
Predictable Timing Analysis of
x86 Multicores using
High-Level Parallel Patterns 	
Kevin Hammond, Susmit Sarkar and Chris Brown

University of St Andrews, UK

W: http://www.paraphrase-ict.eu!

T: @paraphrase_fp7
E: kh@cs.st-andrews.ac.uk

Motivation

•  No future system will be single-core
–  parallel programming will be essential

•  It’s not just about performance

–  it’s also about energy usage

•  If we don’t solve the multicore challenge, then no other advances will
matter!

•  We need to produce predictable timing models for widely used
multicores (e.g. x86, ARM)

Even Mobile Phones are Multicore!

Current	 Parallel	 Methodologies	

•  Applica5ons	 programmers	 must	 be	 systems	 programmers	

–  insufficient	 assistance	 with	 abstrac/on	

–  too	 much	 complexity	 to	 manage	

•  Difficult/impossible	 to	 scale,	 unless	 the	 problem	 is	 simple	

•  Difficult/impossible	 to	 change	 fundamentals	

–  scheduling	

–  task	 structure	 	

–  migra/on	

•  Many	 approaches	 provide	 libraries	

–  they	 need	 to	 provide	 abstrac5ons	

4

Thinking	 Parallel	

•  Fundamentally,	 programmers	 must	 learn	 to	 “think	 parallel”	

–  	 this	 requires	 new	 high-‐level	 programming	 constructs	

–  perhaps	 dealing	 with	 large	 numbers	 of	 threads	

•  You	 cannot	 program	 effec5vely	 while	 worrying	 about	 deadlocks	 etc.	

–  they	 must	 be	 eliminated	 from	 the	 design!	

•  You	 cannot	 program	 effec5vely	 while	 fiddling	 with	 communica5on	 etc.	

–  this	 needs	 to	 be	 packaged/abstracted!	

•  You	 cannot	 program	 effec5vely	 without	 performance	 informa5on	

–  this	 needs	 to	 be	 included	 as	 part	 of	 the	 design!	

5

The ParaPhrase Approach
Erlang C/C++

Costing/
Profiling

Erlang C/C++

Pattern
Library

AMD
Opteron

AMD
Opteron

Intel
Core

Intel
Core

Nvidia
GPU

Nvidia
GPU

Intel
GPU

Intel
GPU

Nvidia
Tesla

Intel
Xeon
Phi

Mellanox Infiniband

... Haskell

... Haskell
Parallel
Code

Original
Code

Refactoring

Components and Abstraction

•  Components give some of the advantages of functional
programming
–  clean abstraction

–  pure computations, easily scheduled

–  dependencies can be exposed

•  Hygiene/discipline is necessary
–  no unwanted state leakage

(e.g. in terms of implicit shared memory state)

7

The ParaPhrase Approach

•  Start bottom-up

–  identify (strongly hygienic) COMPONENTS

–  using semi-automated refactoring

•  Think about the PATTERN of parallelism

–  e.g. map(reduce), task farm, parallel search, parallel completion, ...

•  STRUCTURE the components into a parallel program

–  turn the patterns into concrete (skeleton) code

–  Take performance, energy etc. into account (multi-objective optimisation)

–  also using refactoring

•  RESTRUCTURE/TUNE if necessary! (also using refactoring)

8

both legacy and
new programs

Some Common Parallel Patterns

9

Generally, we
need to nest/

combine patterns
in arbitray ways

Skeletons

•  Skeletons are implementations of parallel patterns
•  A skeleton is a template

–  pluggable higher-order functions

–  can be instantiated with concrete worker functions

•  Skeletons avoid deadlock, race conditions
–  communication is implicit and structured

Murray Cole, "Algorithmic Skeletons: structured management of
parallel computation" MIT Press, 1989

Horacio González-Vélez and Mario Leyton:

A survey of algorithmic skeleton frameworks: high-level
structured parallel programming enablers.
Softw., Pract. Exper. 40(12): 1135-1160 (2010)

Parallel Pipeline Skeleton

•  Each stage of the pipeline can be executed in parallel
•  The input and output are streams
•  Each stage is itself an instance of a pattern (Skel)

skel:do([{pipe,[Skel1, Skel2,..,SkelN]}], Inputs).!

!

11

Pipe

Tn · · · T1 T �
n · · · T �

1

{pipe, [Skel1, Skel2, · · · , Skeln]}

Skel1 Skel2 Skeln
· · ·

Inc = {seq , fun (X) -> X+1 end},

Double = {seq , fun (X) -> X*2 end},

skel:run({pipe , [Inc , Double]},

[1,2,3,4,5,6]).

% -> [4,6,8,10,12,14]

Parallel Task Farm Skeleton

•  Each worker is executed in parallel
•  A bit like a 1-stage pipeline

!

skel:do([{farm, Skel, M}], Inputs).!

12

Farm

Tn · · · T1 T �
n · · · T �

1

...

Skel2

Skel1

{farm, Skel, M}

SkelM

Inc = {seq , fun(X)-> X+1 end},

skel:run({farm , Inc , 3},

[1,2,3,4,5,6]).

% -> [2,5,3,6,4,7]

Example Parallel Structure

13

for each image, i.
 process(read i)

Sequential

Parallel

Pipeline Farm

read read read

Farm

process process process

{pipe, {farm, {func, read}, m},
 {farm, {func, process}, n}}

Composing Skeletons

…	

…	

read

t9
t10
t11
t12

g (f t0)
g (f t4)

g (f t1)

read g (f t2)

… …	

g (f t3)

g (f t6)

t8

process
…	
f t5

process …	
f t7

…

…

•  Queues link skeletons

{pipe, {farm, {func, read}, m},
 {farm, {func, process}, n}}

x86 Multicore Cache Design

Core 1

L2 Cache

W
rite B

uffer

Memory

5

2

0

5
L1 Cache

Thread #1

Thread #2

0
m

m

m

•  Each core has
–  a local write-back cache

–  a FIFO-ordered write buffer

•  A core may run many
threads

•  Cores share
–  level 2 (and 3) cache

–  global memory

Sequential Consistency (SC)

•  Memory accesses are effectively interleaved
–  as if run by a single processor

•  Either Not
–  both threads return 3 - thread 1 returns 0,

–  thread 1 returns 1, thread 2 returns 3 thread 2 returns 0
–  thread 1 returns 3, thread 2 returns 2

x86 Total Store Order (TSO)

•  On a multicore, SC can be inefficient
•  Intel uses a weaker (relaxed memory) consistency model

–  Total store order (TSO) guarantees that the order that Writes are seen by
a location is the same as the order they were issued

•  ARM uses an even weaker consistency model

Basic TSO Rules

•  The basic rules are:
 (1) Reads are not reordered with other Reads.
(2) Writes are not reordered with older Reads.
(3) Writes are not reordered with other Writes.
(4) Reads may be reordered with older Writes to different memory

 locations but not with older Writes to the same memory location

•  An Exchange is treated as an indivisible Read/Write pair to a
specific memory location

•  A Fence is treated as both a Read and Write to all memory
locations, except that no actual memory transfer occurs

Simple Spin Lock Implementation

x86 Assembly code for spin lock

Simple Queue using spin lock

We have used HOL to
prove that this is sound wrt
the TSO relaxed-memory
model

Simple Timing Model

•  The worst-case costs if n threads contend a lock are

Timing Model for a Farm

•  The amortised average cost for each farm operation is

Timing Model for a Pipeline

•  If the first stage dominates (function f), its cost is

•  The total cost for both stages is therefore:

 or, if the second stage dominates (function g)

Including Store-Buffer Flushing

•  The cost of an exchange depends on items to be flushed, b

•  The cost of a spin-lock on t contending threads is

•  The costs of queue operations change slightly

•  The cost of a farm is:

Performance Predictions
(Image Convolution, 1024x1024)

24 core machine at Uni. Pisa

2xAMD Opteron 6176. 800 Mhz

32GB RAM

1 x NVidiia Tesla C2050 GPU

Dashed lines are predictions

Performance Predictions
(Image Convolution, 2048x2048)

Performance Predictions
(Image Convolution, 2048x2048)

64-core machine at Uni. St Andrews

8xAMD Opteron 6376. 2.3Ghz

32GB RAM

Performance Predictions
(Matrix Multiplication etc)

Comparison with OpenMP

Dashed lines are OpenMP

Combining CPUs and GPUs

34

1 4 8 12 16

20

25

30

35

40

No. CPU Workers

Sp
ee

du
p

Speedups for �(r) k p

GPU = 1

Fig. 6. Speedup graph for configuration 3, for 1 GPU worker

1 4 8 12 16
10

15

20

25

30

35

40

45

No. CPU Workers

Sp
ee

du
p

Speedups for �(r) k �(p)

GPU = 1
GPU = 3
GPU = 5
GPU = 7

Fig. 7. Speedup figures for configuration 5 for 1,3,5, and 7 number of GPU
workers

speedup figures for the configuration with a variety of GPU
workers (here, 1,3,5 and 7 GPU workers), where we decided
to show the best speedups, where other runs with a different
numbers of GPU workers (up to 16 GPU workers) showed
much poorer speedup results and were deemed uninteresting.
For this configuration, the MCTS prediction (from Figure 5)
shows optimal speedup for 6 CPU workers and 3 GPU work-
ers, however Figure 7 shows, for 6 CPU and 3 GPU workers,
a speedup of 39.12, where the best speedup is for 4 CPU and
3 GPU workers, with a speedup of 40.91. This demonstrates
that our MCTS prediction for this configuration is within 4%
of the best speedup obtained. From Figure 7, we can also see
that from the remaining performance measurements, the best
speedup for 1 GPU worker is 39.35 (for 5 CPU workers), 5
GPU workers is 40.08 (for 4 CPU workers) and 7 GPU workers

1 4 8 12 16

2

3

4

5

6

7

8

9

10

No. CPU Workers

Sp
ee

du
p

Speedups for �(r k p)

GPU = No. CPU Workers

Fig. 8. Speedup figures for configuration 6, where the number GPU workers
= number CPU workers

is 28.39 (for 4 CPU workers).

Figure 8 shows the speedups for �(r k p) (configuration
6, as shown in Figure 4). Here we show for each speedup of n
CPU workers and also n GPU workers. Other results showed
much poorer speedups and we therefore have not shown them
here. As Figure 8 demonstrates, the best speedup obtained for
this configuration is 7.45 for 5 CPU and 5 GPU workers, which
confirms the prediction given by our MCTS model (Figure 5).

It is noted that the speedup figures here do not always show
smooth performance improvements by increasing the number
of workers, and there are points where we even get poor per-
formance (such as in Figure 7 for 9 CPU workers and 5 GPU
workers). One possible reason for this could be that we have a
combination of nodes where each node gives a different service
time: increasing the number of workers only to the bottleneck
stages increases global throughput, and therefore performance.
Once the bottleneck has been removed, adding any extra
workers to a non-bottleneck stage in FastFlow doesn’t always
seem to improve the performance, since there is extra overhead
in the system from creating the extra thread. FastFlow is
designed for fine-grained parallelism, with an assumption that
most of the stages are CPU bound. This gives rise to a problem
when addressing computations that are assigned to the GPU,
where increasing the number of GPU workers can actually
harm the performance rather than improve it, especially when
the allocation of tasks to the GPU no longer fits into the GPU
model. Our MCTS model compensates for this, by finding
an optimal result by considering the utilisation of stages as
a penalty factor in the system. In addition, the cost model
predictions for the configurations, from Figure 4, predicted that
the second most optimal configuration is �(r k p). However,
looking at the actual performance measurements, �(r) k p

performs better, with an increased speedup of 31.98 over the
�(r k p) configuration. This shows that using high-level cost
models alone is not enough to predict optimal parallelisations.

•  Machine Learning
chooses
–  best combination of

patterns
–  CPU/GPU allocations

•  Excellent Results
–  within 5% of optimal
–  > 40x speedup

over sequential CPU

Lock-Free Queue Implementation

•  This uses a double compare-and-swap variant of Exchange
–  atomically swaps two values

–  allows us to avoid ABA errors by including a count field

Lock-Free Queue Implementation

•  At the pattern level, this is plug-replaceable with a lock
–  The cost model needs to change but most details are the same

–  All proof is the same above the lock-free level

Comparison of Development Times

37

figure. The convolution is defined as a two stage pipeline (k),
with the first stage being a farm (�) that generates the images
(G), and the second stage is a farm that filters the images (F).
In the convolution, the maximum speedup obtained from the
refactored version is 6.59 with 2 workers in the first farm and
8 workers in the second farm. There are also three workers
for each pipeline stage, (two for the farm stages, and one for
the initial streaming stage), plus threads for the load balancers
in the farm, giving a total of 15 threads. Here, the nature of
the application may limit the scalability. The second stage of
the pipeline dominates the computation: the first stage takes
on average 0.6 seconds and the second stage takes around
7 seconds to process one image, resulting in a substantial
bottleneck in the second stage.

The Ant Colony Optimisation scales linearly to give a
speedup of 7.29 using 8 farm workers, after which the per-
formance starts to drop noticeably. We observe only relatively
modest speedups (between 3 and 4) with more than 12 farm
workers. The Ant Colony Optimisation is quite a memory-
intense application, and all of the farm workers need to access
a large amount of shared data (processing times, deadlines
and weights of jobs, together with ⌧ matrix), especially since
we are considering instances where the number of jobs to be
scheduled is large. We suspect that the drop in performance
is due to expensive memory accesses for those farm workers
that are placed on remote cores (i.e., not in the same processor
package). The fact that the decrease in performance occurs at
about 10 farm workers confirms this: this is exactly the point
where not all of the farm workers can be placed on cores from
one package3. However, more testing is needed to precisely
pinpoint the reasons for the drop in performance.

For the BasicN2 use case (shown in Listing 4 in the
right column), the refactored version achieves a speedup of
21.2 with 24 threads. The application scales well, with near
linear speedups (up to 11.15 with 12 threads). After 12
threads, the speedups decrease slightly, most likely because the
refactored code dynamically allocates memory for the tasks
during the computation, resulting in some small overhead.
FastFlow also reserves two workers: one worker for the load
balancer and one for the farm skeleton, so the maximum
speedup achievable with 24 threads is only 21.2. BasicN2
gives scalable speedups due to its data-parallel structure, where
each task is independent, and the main computation over each
task dominates the computation. In Listing 4, we also show
the manually parallelised version in FastFlow, which achieves
comparable speedups of 22.68 with 24 threads. The manual
refactored code achieves slightly better speedups due to the
fact that only one FastFlow farm is introduced in the code.
However, in the refactored version, due to the refactoring tool’s
limitation, we introduce two FastFlow farms with an addition
synchronisation point between them. The refactoring tool does
not yet have provision to merge two routines into one, which
can be achieved by an experienced C++ programmer.

The Graphical Lasso use case gives a scalable speedup of
9.8, for 16 cores, and stagnates afterwards. This is similar to
manually ported FastFlow code, and to results obtained with
an OpenMP port (where we achieved a maximum speedup of
11.3 on 16 cores). Although the tasks parallelised here are, in
principle, independent, we expected significant deviation from

3FastFlow reserves some cores for load balancing, the farm emitter/collector.

Man.Time Refac. Time LOC Intro.
Convolution 3 days 3 hours 58
Ant Colony 1 day 1 hour 32

BasicN2 5 days 5 hours 40
Graphical Lasso 15 hours 2 hours 53

Figure 3. Approximate manual implementation time of use-cases vs.
refactoring time with lines of code introduced by refactoring tool

linear scaling for higher numbers of cores, because of cache
synchronisation (disjunct but interleaving memory regions are
updated in the tasks), and an uneven size combined with a
limited number of tasks (48). At the end of the computation,
some cores will wait idly for the completion of remaining
tasks. Consequently, the observed performance matched our
expectations, providing considerable speedup with a small
investment in manual code changes.

Table 3 shows approximate porting metrics for each use
case, with the time taken to implement the manual parallel
FastFlow implementation by an expert, the time to parallelise
the sequential version using the refactoring tool, and the
lines of code introduced by the refactoring tool. Clearly the
refactoring tool gives an enormous saving in effort over the
manual implementation of the FastFlow code.

V. RELATED WORK

Refactoring has a long history, with early work in the field
being described by Partsch and Steinbruggen in 1983 [16], and
Mens and Tourwé producing a survey of refactoring tools and
techniques in 2004 [15]. The first refactoring tool system was
the fold/unfold system of Burstall and Darlington [7] which
was intended to transform recursively defined functions. There
has so far been only a limited amount of work on refactoring
for parallelism [12]. We have previously [13] used Template
Haskell [17] with explicit cost models to derive automatic
farm skeletons for Eden [14]. Unlike the approach presented
here, Template-Haskell is compile-time, meaning that the
programmer cannot continue to develop and maintain his/her
program after the skeleton derivation has taken place. In [2],
we introduced a parallel refactoring methodology for Erlang
programs, demonstrating a refactoring tool that introduces and
tunes parallelism for Skeletons in Erlang. Unlike the work
presented here, the technique is limited to Erlang is demon-
strated on a small and limited set of examples, and we did
not evaluate reductions in development time. Other work on
parallel refactoring has mostly considered loop parallelisation
in Fortran [19] and Java [10]. However, these approaches are
limited to concrete and fairly simple structural changes (such
as loop unrolling) rather than applying high-level pattern-based
rewrites as we have described here. We have recently extended
HaRe, the Haskell refactorer [5], to deal with a limited
number of parallel refactorings [6]. This work allows Haskell
programmers to introduce data and task parallelism using small
structural refactoring steps. However, it does not use pattern-
based rewriting or cost-based direction, as discussed here. A
preliminary proposal for a language-independent refactoring
tool was presented in [3], for assisting programmers with in-
troducing and tuning parallelism. However, that work focused
on building a refactoring tool supporting multiple languages
and paradigms, rather than on refactorings that introduce and
tune parallelism using algorithm skeletons, as in this paper.

Conclusions

•  High-level Patterns help structure parallel computations
–  avoid deadlock, race conditions etc

(formal proof in paper!)

–  reduce development time by an order of magnitude

–  allow us to construct predictable cost models

•  Cost model for x86 constructed from first principles
–  Predictable timings for x86 (provably correct from TSO semantics)

–  Highly Accurate

–  All previous formal models have been for much simpler memory models (e.g. PPC)

•  Proved to be deadlock-free

•  Applicable to energy as well as time

Funded	 by	

•  ParaPhrase (EU FP7), Patterns for heterogeneous multicore,

€4.2M, 2011-2014

•  SCIEnce (EU FP6), Grid/Cloud/Multicore coordination

• €3.2M, 2005-2012

•  Advance (EU FP7), Multicore streaming

• €2.7M, 2010-2013

•  HPC-GAP (EPSRC), Legacy system on thousands of cores

• £1.6M, 2010-2014

•  Islay (EPSRC), Real-time FPGA streaming implementation

• £1.4M, 2008-2011

•  TACLE: European Cost Action on Timing Analysis

• €300K, 2012-2015
39

Some of our Industrial Connections

Mellanox Inc.
Erlang Solutions Ltd
SAP GmbH, Karlsrühe
BAe Systems
Selex Galileo
BioId GmbH, Stuttgart
Philips Healthcare
Software Competence Centre, Hagenberg
Microsoft Research
Well-Typed LLC

40

THANK	 YOU!	

http://www.paraphrase-ict.eu!

 @paraphrase_fp7

http://www.project-advance.eu!

42

