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Motivation 

•  No future system will be single-core 
–  parallel programming will be essential 

•  It’s not just about performance 

–  it’s also about energy usage 

•  If we don’t solve the multicore challenge, then no other advances will 
matter! 

•  We need to produce predictable timing models for widely used 
multicores (e.g. x86, ARM) 



Even Mobile Phones are Multicore! 



Current	  Parallel	  Methodologies	  

•  Applica5ons	  programmers	  must	  be	  systems	  programmers	  

–  insufficient	  assistance	  with	  abstrac/on	  

–  too	  much	  complexity	  to	  manage	  

•  Difficult/impossible	  to	  scale,	  unless	  the	  problem	  is	  simple	  

•  Difficult/impossible	  to	  change	  fundamentals	  

–  scheduling	  

–  task	  structure	  	  

–  migra/on	  

•  Many	  approaches	  provide	  libraries	  

–  they	  need	  to	  provide	  abstrac5ons	  
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Thinking	  Parallel	  

•  Fundamentally,	  programmers	  must	  learn	  to	  “think	  parallel”	  

–  	  this	  requires	  new	  high-‐level	  programming	  constructs	  

–  perhaps	  dealing	  with	  large	  numbers	  of	  threads	  

•  You	  cannot	  program	  effec5vely	  while	  worrying	  about	  deadlocks	  etc.	  

–  they	  must	  be	  eliminated	  from	  the	  design!	  

•  You	  cannot	  program	  effec5vely	  while	  fiddling	  with	  communica5on	  etc.	  

–  this	  needs	  to	  be	  packaged/abstracted!	  

•  You	  cannot	  program	  effec5vely	  without	  performance	  informa5on	  

–  this	  needs	  to	  be	  included	  as	  part	  of	  the	  design!	  
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Components and Abstraction 

•  Components give some of the advantages of functional 
programming 
–  clean abstraction 

–  pure computations, easily scheduled 

–  dependencies can be exposed 

•  Hygiene/discipline is necessary 
–  no unwanted state leakage 

(e.g. in terms of implicit shared memory state) 
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The ParaPhrase Approach 

•  Start bottom-up 

–  identify  (strongly hygienic) COMPONENTS 

–  using semi-automated refactoring 

•  Think about the PATTERN of parallelism 

–  e.g. map(reduce), task farm, parallel search, parallel completion, ... 

•  STRUCTURE the components into a parallel program 

–  turn the patterns into concrete (skeleton) code 

–  Take performance, energy etc. into account (multi-objective optimisation) 

–  also using refactoring 

•  RESTRUCTURE/TUNE if necessary! (also using refactoring) 
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both legacy and 
new programs 



Some Common Parallel Patterns 
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Generally, we 
need to nest/

combine patterns 
in arbitray ways 



Skeletons 

•  Skeletons are implementations of parallel patterns 
•  A skeleton is a template 

–  pluggable higher-order functions  

–  can be instantiated with concrete worker functions 

•  Skeletons avoid deadlock, race conditions 
–  communication is implicit and structured 

Murray Cole, "Algorithmic Skeletons: structured management of 
parallel computation" MIT Press, 1989 

 
Horacio González-Vélez and Mario Leyton:  

A survey of algorithmic skeleton frameworks: high-level 
structured parallel programming enablers.  
Softw., Pract. Exper. 40(12): 1135-1160 (2010) 



Parallel Pipeline Skeleton 

•  Each stage of the pipeline can be executed in parallel 
•  The input and output are streams 
•  Each stage is itself an instance of a pattern (Skel) 

 
skel:do([{pipe,[Skel1, Skel2,..,SkelN]}], Inputs).!

!
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Pipe

Tn · · · T1 T �
n · · · T �

1

{pipe, [Skel1, Skel2, · · · , Skeln]}

Skel1 Skel2 Skeln
· · ·

Inc = {seq , fun (X) -> X+1 end},

Double = {seq , fun (X) -> X*2 end},

skel:run({pipe , [Inc , Double]},

[1,2,3,4,5,6]).

% -> [4,6,8,10,12,14]



Parallel Task Farm Skeleton  

•  Each worker is executed in parallel 
•  A bit like a 1-stage pipeline 

!

skel:do([{farm, Skel, M}], Inputs).!

12 

Farm

Tn · · · T1 T �
n · · · T �

1

...

Skel2

Skel1

{farm, Skel, M}

SkelM

Inc = {seq , fun(X)-> X+1 end},

skel:run({farm , Inc , 3},

[1,2,3,4,5,6]).

% -> [2,5,3,6,4,7]



Example Parallel Structure 
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for each image, i. 
 process(read i)  

Sequential 

Parallel 

Pipeline Farm 

read read read 

Farm 

process process process 

{pipe, {farm, {func, read}, m}, 
          {farm, {func, process}, n}}  



Composing Skeletons 

…	  

…	  

read 

t9 
t10 
t11 
t12 

g (f t0) 
g (f t4) 

g (f t1) 

read g (f t2) 

… …	  

g (f t3) 

g (f t6) 

t8 

process 
…	  
f t5 

process …	  
f t7 

…

…

•  Queues link skeletons 

{pipe, {farm, {func, read}, m}, 
          {farm, {func, process}, n}}  



x86 Multicore Cache Design 
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•  Each core has 
–  a local write-back cache 

–  a FIFO-ordered write buffer 

•  A core may run many 
threads 

•  Cores share 
–  level 2 (and 3) cache 

–  global memory 



Sequential Consistency (SC) 

•  Memory accesses are effectively interleaved 
–  as if run by a single processor 

•  Either           Not 
–  both threads return 3        - thread 1 returns 0, 

–  thread 1 returns 1, thread 2 returns 3      thread 2 returns 0 
–  thread 1 returns 3, thread 2 returns 2 



x86 Total Store Order (TSO) 

•  On a multicore, SC can be inefficient 
•  Intel uses a weaker (relaxed memory) consistency model 

–  Total store order (TSO) guarantees that the order that Writes are seen by 
a location is the same as the order they were issued 

•  ARM uses an even weaker consistency model 



Basic TSO Rules  

•  The basic rules are: 
 (1)  Reads are not reordered with other Reads. 
(2)  Writes are not reordered with older Reads. 
(3)  Writes are not reordered with other Writes. 
(4)  Reads may be reordered with older Writes to different memory 

 locations but not with older Writes to the same memory location 

•  An Exchange is treated as an indivisible Read/Write pair to a 
specific memory location 

•  A Fence is treated as both a Read and Write to all memory 
locations, except that no actual memory transfer occurs 



Simple Spin Lock Implementation 



x86 Assembly code for spin lock 



Simple Queue using spin lock 

We have used HOL to 
prove that this is sound wrt 
the TSO relaxed-memory 
model 



Simple Timing Model 

•  The worst-case costs if n threads contend a lock are 



Timing Model for a Farm 

•  The amortised average cost for each farm operation is 



Timing Model for a Pipeline 

•  If the first stage dominates (function f), its cost is 

 
•  The total cost for both stages is therefore: 

 or, if the second stage dominates (function g) 



Including Store-Buffer Flushing 

•  The cost of an exchange depends on items to be flushed, b 
 
•  The cost of a spin-lock on t contending threads is 

•  The costs of queue operations change slightly 

•  The cost of a farm is: 



Performance Predictions 
(Image Convolution, 1024x1024) 

24 core machine at Uni. Pisa 

2xAMD Opteron 6176. 800 Mhz 

32GB RAM 

1 x NVidiia Tesla C2050 GPU 

Dashed lines are predictions 



Performance Predictions 
(Image Convolution, 2048x2048) 



Performance Predictions 
(Image Convolution, 2048x2048) 

64-core machine at Uni. St Andrews 

8xAMD Opteron 6376. 2.3Ghz 

32GB RAM 



Performance Predictions 
(Matrix Multiplication etc) 



Comparison with OpenMP 

Dashed lines are OpenMP 



Combining CPUs and GPUs 
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Fig. 6. Speedup graph for configuration 3, for 1 GPU worker
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Fig. 7. Speedup figures for configuration 5 for 1,3,5, and 7 number of GPU
workers

speedup figures for the configuration with a variety of GPU
workers (here, 1,3,5 and 7 GPU workers), where we decided
to show the best speedups, where other runs with a different
numbers of GPU workers (up to 16 GPU workers) showed
much poorer speedup results and were deemed uninteresting.
For this configuration, the MCTS prediction (from Figure 5)
shows optimal speedup for 6 CPU workers and 3 GPU work-
ers, however Figure 7 shows, for 6 CPU and 3 GPU workers,
a speedup of 39.12, where the best speedup is for 4 CPU and
3 GPU workers, with a speedup of 40.91. This demonstrates
that our MCTS prediction for this configuration is within 4%
of the best speedup obtained. From Figure 7, we can also see
that from the remaining performance measurements, the best
speedup for 1 GPU worker is 39.35 (for 5 CPU workers), 5
GPU workers is 40.08 (for 4 CPU workers) and 7 GPU workers
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Fig. 8. Speedup figures for configuration 6, where the number GPU workers
= number CPU workers

is 28.39 (for 4 CPU workers).

Figure 8 shows the speedups for �(r k p) (configuration
6, as shown in Figure 4). Here we show for each speedup of n
CPU workers and also n GPU workers. Other results showed
much poorer speedups and we therefore have not shown them
here. As Figure 8 demonstrates, the best speedup obtained for
this configuration is 7.45 for 5 CPU and 5 GPU workers, which
confirms the prediction given by our MCTS model (Figure 5).

It is noted that the speedup figures here do not always show
smooth performance improvements by increasing the number
of workers, and there are points where we even get poor per-
formance (such as in Figure 7 for 9 CPU workers and 5 GPU
workers). One possible reason for this could be that we have a
combination of nodes where each node gives a different service
time: increasing the number of workers only to the bottleneck
stages increases global throughput, and therefore performance.
Once the bottleneck has been removed, adding any extra
workers to a non-bottleneck stage in FastFlow doesn’t always
seem to improve the performance, since there is extra overhead
in the system from creating the extra thread. FastFlow is
designed for fine-grained parallelism, with an assumption that
most of the stages are CPU bound. This gives rise to a problem
when addressing computations that are assigned to the GPU,
where increasing the number of GPU workers can actually
harm the performance rather than improve it, especially when
the allocation of tasks to the GPU no longer fits into the GPU
model. Our MCTS model compensates for this, by finding
an optimal result by considering the utilisation of stages as
a penalty factor in the system. In addition, the cost model
predictions for the configurations, from Figure 4, predicted that
the second most optimal configuration is �(r k p). However,
looking at the actual performance measurements, �(r) k p

performs better, with an increased speedup of 31.98 over the
�(r k p) configuration. This shows that using high-level cost
models alone is not enough to predict optimal parallelisations.

•  Machine Learning 
chooses 
–  best combination of 

patterns 
–  CPU/GPU allocations 

•  Excellent Results 
–  within 5% of optimal 
–  > 40x speedup 

over sequential CPU 

 



Lock-Free Queue Implementation 

•  This uses a double compare-and-swap variant of Exchange 
–  atomically swaps two values 

–  allows us to avoid ABA errors by including a count field 



Lock-Free Queue Implementation 

•  At the pattern level, this is plug-replaceable with a lock 
–  The cost model needs to change but most details are the same 

–  All proof is the same above the lock-free level 



Comparison of Development Times 
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figure. The convolution is defined as a two stage pipeline (k),
with the first stage being a farm (�) that generates the images
(G), and the second stage is a farm that filters the images (F ).
In the convolution, the maximum speedup obtained from the
refactored version is 6.59 with 2 workers in the first farm and
8 workers in the second farm. There are also three workers
for each pipeline stage, (two for the farm stages, and one for
the initial streaming stage), plus threads for the load balancers
in the farm, giving a total of 15 threads. Here, the nature of
the application may limit the scalability. The second stage of
the pipeline dominates the computation: the first stage takes
on average 0.6 seconds and the second stage takes around
7 seconds to process one image, resulting in a substantial
bottleneck in the second stage.

The Ant Colony Optimisation scales linearly to give a
speedup of 7.29 using 8 farm workers, after which the per-
formance starts to drop noticeably. We observe only relatively
modest speedups (between 3 and 4) with more than 12 farm
workers. The Ant Colony Optimisation is quite a memory-
intense application, and all of the farm workers need to access
a large amount of shared data (processing times, deadlines
and weights of jobs, together with ⌧ matrix), especially since
we are considering instances where the number of jobs to be
scheduled is large. We suspect that the drop in performance
is due to expensive memory accesses for those farm workers
that are placed on remote cores (i.e., not in the same processor
package). The fact that the decrease in performance occurs at
about 10 farm workers confirms this: this is exactly the point
where not all of the farm workers can be placed on cores from
one package3. However, more testing is needed to precisely
pinpoint the reasons for the drop in performance.

For the BasicN2 use case (shown in Listing 4 in the
right column), the refactored version achieves a speedup of
21.2 with 24 threads. The application scales well, with near
linear speedups (up to 11.15 with 12 threads). After 12
threads, the speedups decrease slightly, most likely because the
refactored code dynamically allocates memory for the tasks
during the computation, resulting in some small overhead.
FastFlow also reserves two workers: one worker for the load
balancer and one for the farm skeleton, so the maximum
speedup achievable with 24 threads is only 21.2. BasicN2
gives scalable speedups due to its data-parallel structure, where
each task is independent, and the main computation over each
task dominates the computation. In Listing 4, we also show
the manually parallelised version in FastFlow, which achieves
comparable speedups of 22.68 with 24 threads. The manual
refactored code achieves slightly better speedups due to the
fact that only one FastFlow farm is introduced in the code.
However, in the refactored version, due to the refactoring tool’s
limitation, we introduce two FastFlow farms with an addition
synchronisation point between them. The refactoring tool does
not yet have provision to merge two routines into one, which
can be achieved by an experienced C++ programmer.

The Graphical Lasso use case gives a scalable speedup of
9.8, for 16 cores, and stagnates afterwards. This is similar to
manually ported FastFlow code, and to results obtained with
an OpenMP port (where we achieved a maximum speedup of
11.3 on 16 cores). Although the tasks parallelised here are, in
principle, independent, we expected significant deviation from

3FastFlow reserves some cores for load balancing, the farm emitter/collector.

Man.Time Refac. Time LOC Intro.
Convolution 3 days 3 hours 58
Ant Colony 1 day 1 hour 32

BasicN2 5 days 5 hours 40
Graphical Lasso 15 hours 2 hours 53

Figure 3. Approximate manual implementation time of use-cases vs.
refactoring time with lines of code introduced by refactoring tool

linear scaling for higher numbers of cores, because of cache
synchronisation (disjunct but interleaving memory regions are
updated in the tasks), and an uneven size combined with a
limited number of tasks (48). At the end of the computation,
some cores will wait idly for the completion of remaining
tasks. Consequently, the observed performance matched our
expectations, providing considerable speedup with a small
investment in manual code changes.

Table 3 shows approximate porting metrics for each use
case, with the time taken to implement the manual parallel
FastFlow implementation by an expert, the time to parallelise
the sequential version using the refactoring tool, and the
lines of code introduced by the refactoring tool. Clearly the
refactoring tool gives an enormous saving in effort over the
manual implementation of the FastFlow code.

V. RELATED WORK

Refactoring has a long history, with early work in the field
being described by Partsch and Steinbruggen in 1983 [16], and
Mens and Tourwé producing a survey of refactoring tools and
techniques in 2004 [15]. The first refactoring tool system was
the fold/unfold system of Burstall and Darlington [7] which
was intended to transform recursively defined functions. There
has so far been only a limited amount of work on refactoring
for parallelism [12]. We have previously [13] used Template
Haskell [17] with explicit cost models to derive automatic
farm skeletons for Eden [14]. Unlike the approach presented
here, Template-Haskell is compile-time, meaning that the
programmer cannot continue to develop and maintain his/her
program after the skeleton derivation has taken place. In [2],
we introduced a parallel refactoring methodology for Erlang
programs, demonstrating a refactoring tool that introduces and
tunes parallelism for Skeletons in Erlang. Unlike the work
presented here, the technique is limited to Erlang is demon-
strated on a small and limited set of examples, and we did
not evaluate reductions in development time. Other work on
parallel refactoring has mostly considered loop parallelisation
in Fortran [19] and Java [10]. However, these approaches are
limited to concrete and fairly simple structural changes (such
as loop unrolling) rather than applying high-level pattern-based
rewrites as we have described here. We have recently extended
HaRe, the Haskell refactorer [5], to deal with a limited
number of parallel refactorings [6]. This work allows Haskell
programmers to introduce data and task parallelism using small
structural refactoring steps. However, it does not use pattern-
based rewriting or cost-based direction, as discussed here. A
preliminary proposal for a language-independent refactoring
tool was presented in [3], for assisting programmers with in-
troducing and tuning parallelism. However, that work focused
on building a refactoring tool supporting multiple languages
and paradigms, rather than on refactorings that introduce and
tune parallelism using algorithm skeletons, as in this paper.



Conclusions 

•  High-level Patterns help structure parallel computations 
–  avoid deadlock, race conditions etc 

(formal proof in paper!) 

–  reduce development time by an order of magnitude 

–  allow us to construct predictable cost models 

•  Cost model for x86 constructed from first principles 
–  Predictable timings for x86 (provably correct from TSO semantics) 

–  Highly Accurate 

–  All previous formal models have been for much simpler memory models (e.g. PPC) 

•  Proved to be deadlock-free 

•  Applicable to energy as well as time 
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