
Hardware Parametric Energy Consumption Analysis
-

Joint TACLe – EACO Workshop on
Analysis Techniques for Energy-Aware Computing

-
Marko van Eekelen

Paolo Parisen Toldin, Rody Kersten, Bernard van Gastel
Marc Schoolderman, Jascha Neutelings, Dorus Peelen

Stein Keijzers, Ennier Kelly
-

Bristol, U.K., 2014, September 10-11

Who is that guy?
Prof.dr. Marko van Eekelen

Ø  Open University of the Netherlands (OU) (0.7 fte); Radboud University Nijmegen (RU) (0.3 fte)
Organisation
Ø  OU: Head of the Computer Science Department, Programme leader Master Software

Engineering
Ø  RU: Nijmegen Scientific Director of the Laboratory for Quality Software (LaQuSo),

Coordinator of the Security Bachelor
Conferences
Ø  Chair Steering Committee of the Trends in Functional Programming (TFP) Symposia
Ø  Initiated in 2009 the Foundations and Practical Aspects of Resource Analysis

(FOPARA) biannual workshop series
Ø  Steering Committee of the Computing Science Education Research Conferences

(CSERC)
Ø  Expert Committee for the EAPLS Ph.D. Awards
Ø  Chair of FOPARA2015, co-located with DICE2015 and ETAPS2015
Projects
Ø  Project leader NL AHA project on Resource Consumption Analysis (2006-2010)
Ø  Verification Work Package Leader EU Artemis CHARTER project (2009-2012)

Ø  Verification of Safety Critical Applications including Resource Consumption
Ø  Industrial partners from Avionics, Automotive, Surveillance and Healthcare

Ø  Member of the NL GoGreen Smart Home project (2011-2015)

Contents of this talk
Ø  Why Static Energy Consumption Analysis?
Ø  Need for Hardware Parametricity
Ø  Hoare Logic for Hardware Parametric Energy Consumption Analysis
Ø  EcaLogic: a tool for Hardware Parametric Energy Consumption Analysis
Ø  Example
Ø  Current limitations, Work in Progress, Future work

Ø  Marc Schoolderman, Jascha Neutelings,Rody Kersten and Marko van Eekelen.

ECAlogic: Hardware-Parametric Energy-Consumption Analysis of Algorithms.
In Proceedings of the Foundations of Aspect-Oriented Languages Workshop,
(FOAL 2014, Modularity 2014). ACM Digital Library 2014.

Ø  Rody Kersten, Paolo Parisen Toldin, Bernard van Gastel, Marko van Eekelen. A
Hoare Logic for Energy Consumption Analysis, In Proceedings of the 2013
International Workshop on Foundational and Practical Aspects of Resource
Analysis (FOPARA2013). In colocation with WCET2013. Bertinoro. Italy.
Lecture Notes Computer Science. Springer Verlag. To appear.

Ø  Paolo Parisen Toldin, Rody Kersten, Bernard van Gastel, Marko van Eekelen.
Soundness Proof for a Hoare Logic for Energy Consumption Analysis, Institute
for Computing and Information Sciences, Radboud University Nijmegen,
Technical Report ICIS-R13009, October 2013, Radboud University Nijmegen.

Why Static Energy Consumption Analysis?

Introduction Application Conclusion

Motivation

Worldwide ICT energy consumption growing (6.6% per year)
• Currently, only dealt with in hardware!

Source: D8.1. Overview of ICT energy consumption, FP7-288021 – Network for Excellence in Internet Science

Marc Schoolderman BSc 22 April 2014 ECAlogic 1 / 9

Hardware Efficiency

l  Focus on many efficiency methods
–  Laws and regulations, long-term plan, etc
–  Hardware limits

 ~0.01W ~0.1W ~100W ~10,000W

Hardware improvement is needed
 but it is the software that controls the hardware…

Why Static Energy Consumption Analysis?

Importance of Energy Efficiency

l  ICT controls the world and hence ICT controls most of the energy used in the world!

l  Analysis of complete systems is needed: software+hardware, control+machine

Why Static Energy Consumption Analysis?

Static vs Dynamic analysis

With dynamic analysis the properties of a running system is monitored at run-
time.

With static analysis the properties of a running system are predicted at design-
time.

Static analysis can help in
•  Preventing problems at run-time
•  Exploring the consequences of design choices
•  Studying properties of the design

Dynamic analysis can help in
•  Exploring the properties of the running system
•  Monitoring the running system for problems
•  Measuring key aspects of the running system

Why Static Energy Consumption Analysis?

Hardware energy consumption is controlled by software
Hardware performance and energy consumption efficiency is improving steadily due
to hardware specific improvements:
•  Hardware improvements;
•  Compiler improvements;
•  Software analysis for specific hardware

We propose a hardware parametric approach

•  Input for the analysis are models of the hardware components
•  The analysis itself is generic. It uses the energy

model as a parameter to statically derive upper-
bounds for energy consumption

It requires hardware component models:
•  i.e. hardware energy consumption models including

internal state information
•  key parameters guessed, provided by manufacturers

and/or measured dynamically

The need for hardware parametricity

Component models and a Hoare logic…

Ø  Basic hardware component description language
Ø  Finite state machine

Ø  energy levels attached to each state
Ø  constant power draw per state
Ø  energy usage: time consumed * state power level

Ø  Component functions may
Ø  change state, energy usage is constant per component function

Ø  Total energy consumption
Ø  sum of all incidental usage by component functions
 + sum over states (time spent in state * state power draw)

Ø  Hoare logic with logical rules describing how energy
consumption is approximated
Ø  …

Hoare logic for hardware parametric energy consumption analysis

Component models and a Hoare logic…

Ø  Basic hardware component description language
Ø  Total energy consumption

Ø  sum of all incidental usage by component functions
 + sum over states (time spent in state * state power draw)

Ø  Hoare logic with logical rules describing how energy
consumption is approximated

Ø  Pre-assumes annotations for loop bounds and variable values
Ø  Includes an implicit component for the processor
Ø  Takes in the info from the component parameters
Ø  Result: symbolic bound on energy consumption
Ø  Soundness with respect to energy-aware semantics is proven (result

is over-estimation of energy usage)

Hoare logic for hardware parametric energy consumption analysis

So, what do we have in the EcaLogic tool…

l  Set of logic rules used for analysis
–  For every statement or expression; Result is an over-estimation

l  energy consumed by the hardware is modelled in hardware component models
–  Incidental and time-dependent consumption

EcaLogic: a tool for Hardware Parametric Energy Consumption Analysis

EcaLogic: a tool for Hardware Parametric Energy Consumption Analysis

http://resourceanalysis.cs.ru.nl/energy/

Design time decision: which algorithm is best?

Introduction Application Conclusion

Comparing Algorithms
Wireless sensor node

• Keep radio on
• Take measurements
• Send immediately

image:

Wireless sensor node #1

function alwaysOn (N)
Radio : : on ()
while N > 0 bound N do

Value := Sensor : : measure ()
Radio : : queue (Value)
Radio : : send ()
N := N�1

end while

Radio : : o f f ()
end function

Marc Schoolderman BSc 22 April 2014 ECAlogic 6 / 9

Introduction Application Conclusion

Comparing Algorithms
Results

• consumes less energy when B � 3, N � 3
• takes less time when B � 12

time energy
alwaysOn(N) 600 + 195 · N 83600 + 40200 · N
buffering(N,B)

�
130 + 740

B
�
· N

�
1070 + 105640

B
�
· N

Table: Comparing sensor node #1 and #2

N Number of samples
B Samples per packet

Marc Schoolderman BSc 22 April 2014 ECAlogic 8 / 9

Introduction Application Conclusion

Comparing Algorithms
Wireless sensor node

• Radio mostly off
• Collect & queue
• Send in batches

image:

Wireless sensor node #2

function b u f f e r i n g (N, B)
while N > 0 bound N/B do

K := B
while K > 0 and N > 0 bound B do

Value := Sensor : : measure ()
Radio : : queue (Value)
K := K � 1
N := N � 1

end while

Radio : : on ()
Radio : : send ()
Radio : : o f f ()

end while

end function

Marc Schoolderman BSc 22 April 2014 ECAlogic 7 / 9

Introduction Application Conclusion

Comparing Algorithms
Wireless sensor node

• Keep radio on
• Take measurements
• Send immediately

image:

Wireless sensor node #1

function alwaysOn (N)
Radio : : on ()
while N > 0 bound N do

Value := Sensor : : measure ()
Radio : : queue (Value)
Radio : : send ()
N := N�1

end while

Radio : : o f f ()
end function

Marc Schoolderman BSc 22 April 2014 ECAlogic 6 / 9

1.2 Related Work
To our knowledge, ECALOGIC is the first tool that offers static
energy consumption analysis for complete systems. Several tools
perform a static analysis of the energy-consumption of the CPU
based on per-instruction measurements, such as JOULETRACK [8]
and WATTCH [2]. Furthermore, tools exist for energy profiling of
software libraries, i.e. using dynamic analysis [4]. The tool that
is most similar to ours is SEPROF [10]. This advanced tool com-
bines dynamic profiling with static estimation of energy consump-
tion. One difference is that, while ECALOGIC is geared towards
complete systems, SEPROF only estimates the energy usage of
the CPU. Moreover, while SEPROF estimates energy-usage, ECA-
LOGIC gives bounds that are sound with respect to the hardware
model.

In [9], an abstraction of the resource behaviour of components is
presented, called Resource-Utilization Models (RUMs). Our com-
ponent models can be viewed as an instantiation of a RUM. RUMs
can be analysed, e.g., with the model checker Uppaal where our
static analysis method employs the Hoare logic from [5]. A pos-
sible future research direction for ECALOGIC is to find a way to
analyse also algorithms with RUMs as component models.

Finally, several generic resource consumption tools exist, such
as COSTA [1] and RAML [3]. The difference with ECALOGIC is
that these do not take a hardware model into account and are geared
towards incidental resource consumption, making them less fit for
energy-consumption analysis.

2. Tool Architecture
A schematic representation of ECALOGIC is as follows:

hardware

algorithm

ECM model

ECA program
analysis

time
energy

The algorithm and the hardware on which it will run must first
be modelled. To capture the functionality of the algorithm, we offer
the simple ECA programming language, described in Sect. 2.1.
Each hardware component is modelled in a similar language, ECM,
which is described in Sect. 2.2.

Component functions explicitly influence energy consumption.
Other language constructs, for instance the evaluation of an arith-
metic expression, also implicitly consume energy. This is modelled
in the special implicit component. This component is assumed
to be present in any system. It is modelled in ECM and therefore
under full user control.

2.1 Input Language
For describing algorithms, we use the simple programming lan-
guage ECA. A program is represented as a function with input pa-
rameters. The language is a simple “while”-type language, with the
usual control structures and function calls. It has two major restric-
tions:

• All while-loops are bounded in the number of iterations. This
upper bound must be specified explicitly and is assumed to be
sound. It can either be inferred by a third-party tool or specified
directly by the programmer.

• All variables are positive integers. There is no form of struc-
tured data. These can however be simulated by modelling them
as component functions, as we will see below.

A partial grammar of the language is shown in Fig.1. Continuing
with our running example of a wireless sensor node, a simple

hprogrami ::= {hcomp-impi hsepi} {hfun-def i hsepi}
hcomp-impi ::= ‘import’ ‘component’ id {‘.’ id} [‘as’ id]
hfun-def i ::= ‘function’ id [‘(’ [id {‘,’ id}] ‘)’] hfun-bodyi
hfun-bodyi ::= ‘:=’ hexpri

| hstat-listi ‘end’ ‘function’
| hemptyi

hstat-listi ::= {hstatementi hsepi}
hstatementi ::= ‘skip’

| id ‘:=’ hexpri
| hfun-calli
| ‘if’ hexpri ‘then’ hstat-listi ‘else’ hstat-listi ‘end’ ‘if’
| ‘while’ hexpri ‘bound’ hexpri ‘do’ hstat-listi ‘end’ ‘while’
| ‘{’ hannot-elemi {‘,’ hannot-elemi} ‘}’ [hstatementi]

hfun-calli ::= [id ‘::’] id ‘(’ [hexpri {‘,’ hexpri}] ‘)’
hannot-elemi ::= id ‘<-’ hexpri
hexpri ::= hexpri hbin-opi hexpri

| id

| hfun-calli
| ‘(’ hexpri ‘)’

hbin-opi ::= ‘or’|‘and’|‘=’|‘<>’|‘>’|‘<’|‘>=’|‘<=’|‘+’|‘-’|‘*’|‘/’|‘^’
hsepi ::= ‘;’ | end-of-line

Figure 1. Partial grammar of the input language ECA.

program that switches the radio on, takes N measurements and
transmits these, looks as follows:

f u n c t i o n alwaysOn (N)
Radio : : on ()
wh i l e N > 0 bound N do

Value := Senso r : : measure ()
Radio : : queue (Value)
Radio : : send ()
N := N�1

end wh i l e

Radio : : o f f ()
end f un c t i o n

Here the parameter N acts as an upper bound on the number of
iterations of the while loop. It is allowed to use any expression as an
upper bound, as long as it can be evaluated in terms of the parame-
ters of a function. In many cases this can be done directly, as above.
If, however, the upper bound of a loop references variables whose
values are only available at run time, an annotation with a Hoare-
style precondition is required to relate each of those variables to the
parameters. An example of this is given in Section 3.

2.2 Component Models
Hardware components models are defined by 1. a (possibly empty)
set of component states, 2. a function phi which maps component
states to power draw, and 3. a set of component functions. A simple
model for a radio looks as follows:

component Radio (a c t i v e : 0 . . 1)
i n i t i a l a c t i v e := 0

component f un c t i o n on uses 400 t ime 400 energy

a c t i v e := 1
end f un c t i o n

component f un c t i o n o f f uses 200 t ime 200 energy

a c t i v e := 0
end f un c t i o n

component f un c t i o n queue (X) uses 30 t ime 30 energy

component f un c t i o n send uses 100 t ime 100 energy

f un c t i o n ph i := 2 + 200 ⇤ a c t i v e
end component

In this example, the radio has two states: off (0) or on (1). There
are component functions to turn the radio on/off, queue a measure-

Example

Limitations of published work
First steps only
•  Straightforward, simple language, no recursion, no energy signatures

Limitations
•  Component state functions take up a constant amount of time and

incidental energy
•  mitigate by changing the program

•  Component states have a constant power draw

•  mitigate by changing state to a higher energy level in component function

•  Component models must be finite state machines

•  mitigate using abstraction

•  The effect of component state functions on the component states cannot
depend on the arguments of the function
Also, component models are independent, they cannot influence each
other
•  mitigate using multiple component state functions

Limitations

EcaLogic
l  Implementation of the original analysis
–  Works on a toy language

EcaLogic-C: Work in progress

Work in progress with Stein Keijzers

l  C is used a lot for control software
l  Use Frama-C
–  Annotations can be proven with Frama-C
–  Create an ECA plugin to Frama-C converts the annotated C program to the

extended EcaLogic core
– data structures, memory manipulation, recursion

EcaLogic-C: Work in progress

EcaLogic-C

EcaLogic-C: Work in progress

Work in progress with Ennier Kelly

l  Analyse and compare energy consumption of two different DNS server
implementations

l  Measurements for server component models (SEF lab Amsterdam)
l  Abstraction of full server code
l  Run analysis

l  Quite a challenge: both in abstraction and in measuring

DNS server comparison: Work in progress

Future work (unordered)

l  Take away current limitations (recursion, implicit component, …)
l  Add lower bounds
l  Increase modularity adding energy signatures
l  Add some form of concurrency in software/ hardware models
l  Solve symbolic energy consumption comparisons automatically
l  Go for a full, real language
l  Apply in practice
l  Set up library of various kinds of energy models
l  Create smooth transition from modeling to actual system
l  Study larger systems
l ….

Future work

Summary

We analyse energy consumption of software controlled ‘hardware’ with

l  Energy models of the hardware components

l  A hardware-parametric static analysis technique

l  Promising first results:

l  Tool EcaLogic
l  Proven soundness of basic analysis using Hoare logic

l  Lots of work to be done: students are welcome for research visits

FOPARA2015 see you @ ETAPS in London?

•  Part of ETAPS2015, London UK, April 11-18, 2015
•  CC, ESOP, FASE, FOSSACS, POST, TACAS, …

•  Co-located with DICE2015, Marco Gaboardi, April 11 and 12
•  Post-event peer reviewing, presentation acceptance based on paper

for local proceedings, proper LNCS postproceedings
•  Topics:

•  original research results
•  relevant to the analysis of resource (e.g. time, space, energy)

consumption by computer programs
•  Aim: to bring together the researchers that work on foundational

issues with the researchers that focus more on practical results
•  both theoretical and practical contributions are encouraged
•  also encouraged are papers that combine theory and practice

•  Special attention to TACLe, TACLe funded
•  Call for papers, expected soon… Tentative submission: January, 2015

