4

SEVENTH FRAMEWORK
PROGRAMME

Predictable Timing Analysis of
x86 Multicores using
High-Level Parallel Patterns

Kevin Hammond, Susmit Sarkar and Chris Brown

University of St Andrews, UK

T: @paraphrase_fp7 cirSRC

E: kh@cs.st-andrews.ac.uk -
: *
W: http://www.paraphrase-ict.eu rSICSAa

Motivation

* No future system will be single-core

- parallel programming will be essential

« It’s not just about performance

- it’s also about energy usage

 |If we don’t solve the multicore challenge, then no other advances will
matter!

« We need to produce predictable timing models for widely used
multicores (e.g. x86, ARM)

ocos

Even Mobile Phones are Multicore! =i

e 2 U

- Wik - WA

ocose ! At

Current Parallel Methodologies

Univefrsity
St Andrews

» Applications programmers must be systems programmers

— insufficient assistance with abstraction

- too much complexity to manage
« Difficult/impossible to scale, unless the problem is simple
» Difficult/impossible to change fundamentals

- scheduling
- task structure
- migration
 Many approaches provide libraries

- they need to provide abstractions

ocos

Thinking Parallel

Univefrsity
St Andrews

* Fundamentally, programmers must learn to “think parallel”

- this requires new high-level programming constructs

- perhaps dealing with large numbers of threads

* You cannot program effectively while worrying about deadlocks etc.

- they must be eliminated from the design!

* You cannot program effectively while fiddling with communication etc.

- this needs to be packaged/abstracted!

* You cannot program effectively without performance information

- this needs to be included as part of the design!

ocos

The ParaPhrase Approach

Univefrsity
St Andrews

Original Erlang C/C++ Haskell
Code \ v //
Pattern)(!‘\\ Costing/
: « — -~
Library > d Profiling

Refactoring

Parallel & \\

Code Erlang C/C++ Haskell
Mellanox Infiniband
/ N 4 N\ ' N\ N N
Nvidia AMD AMD Intel Intel Intel
Tesla Opteron Opteron Core Core Xeon
N _ J N _ J \. J .
N\ 4 N\ Y Phl
Nvidia Nvidia Intel Intel
\)) GPU JE GPU) GPU GPU \)

0=,0
SN A

[
D cOos Y

ADVANCE

StatArch

Components and Abstraction .=

St Anndrews

« Components give some of the advantages of functional

programming
- clean abstraction

- pure computations, easily scheduled

- dependencies can be exposed

 Hygienel/discipline is necessary

- no unwanted state leakage
(e.g. in terms of implicit shared memory state)

ocos

The ParaPhrase Approach

St Anndrews

« Start bottom-up
both legacy and

new programs

- identify (strongly hygienic) COMPONENTS

- using semi-automated refactoring

Think about the PATTERN of parallelism

- e.g. map(reduce), task farm, parallel search, parallel completion, ...

« STRUCTURE the components into a parallel program

- turn the patterns into concrete (skeleton) code
- Take performance, energy etc. into account (multi-objective optimisation)

- also using refactoring

« RESTRUCTURE/TUNE if necessary! (also using refactoring)

ocos

Some Common Parallel Patterns .=

St Andrews

Generally, we
need to nest/

combine patterns

—a in arbitray ways
7
o ™ f
. . ~7 o > f —>»
Schedule tasks w Gather results . ~7
Pipeline -
7
—>{S1—>S2(—> —>|Sn—> Divide&Conquer
B
Map . P NN -
- JETN
g —>» D g C
’ \ \ - /
Partition w Rebuild T
D c
\ . /Y

[Seore
ocos ki ADVANCE

CO5

Skeletons

Skeletons are implementations of parallel patterns

A skeleton is a template

- pluggable higher-order functions

- can be instantiated with concrete worker functions
Skeletons avoid deadlock, race conditions

- communication is implicit and structured

Murray Cole, "Algorithmic Skeletons: structured management of
parallel computation"” MIT Press, 1989

Horacio Gonzalez-Vélez and Mario Leyton:
A survey of algorithmic skeleton frameworks: high-level
structured parallel programming enablers.
Softw., Pract. Exper. 40(12): 1135-1160 (2010)

Parallel Pipeline Skeleton

« [Each stage of the pipeline can be executed in parallel

 The input and output are streams

« Each stage is itself an instance of a pattern (Skel)

{pipe, [Skely, Skels, ---, Skel,|}

|
|
|
T, ---T, T T}
> — Skel; Skel, Skel,, >
' e
el J. ___J |
skel:do([{ , [Skell, Skel2,..,SkelN]}], Inputs).

ocosc

Parallel Task Farm Skeleton

« Each worker is executed in parallel

« A bit like a 1-stage pipeline

Skeh

Skel2

—————————————————————————————

skel:do([{farm, Skel, M}], Inputs).

ocosc

Example Parallel Structure

Sequentlal for each image, i.

process(read i)

Parallel {pipe, {farm, {func, read}, m},

{farm, {func, process}, n}}

Earm Pipeline

process process process

OcoskE

Composing Skeletons

'
read E process g(it3)

% 7 SN

O N ﬁ
read H process g (ft6)
7 \/
{pipe, {farm, {func, read}, m}, g(ft)
{farm, {func, process}, n}}

« Queues link skeletons

ocos

x86 Multicore Cache Design

« Each core has
- alocal write-back cache
- a FIFO-ordered write buffer

« A core may run many
threads

e Cores share

- level 2 (and 3) cache

- global memory

09
- ADVANCE

StatArch

ARy

TN

ocos

’
1
|
]

L1 Cache

{—
Jayng ajupA

Sequential Consistency (SC) o

1 int x = 0, v = 0;

2

3

E

5 { // thread 1 { // thread 2
6 x = 1; y = 2;

7 \ return(x+y); } return(x+y);
8

« Memory accesses are effectively interleaved

- as if run by a single processor

 Either Not
- both threads return 3 - thread 1 returns 0,
- thread 1 returns 1, thread 2 returns 3 thread 2 returns 0

- thread 1 returns 3, thread 2 returns 2

c E D 5 ’;';%71‘1‘. ADVANCE

StatArch

AR

x86 Total Store Order (TSO)

* On a multicore, SC can be inefficient

« Intel uses a weaker (relaxed memory) consistency model

- Total store order (TSO) guarantees that the order that Writes are seen by
a location is the same as the order they were issued

« ARM uses an even weaker consistency model

ocos

Basic TSO Rules

”S
s

CO5

The basic rules are:
(1) Reads are not reordered with other Reads.

(2) Writes are not reordered with older Reads.

(3) Writes are not reordered with other Writes.

(4) Reads may be reordered with older Writes to different memory
locations but not with older Writes to the same memory location

An Exchange is treated as an indivisible Read/Write pair to a
specific memory location

A Fence is treated as both a Read and Write to all memory
locations, except that no actual memory transfer occurs

Simple Spin Lock Implementation i

void lock(volatile char xlockcell) {

1

2 char old_value ;

3

14 do {

[5 old _value = exchange(lockcell ,1); |
6 } while (1 == old_value) ;

7}

1 void unlock(volatile char xlockcell) {
12 xlockcell = 0 ;

13}

> ADVANCE oo
FARY StatArch "

ocos

x86 Assembly code for spin lock o

1 lockr:
2 push ebp ; Start new stack frame
3 mov ebp, esp
s+ mov ebx, [ebp+8] ; Get address of lock cell
5
¢ trylock:
7 mov eax, 1 ; Set EAX register to 1 (locked)
| s xchg eax, [ebx] ; Exchange EAX and lock cell |
9 test eax, eax ; Test whether the cell is already locked

jnz trylock

—
[S =

pop ebp
ret

—
- W

15 unlockr:

16 push ebp

17 mov ebp, esp

s mov ebx, [ebp+8]

20 mov eax, 0

Retry the lock if so
revert stack frame
The lock has been acquired

Start new stack frame

Get address of lock cell

Set EAX register to 0 (unlocked)

mov [ebx], eax

Release the lock |

21

22

23 pop ebp
24 ret

revert stack frame
The lock has been released.

P EFAED W AR W O B E=rR
AR StatArch

Simple Queue using spin lock

Univefrsity
St Andrews

1 Value qget(Queue q) {

2 Value v;
3
4 do {
5 lock(&q.lock _cell); |
6
- if (gempty(q))
8 break;
9

10

12

13 /* lock is held x*/

14 v
15

unlock(&q.lock_cell);
11 } while (1),

front(q);

1.6 unlock(&q.lock _cell);

17

s return(v);

ocos

2

Pt

void gput(Queue q,Value v) {

22 |

lock(&q.lock_cell); |

23

24 addtoq(q,v);

25

26 | unlock(&q.lock_cell); |

.

YK

P
AR

10 ANES S

StatArch

We have used HOL to
prove that this is sound wrt
the TSO relaxed-memory
model

NN

Simple Timing Model

e The worst-case costs if n threads contend a lock are

Tq_put =n- TExchange - TWrite + TWrite

quet =n- TExchange + TRead + 2T write

ocos

Timing Model for a Farm

« The amortised average cost for each farm operation is

quet + Tf + quut
which simplifies to:
2 - ('n + 1) . TExchange + 5 * Twrite + TRead + Tf

ocos

Timing Model for a Pipeline

« If the first stage dominates (function f), its cost is

quet + Tf + quut
which simplifies to:

2 (|f] + 1) - Texchange + 5 * Twrite + T'f

 The total cost for both stages is therefore:

2 - (lfl +1) 'TExchange+5'TWrite+Tf +Tg

or, if the second stage dominates (function g)

Tf + (2 |g| + |f| + 1) 'TExchange+5'TWrite+Tg

ocos

Including Store-Buffer Flushing &

* The cost of an exchange depends on items to be flushed, b
TExchange =b- TF 1+ TJustX

 The cost of a spin-lock on f contending threads is
b- TFI +t- TJustX

« The costs of queue operations change slightly

Toput =Cb -1 - Tpr + N - ThusexO+ Twrite + Twrite.
T qget N Tr + N - TusexOt+ TRead + 2+ Twrite.

e The cost of afarm is:

2-(n+1)-b-Tp+ (n+1) - Thusex + 4Twrite + TReaa + Ty

ocos

Performance Predictions

(Image Convolution, 1024x1024) .

20
18
16
14
12
10

Speedup

=N > O 0o

1024 x 1024 (titanic)

Dashed lines are predictions

ocos

12 4 6 8 10 12 14 16 18 20 22 24
No. &, Workers

24 core machine at Uni. Pisa
2xAMD Opteron 6176. 800 Mhz
32GB RAM

1 x NVidiia Tesla C2050 GPU

Performance Predictions
(Image Convolution, 2048x2048)

2048 x 2048 (titanic)

20 |21 =1 s
o P, =

18 |- +<I>i=j /e .

161" -—o, =8 y A

14 s

12 "7’

10 e

8 B

6

4

2

1

|
12 4 6 8 10 12 14 16 18 20 22 24
No. ®, Workers

ocos

Performance Predictions
(Image Convolution, 2048x2048) .

St Anodrews

2048 x 2048 (lovelace)

e B =1 64-core machine at Uni. St Andrews
30| —o— @y =2 g 8xAMD Opteron 6376. 2.3Ghz
32GB RAM

24 P1=8
29| | —o— P, =16

20 Ho-450-0-0-0-0-0-0-6-00-00

14 8 1216202428323640444852 566064
No. ¢, Workers

ocos

Performance Predictions
(Matrix Multiplication etc)

titanic

18 | | —— 1024 x 1024 MM
—s— 2048 x 2048 MM
L — QuickSort k=X
14 | | —o— Cholesky 0
12
5
3 10
&
) 8
6
4
2
1

ocos

Comparison with OpenMP

Univefrsity
St Andrews

20l | @ =1 Dashed lines are OpenMP

18
16
14
12
10

Speedup

R B O 00

1 4 6 8 10 12 14 16 18 20 22 24
No. ®, Workers

> ADVANCE
FARY StatArch T

ocos

Combining CPUs and GPUs .=

St Anndrews

« Machine Learning Speedups for A(r) || A(p)

chooses | |
- best combination of 45| ’ _”_gig :; i
—— =
patterns 40 |- Ao, s GPU =5 ||
- CPU/GPU allocations g | — GPU=T |
5
S 30| :
- Excellent Results & sl |
- within 5% of optimal 20 | .
- > 40x speedup 151)
over sequential CPU
10 b | | | —
1 4 8 12 16
No. CPU Workers
-~ - ADVANCE

ocos

StatArch

Lock-Free Queue Implementation .=

St Anndrews

6 Value qgetlf (Queue q) {
17 NodePtr first;

18

v do {

20 if (gempty(q))

21 continue;

22

23 first = q—>first;
24

25 if(first==NULL)

26 continue;

27

2 } while (!decas(g—>first ,first ,first—>next));
29

30 return(first —>value);

2}

« This uses a double compare-and-swap variant of Exchange

- atomically swaps two values

- allows us to avoid ABA errors by including a count field

Y

PEKes
AR

10 ANES S

StatArch

ocos

Lock-Free Queue Implementation .=

St Anndrews

u void qputlf(Queue q,Value v) {

5 Node n = new Node(v); // new queue node
%6 NodePtr np = new NodePtr(n); // queue pointer
7 Queue last;

38

s do {

40 last = g—>last;

41

42 np.count = last.count+1;

43

4« } while(!dcas(q—last ,last ,np));
45

« At the pattern level, this is plug-replaceable with a lock

- The cost model needs to change but most details are the same

- All proof is the same above the lock-free level

YK

P
AR

10 ANES S

StatArch

ocos

Comparison of Development Times..=.

St Anndrews

Man.Time | Refac. Time

Convolution | 3 days 3 hours
Ant Colony | 1 day 1 hour
BasicN2 | 5 days 5 hours

Graphical Lasso | 15 hours 2 hours

ocos

Conclusions

St Anndrews

 High-level Patterns help structure parallel computations

- avoid deadlock, race conditions etc
(formal proof in paper!)

- reduce development time by an order of magnitude

- allow us to construct predictable cost models

« Cost model for x86 constructed from first principles

- Predictable timings for x86 (provably correct from TSO semantics)

- Highly Accurate
- All previous formal models have been for much simpler memory models (e.g. PPC)

* Proved to be deadlock-free

 Applicable to energy as well as time

ocos

Funded by

Umver51ty
St Andrews

. ParaPhrase (EU FP7), Patterns for heterogeneous multicore,

€4.2M, 2011-2014

« SCIEnce (EU FP6), Grid/Cloud/Multicore coordination Eilllﬂ
mpoliC
C)(l)mputation
«€3.2M, 2005-2012 Infrastructure for
Europe

. Advance (EU FP7), Multicore streaming

«€2.7M, 2010-2013

- ADVANCE

StatArch

. HPC-GAP (EPSRC), Legacy system on thousands of cores
£1.6M, 2010-2014

. Islay (EPSRC), Real-time FPGA streaming implementation

£1.4M, 2008-2011

. TACLE: Eurcpear Cost Actl%l on A = /. ~ EDEt ‘—7
«€300K, 201 !20% l c S a (V E PS RC SEVENTH FRAMEWORK
CccoskE ADVANCE i v

StatArch

PROGRAMME

Sy
7 ?‘ﬁ'{!

Some of our Industrial Connections

Univefrsity
St Andrews

Mellanox Inc. Mellanox
Erlang Solutions Ltd

SAP GmbH, Karlsriihe PHILIPS

BAe Systems SOLUTIONS
Selex Galileo y SCC 'h! [
Biold GmbH, Stuttgart o
Philips Healthcare 7' SELEX GALILED
Software Competence Centre, Hagenberg a

Microsoft Research BIOID® '.T\Q/ Helklﬁ-[ypuefl

be recognized

Well-Typed LLC
Mlcrosoft Research BAE SYSTEMS
ocosE " . ADVANCE

StatArc

Univefrsity
St Andrews

About COST Domains and Actions Participate Events Media

» All Actions

» Biomedicine and Molecular
Biosciences (BMBS)

» Chemistry and Molecular Sciences
and Technologies (CMST)

» Earth System Science and
Environmental Management
(ESSEM)

» Food and Agriculture (FA)

» Forests, their Products and
Services (FPS)

v Individiiale Qaniatiae Mulbhiirae and

ocosc

(ICT) | Actions | IC1202

ICT COST Action 1C1202
Timing Analysis on Code-Level (TACLe)

Descriptions are provided by the Actions directly via e-COST.

Embedded systems increasingly permeate our daily lives. Many of
those systems are business- or safety-critical, with strict timing
requirements. Code-level timing analysis (used to analyse software
running on some given hardware w.r.t. its timing properties) is an
indispensable technique for ascertaining whether or not these
requirements are met. However, recent developments in hardware,
especiallv multi-core processors. and in software oraanisation render

StatArch

» Home » FAQ » Contact
» Sitemap » Glossary » Jobs
» Restricted Area » Links

Search I [Z]

Home | Domains and Actions | Information and Communication Technologies

Information and Communication
Technologies COST Action
1C1202

» Description

» Parties

» Management Committee 7
4]

General Information*

R N R e

THANK YOU'!

http://www.paraphrase-ict.eu

http://www.project-advance.eu

@paraphrase fp7

OcoskE

