohort studies and randomized controlled trials) in the most recent update of the American Academy
of Pediatrics clinical guidelines.

Rather than trying to develop a common language we believe researchers should respect the
expertise of disciplines different from their own and where appropriate work directly with them.
Our concern here is emphasized by some studies that have used the term ‘instrumental variable
analysis with genetic instruments,’ or something very similar, but seem to us to have a poor
understanding of the instruments that they are using (presumably from failure to work closely
with relevant disciplines), and consequently may have made biased inference. For example, Brown
et al. used family history of diabetes as a ‘genetic instrumental variable’ (their term throughout the
paper) to examine the causal association of diabetes with employment [6]. They assumed family
history of diabetes to be unrelated to potential confounding factors of the association between
diabetes and employment: ‘Our IVs should be independent of factors, such as, for example, age at
onset and comorbidities’ [6, p. 541]. For anyone with a clinical background this makes little sense
since most cases of type II diabetes (the more common form) are asymptomatic, with up to 50
per cent remaining undiagnosed [7–9]. A family history of diabetes would result in detection bias,
with family members and clinicians more likely to initiate screening for the disease than would
be the case among individuals without diabetes. This would result in diagnosis at an earlier age
in those with a family history than those without a family history. Furthermore, as risk of type II
diabetes is related to social class [9], family history of diabetes will similarly be related to social
class (and many factors that themselves associate with social class) and will certainly not serve as
the kind of proxy marker suitable for use as an instrumental variable.

There are similar problems with the studies that Wehby et al. refer to: ‘Some health economists
have begun to apply IV methods with genetic variants as instruments to evaluate the effects of
health risks and behaviours on health and socioeconomic outcomes’ [1]. It is now well established
that many reported genetic associations are false positives in that they fail to replicate in larger
independent studies [10]. We would only ever countenance using genetic variants in Mendelian
randomization studies if they had clearly established robust associations with the risk factor of
interest [11]. If this is not the case, then the basis of the Mendelian randomization study and the
first assumption of any instrumental variables’ analysis is violated [11]. We do not believe that
any of the three studies cited by Wehby et al. [1] fulfil this basic criterion.

In the study by Ding et al., the authors acknowledge that in the literature there are inconsis-
tencies in the associations between the genetic variants that they use and health or health-related
behaviours [12, p. 33]. Indeed in their own study they test the association of four genetic variants
with five health-related outcomes (one of which is split into two subgroups for some analyses)
on a sample of fewer than 900 and fail to replicate most of the associations they initially claim
as reported in the literature [12]. This is perhaps not surprising, given both the facts that the
evidence of a robust association for any of these variants is lacking and the small sample size
of their study. Furthermore, the authors fail to acknowledge the much more stringent require-
ments for very small p-values in genetic association studies than the conventional 5 per cent
threshold [10]. Similarly, Norton and Han use a polymorphism in DRD4 (the dopamine receptor
gene) and one in DAT1 (the dopamine transporter gene) as instrumental variables for obesity
[13]. However, the association of these variants with body mass index or obesity has failed to
replicate in large independent studies, with a recent review of the polygenetic basis of obesity
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confirming only two variants (FTO and MC4R) as having robust replicated associations [14]. We
would not consider DRD4, DAT1 or any other variant that has not been adequately replicated as
a suitable instrument for obesity. Furthermore, Norton et al. claim a sex difference in the effect
of these variants with body mass index, without recognition of the evidence demonstrating how
spurious most claims of sex interactions with genetic effects are [15]. Finally, the cited example
from Wehby’s own team (publicly available only in abstract form and therefore difficult to fully
evaluate) claims effects of five individual single nucleotide polymorphisms (SNPs) on smoking to
have relative risks of 2.0–3.0 [16]. The magnitudes of these associations are difficult to believe and
we would be cautious of accepting the author’s IV results without further replication of these asso-
ciations in large independent samples. For example, a previous publication for one of the variants
found to be associated with smoking by Wehby et al. (DBH) found no association with smoking
behaviour or cotinine levels (a biomarker that accurately measures smoking without reporting
bias) [17].

One further problem with the suggested name change to ‘instrumental variable analysis with
genetic instruments’ is that several published examples fulfil our definition of Mendelian random-
ization, in that they use knowledge of a robust association between a genetic variant and a risk
factor of interest to provide evidence regarding the causal association of that risk factor with an
outcome, but they do not use a formal instrumental variables’ analysis. In these studies information
on the association between the genetic variant and the risk factor of interest is obtained from
different study populations to those that provide information on the association between the genetic
variant and the outcome of interest.

For example, in a study examining the association between c-reactive protein (CRP) and coro-
nary heart disease (CHD), the authors calculated the weighted mean difference in CRP between
individuals with variants of the +1444C>T polymorphism in the CRP gene among European
individuals from six studies [18]. They then used those results together with data from previously
published observational studies to compute an expected odds ratio for CHD among individuals
homozygous for the T allele (expected if the observational study results were unbiased). The
authors then performed four new genetic association studies (in European populations) to obtain
an odds ratio for the association between the +1444C>T polymorphism and CHD. The expected
odds ratio for CHD by genotype was 1.20 (95 per cent CI 1.07–1.38), whereas the observed odds
ratio was 1.01 (95 per cent CI 0.74–1.38), leading the authors to conclude that the observational
studies appeared to exaggerate the causal effect of CRP [18].

In a recent Mendelian randomization study, a meta-analysis of all published studies of the associ-
ation between aldehyde dehydrogenase 2 (ALDH2), a genetic variant that encodes a major enzyme
involved in alcohol metabolism, which is robustly associated with levels of alcohol consumption,
and blood pressure was undertaken [19]. A marked difference in mean blood pressure (7.44mmHg
(95 per cent CI 5.39, 9.49), p=1.1×10−2) between wild-type homozygotes (∗1∗1), who would
not have any adverse consequences from consuming alcohol, and those homozygous for the null
allele (∗2∗2), who would have an adverse effect to alcohol consumption and who consume much
lower levels of alcohol, was found. These findings provide strong evidence that alcohol intake
has a marked causal effect on blood pressure [19]. No formal instrumental variables’ analysis was
possible since individual participant data were not available and not all studies included in the
meta-analysis had information on alcohol consumption.

Although we note in our earlier Statistics in Medicine publication the potential limitations of
using information on gene-risk factor association and gene-outcome associations from different
studies [11], we nonetheless believe that such studies (with clear biological understanding and
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explicit assumptions) can, and do, make important contributions to the literature. Despite the lack
of formal instrumental variables’ analysis these fulfil our criteria for Mendelian randomization
studies.

Wehby et al. go on to discuss the importance of testing (as far as one can) for underlying
instrumental variables’ assumptions and having clear rationales for undertaking an instrumental
variables’ analysis and for the choice of instruments used. We agree completely with these principles
[11]. However, we disagree with the authors’ assertion that in our earlier publication [11] we
failed to describe any tests for assessing whether linkage disequilibrium and pleiotropy resulted
in possible violation of the instrumental variables’ assumption. We do indeed discuss how two
or more genetic variants with known different biological pathways to the risk factor of interest
could be used to test this possible violation [11]. It is true, however, that when there is only
one known genetic variant the possible violation cannot be tested, but this fact underlies the use
of instrumental variables, analysis throughout econometrics and other disciplines. As Cox and
Wermuth point out ‘the special independence assumptions made in formulating these equations
cannot be empirically tested’ [20, p. 297] and therefore argue that instruments should be selected
‘only on subject-matter grounds’ [20, p. 297] (i.e. best scientific evidence). It is therefore essential
to use biological (or other relevant) knowledge in instrument selection for studies in order to make
correct causal inference in instrumental variables’ analysis.

We acknowledge that the intricacies of biological pathways make it almost always possible
to invoke a biological justification for an epidemiological (including a genetic epidemiological)
association. For these reasons we believe that the selection of genetic variants for use in Mendelian
randomization studies must be guided by the strength of evidence regarding any robust association
of the genetic variant with the risk factor of interest. Our criteria here are driven by demonstrating
consistent associations in a number of very large independent studies and applying much more
stringent p-values than conventionally used in medical statistics [10].

We are also unsure why Wehby et al. suggest that ‘the endogenous selection of biologic markers
or exposures such as plasma folate levels, C-reactive proteins or others is less intuitive.’ These
issues have been discussed fully elsewhere [21–24]. In brief, numerous claims are made, almost on
a daily basis, for the causal association of such exposures with disease outcomes. These claims are
most commonly made on the basis of associations found in observational epidemiological studies,
sometimes prospective studies, but commonly prevalence (case control or cross-sectional) studies
(for example, in a recent review we identified 81 prevalent studies of the association between CRP
and various types of cancer, most claiming a positive association, but only nine prospective studies
[25]). Such associations are likely to be related to confounding and/or reverse causality and yet they
are used as a rationale to begin developing and evaluating drugs that affect the biologic exposures.
Genetic variants that are robustly associated with these biologic exposures are unlikely to be
associated with characteristics that commonly confound associations of the exposure with disease
outcome [26], and the association of the genetic variant with the outcome cannot be explained
by reverse causality [11]. Thus, Mendelian randomization studies of biological exposures are a
useful tool for providing valid causal inference. They also have additional advantages in that they
provide an estimate of the causal effect of lifelong mean differences in the biological exposure. For
example, the associations of SNPs, which are known to be robustly associated with variation in
low-density lipoprotein cholesterol (i.e. associated in two or more very large independent studies
with appropriately very small p-values), with CHD outcomes are greater than would be expected
from the known effect of random allocation to statin medication (which acts via a reduction in
low-density lipoprotein cholesterol) [27]. The most likely explanation for this greater effect is that
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the variants are related to lifetime differences in low-density lipoprotein cholesterol, whereas statin
use in mid-life by definition only affects levels from this time onwards [28, 29].

Wehby et al.’s comment on the importance of knowing just how genetic variants affect risk
factors, in particular health behaviours, is very important and is discussed in our original commen-
tary [11]. Here a useful analogy for clinicians, epidemiologists and health service researchers is
with the randomization to advice to change a health behaviour. Results from an intention to treat
analysis of a randomized controlled trial showing a change in a disease outcome by randomization
to dietary advice, for example, are correctly interpreted as showing the effect of the dietary advice
(and not necessarily the diet per se).

In conclusion, we agree with Wehby et al. [1] that all branches of science can be enhanced
by greater collaboration across relevant disciplines. However, we feel that this requires direct
working with each other, and by this collaborative work gaining knowledge of differences (and
similarities) in language, philosophy, understanding and methods, rather than trying to develop a
single common language.
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