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Motivation

* No future system will be single-core

- parallel programming will be essential

« It’s not just about performance

- it’s also about energy usage

 |If we don’t solve the multicore challenge, then no other advances will
matter!

« We need to produce predictable timing models for widely used
multicores (e.g. x86, ARM)
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Even Mobile Phones are Multicore! =i

e 2 U

- Wik - WA

ocose ! At



Current Parallel Methodologies

Univefrsity
St Andrews

» Applications programmers must be systems programmers

— insufficient assistance with abstraction

- too much complexity to manage
« Difficult/impossible to scale, unless the problem is simple
» Difficult/impossible to change fundamentals

- scheduling
- task structure
- migration
 Many approaches provide libraries

- they need to provide abstractions
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Thinking Parallel
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*  Fundamentally, programmers must learn to “think parallel”

- this requires new high-level programming constructs

- perhaps dealing with large numbers of threads

* You cannot program effectively while worrying about deadlocks etc.

- they must be eliminated from the design!

* You cannot program effectively while fiddling with communication etc.

-  this needs to be packaged/abstracted!

* You cannot program effectively without performance information

- this needs to be included as part of the design!
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The ParaPhrase Approach
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Components and Abstraction .=

St Anndrews

« Components give some of the advantages of functional

programming
- clean abstraction

- pure computations, easily scheduled

- dependencies can be exposed

 Hygienel/discipline is necessary

- no unwanted state leakage
(e.g. in terms of implicit shared memory state)
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The ParaPhrase Approach

St Anndrews

«  Start bottom-up
both legacy and

new programs

- identify (strongly hygienic) COMPONENTS

- using semi-automated refactoring

Think about the PATTERN of parallelism

- e.g. map(reduce), task farm, parallel search, parallel completion, ...

«  STRUCTURE the components into a parallel program

- turn the patterns into concrete (skeleton) code
- Take performance, energy etc. into account (multi-objective optimisation)

- also using refactoring

«  RESTRUCTURE/TUNE if necessary! (also using refactoring)
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Some Common Parallel Patterns .=

St Andrews

Generally, we
need to nest/

combine patterns

—a in arbitray ways
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CO5

Skeletons

Skeletons are implementations of parallel patterns

A skeleton is a template

- pluggable higher-order functions

- can be instantiated with concrete worker functions
Skeletons avoid deadlock, race conditions

- communication is implicit and structured

Murray Cole, "Algorithmic Skeletons: structured management of
parallel computation"” MIT Press, 1989

Horacio Gonzalez-Vélez and Mario Leyton:
A survey of algorithmic skeleton frameworks: high-level
structured parallel programming enablers.
Softw., Pract. Exper. 40(12): 1135-1160 (2010)




Parallel Pipeline Skeleton

« [Each stage of the pipeline can be executed in parallel

 The input and output are streams

« Each stage is itself an instance of a pattern (Skel)

{pipe, [Skely, Skels, ---, Skel,|}

|
|
|
T, ---T, T T}
> — Skel; Skel, Skel,, >
' e
el J.  ___J |
skel:do([{ , [Skell, Skel2,..,SkelN]}], Inputs).
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Parallel Task Farm Skeleton

« Each worker is executed in parallel

« A bit like a 1-stage pipeline

Skeh

Skel2

—————————————————————————————

skel:do([{farm, Skel, M}], Inputs).
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Example Parallel Structure

Sequentlal for each image, i.

process(read i)

Parallel {pipe, {farm, {func, read}, m},

{farm, {func, process}, n}}

Earm Pipeline

process process process
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Composing Skeletons

'
read E process g(it3)

% 7 SN

O N ﬁ
read H process g (ft6)
7 \/
{pipe, {farm, {func, read}, m}, g(ft)
{farm, {func, process}, n}}

« Queues link skeletons
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x86 Multicore Cache Design

« Each core has
- alocal write-back cache
- a FIFO-ordered write buffer

« A core may run many
threads

e Cores share

- level 2 (and 3) cache

- global memory
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Sequential Consistency (SC) o

1 int x = 0, v = 0;

2

3

E

5 { // thread 1 { // thread 2
6 x = 1; y = 2;

7 \ return(x+y); } return(x+y);
8

« Memory accesses are effectively interleaved

- as if run by a single processor

 Either Not
- both threads return 3 - thread 1 returns 0,
- thread 1 returns 1, thread 2 returns 3 thread 2 returns 0

- thread 1 returns 3, thread 2 returns 2
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x86 Total Store Order (TSO)

* On a multicore, SC can be inefficient

« Intel uses a weaker (relaxed memory) consistency model

- Total store order (TSO) guarantees that the order that Writes are seen by
a location is the same as the order they were issued

« ARM uses an even weaker consistency model

ocos



Basic TSO Rules
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The basic rules are:
(1) Reads are not reordered with other Reads.

(2) Writes are not reordered with older Reads.

(3) Writes are not reordered with other Writes.

(4) Reads may be reordered with older Writes to different memory
locations but not with older Writes to the same memory location

An Exchange is treated as an indivisible Read/Write pair to a
specific memory location

A Fence is treated as both a Read and Write to all memory
locations, except that no actual memory transfer occurs




Simple Spin Lock Implementation i

void lock( volatile char xlockcell ) {

1

2 char old_value ;

3

14 do {

[ 5 old _value = exchange(lockcell ,1); |
6 } while ( 1 == old_value ) ;

7}

1 void unlock( volatile char xlockcell ) {
12 xlockcell = 0 ;

13}
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x86 Assembly code for spin lock o

1 lockr:
2 push ebp ; Start new stack frame
3 mov ebp, esp
s+ mov ebx, [ebp+8] ; Get address of lock cell
5
¢ trylock:
7 mov eax, 1 ; Set EAX register to 1 (locked)
| s xchg eax, [ebx] ; Exchange EAX and lock cell |
9 test eax, eax ; Test whether the cell is already locked

jnz trylock

—
[ S =

pop ebp
ret

—
- W

15 unlockr:

16 push ebp

17 mov ebp, esp

s mov ebx, [ebp+8]

20 mov eax, 0

Retry the lock if so
revert stack frame
The lock has been acquired

Start new stack frame

Get address of lock cell

Set EAX register to 0 (unlocked)

mov [ebx], eax

Release the lock |

21

22

23  pop ebp
24 ret

revert stack frame
The lock has been released.

P EFAED W AR W O B E=rR
AR StatArch



Simple Queue using spin lock

Univefrsity
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1 Value qget(Queue q) {

2 Value v;
3
4 do {
5 lock(&q.lock _cell); |
6
- if (gempty(q))
8 break;
9

10

12

13 /* lock is held x*/

14 v
15

unlock(&q.lock_cell );
11 } while (1),

front(q);

1.6 unlock(&q.lock _cell);

17

s return(v);

ocos
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void gput(Queue q,Value v) {

22 |

lock(&q.lock_cell); |

23

24 addtoq(q,v);

25

26 | unlock(&q.lock_cell); |

.
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We have used HOL to
prove that this is sound wrt
the TSO relaxed-memory
model
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Simple Timing Model

e The worst-case costs if n threads contend a lock are

Tq_put =n- TExchange - TWrite + TWrite

quet =n- TExchange + TRead + 2T write

ocos




Timing Model for a Farm

« The amortised average cost for each farm operation is

quet + Tf + quut
which simplifies to:
2 - ('n + 1) . TExchange + 5 * Twrite + TRead + Tf

ocos



Timing Model for a Pipeline

« If the first stage dominates (function f), its cost is

quet + Tf + quut
which simplifies to:

2 (|f] + 1) - Texchange + 5 * Twrite + T'f

 The total cost for both stages is therefore:

2 - (lfl +1) 'TExchange+5'TWrite+Tf +Tg

or, if the second stage dominates (function g)

Tf + (2 |g| + |f| + 1) 'TExchange+5'TWrite+Tg

ocos



Including Store-Buffer Flushing &

* The cost of an exchange depends on items to be flushed, b
TExchange =b- TF 1+ TJustX

 The cost of a spin-lock on f contending threads is
b- TFI +t- TJustX

« The costs of queue operations change slightly

Toput =Cb -1 - Tpr + N - ThusexO+ Twrite + Twrite.
T qget N Tr + N - TusexOt+ TRead + 2+ Twrite.

e The cost of afarm is:

2-(n+1)-b-Tp+ (n+1) - Thusex + 4Twrite + TReaa + Ty
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Performance Predictions

(Image Convolution, 1024x1024) .
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1024 x 1024 (titanic)

Dashed lines are predictions
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1 x NVidiia Tesla C2050 GPU




Performance Predictions
(Image Convolution, 2048x2048)

2048 x 2048 (titanic)
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Performance Predictions
(Image Convolution, 2048x2048) .

St Anodrews

2048 x 2048 (lovelace)

e B =1 64-core machine at Uni. St Andrews
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32GB RAM

24 P1=8
29| | —o— P, =16

20 Ho-450-0-0-0-0-0-0-6-00-00

14 8 1216202428323640444852 566064
No. ¢, Workers

ocos



Performance Predictions
(Matrix Multiplication etc)

titanic
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Comparison with OpenMP

Univefrsity
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Combining CPUs and GPUs .=

St Anndrews

« Machine Learning Speedups for A(r) || A(p)

chooses | |
- best combination of 45| ’ _”_gig :; i
—— =
patterns 40 |- Ao, s GPU =5 ||
- CPU/GPU allocations g | — GPU=T |
5
S 30| :
- Excellent Results & sl |
- within 5% of optimal 20 | .
- > 40x speedup 151 )
over sequential CPU
10 b | | | —
1 4 8 12 16
No. CPU Workers
-~ - ADVANCE
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Lock-Free Queue Implementation .=

St Anndrews

6 Value qgetlf (Queue q) {
17 NodePtr first;

18

v do {

20 if (gempty(q))

21 continue;

22

23 first = q—>first;
24

25 if(first==NULL)

26 continue;

27

2 } while (!decas(g—>first ,first ,first—>next));
29

30 return( first —>value);

2}

« This uses a double compare-and-swap variant of Exchange

- atomically swaps two values

- allows us to avoid ABA errors by including a count field

Y
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Lock-Free Queue Implementation .=

St Anndrews

u void qputlf(Queue q,Value v) {

5 Node n = new Node(v); // new queue node
%6 NodePtr np = new NodePtr(n); // queue pointer
7  Queue last;

38

s do {

40 last = g—>last;

41

42 np.count = last.count+1;

43

4« } while(!dcas(q—last ,last ,np));
45

« At the pattern level, this is plug-replaceable with a lock

- The cost model needs to change but most details are the same

- All proof is the same above the lock-free level

YK

P
AR

10 ANES S

StatArch

ocos



Comparison of Development Times..=.

St Anndrews

Man.Time | Refac. Time

Convolution | 3 days 3 hours
Ant Colony | 1 day 1 hour
BasicN2 | 5 days 5 hours

Graphical Lasso | 15 hours 2 hours
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Conclusions

St Anndrews

 High-level Patterns help structure parallel computations

- avoid deadlock, race conditions etc
(formal proof in paper!)

- reduce development time by an order of magnitude

- allow us to construct predictable cost models

« Cost model for x86 constructed from first principles

- Predictable timings for x86 (provably correct from TSO semantics)

- Highly Accurate
- All previous formal models have been for much simpler memory models (e.g. PPC)

* Proved to be deadlock-free

 Applicable to energy as well as time
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Some of our Industrial Connections
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About COST Domains and Actions Participate Events Media

» All Actions

» Biomedicine and Molecular
Biosciences (BMBS)

» Chemistry and Molecular Sciences
and Technologies (CMST)

» Earth System Science and
Environmental Management
(ESSEM)

» Food and Agriculture (FA)

» Forests, their Products and
Services (FPS)

v Individiiale Qaniatiae Mulbhiirae and
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(ICT) | Actions | IC1202

ICT COST Action 1C1202
Timing Analysis on Code-Level (TACLe)

Descriptions are provided by the Actions directly via e-COST.

Embedded systems increasingly permeate our daily lives. Many of
those systems are business- or safety-critical, with strict timing
requirements. Code-level timing analysis (used to analyse software
running on some given hardware w.r.t. its timing properties) is an
indispensable technique for ascertaining whether or not these
requirements are met. However, recent developments in hardware,
especiallv multi-core processors. and in software oraanisation render
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