
V0.5 

Energy Efficient Software 

Invited presentation, EACO workshop 10-11, September 2014 
Lee Smith, ARM Fellow 

1 



V0.5 

About me and about this talk 

These days, I work mostly where technology meets business 
 Technology has value when it creates or enables business capabilities that in turn generate products.  

I spend most of my time interpreting technology for business-oriented colleagues 
 Lawyers, salespeople, marketers, product managers, engineering managers... 

ARM views of technology are informed to an unusual degree by the views of our most important 
partners and customers 
 Our 2013 revenues were >$1Bn but our partners did many times more using our technology 

 ARM might “punch above its weight” in the industry but we also represent consensus 
(Focussed around the boundary between differentiating and non-differentiating technology) 

 ARM both leads and follows!  

2 



V0.5 

Inspiration and motivation 

Why do I care about this topic now? 

3 



V0.5 

An historical business invariant for ARM 

Since the foundation of ARM, directly or indirectly, every one of our market opportunities had 
energy efficiency, low energy operation, or low power operation as a central concern 
 Not always the top concern but always there... 

 Not always a direct concern – c.f. automotive electronics, set-top box, etc – the direct concern 
might be operation at high temperatures and/or fan-less operation at typical room temperature 

 

4 



V0.5 

A vision statement 
(From ARM’s 2012 Corporate Responsibility report) 
http://ir.arm.com/phoenix.zhtml?c=197211

&p=irol-csrhome  

 

 We have a similar,  employee-facing 
statement of our corporate vision... 

 

 Note the juxtaposition of energy-efficient 
and connecting the world 

5 

http://ir.arm.com/phoenix.zhtml?c=197211&p=irol-csrhome�
http://ir.arm.com/phoenix.zhtml?c=197211&p=irol-csrhome�


V0.5 

More Data, Less Energy 
Making Network Standby More Efficient in Billions of Connected Devices 

http://www.iea.org/publications/freepublications/publication/MoreData_LessEnergy.pdf  
 

In 2013, a relatively small portion of the global population relied on more than 14 billion 
network-enabled devices in homes and offices.  As more people use a wider range of devices 

for increasingly diverse purposes, the total is expected to skyrocket to 50 billion 
network-enabled devices by 2020.  

Left unchecked, by 2025 the corresponding energy demand would soar to 1,140 terawatt hours 
per year (TWh/yr) – more than the current annual electricity consumption of Canada and 
Germany combined.  A vast majority of this energy would be consumed when devices are 

“ready and waiting”, but not performing any particular function. 
 

Drawn to my attention by ACM TechNews: Energy Demands of Networked Devices Skyrocket, 16th July 2014 
(http://technews.acm.org/archives.cfm?fo=2014-07-jul/jul-16-2014.html)  

6 

http://www.iea.org/publications/freepublications/publication/MoreData_LessEnergy.pdf�
http://technews.acm.org/archives.cfm?fo=2014-07-jul/jul-16-2014.html�
http://technews.acm.org/archives.cfm?fo=2014-07-jul/jul-16-2014.html�
http://technews.acm.org/archives.cfm?fo=2014-07-jul/jul-16-2014.html�
http://technews.acm.org/archives.cfm?fo=2014-07-jul/jul-16-2014.html�
http://technews.acm.org/archives.cfm?fo=2014-07-jul/jul-16-2014.html�
http://technews.acm.org/archives.cfm?fo=2014-07-jul/jul-16-2014.html�
http://technews.acm.org/archives.cfm?fo=2014-07-jul/jul-16-2014.html�
http://technews.acm.org/archives.cfm?fo=2014-07-jul/jul-16-2014.html�
http://technews.acm.org/archives.cfm?fo=2014-07-jul/jul-16-2014.html�


V0.5 

One of my modern heroes... 
(Prof David J C Mackay, Regius Professor of Engineering, Cambridge University) 

Sustainable Energy - without the hot air 
 http://www.withouthotair.com/c19/page_114.shtml  

 

 

Chapter 19: Every BIG helps 
 
 

(Chapter 19 begins by debunking the value of unplugging our phone chargers – they might sum to the electricity 
consumption of 66,000 households but that remains only 0.25% of UK consumption...) 

7 

http://www.withouthotair.com/c19/page_114.shtml�


V0.5 

A (or The) BIG problem... 
(Busy doing nothing, idling the whole day through...) 

 The energy consumed busy doing nothing in particular is spiralling out of control 

 It’s a BIG problem so worthy of our attention 

 It’s created by connecting the world (or, at least, the world’s things...) 

 Aside: I could not find a clear reference to the efficiency of low-power power supplies 
 90% seems achievable (Google design for server power supplies) 

 Mobile phone chargers > 70% (several Google Scholar references) at extreme low cost 

Very low ‘off ’ power seems achievable 

 Other segments such as Servers and HPC have similar first order issues 
(explored in this presentation) 

I will assume that the hardware problems can be (mostly) solved, leaving software problems... 

8 



V0.5 

Finally, Publish or Perish reinvented 

9 

“Publish or perish” 
(http://en.wikipedia.org/wiki/Publish_or_perish) 

(emerged1932,?1938?)  

“Demo or die” 
(Nicholas Negroponte, 1998 ) 

(http://www.nettime.org/Lists-Archives/nettime-l-9807/msg00085.html)  

“Deploy or die” 
(Joi Ito, 2014 ) 

(http://www.ted.com/talks/joi_ito_want_to_innovate_become_a_now_ist) 

Received academic 
wisdom for 60 years 

MIT Media Lab reinterprets 
the wisdom 60 years on... 
after ~30 years of Internet 

And again after 30 years 
of the Worldwide Web 

Many fine technical ideas fail because we can’t deploy them, a big personal concern of mine 

http://en.wikipedia.org/wiki/Publish_or_perish�
http://www.nettime.org/Lists-Archives/nettime-l-9807/msg00085.html�
http://www.ted.com/talks/joi_ito_want_to_innovate_become_a_now_ist�


V0.5 

Energy efficient software 
 

A stack of concerns 

10 



V0.5 

Anecdote: iPhone 1 Battery Life Was Doubled in 6 Months 
(According to its earliest customers...) 

No new hardware or battery technology, one new firmware release 

 The timescale tells us independent changes by individuals made the improvement! 

 Software engineering lore: {project elapsed months} ≥ 3 {person-months}1/3 
 

 No independent, effort exceeded 8/6 people... 

 Simple, local decisions about how software behaves can make a BIG difference to 
energy consumption 
 Most of the changes probably fixed “energy bugs” (see following slide) 

11 

{6} ≥ 3 {≤ 8} 1/3 



V0.5 

Fast forward to 2014 – Carat on iOS and Android 

https://amplab.cs.berkeley.edu/2012/06/14/carat-now-on-ios-and-android/  

http://techcrunch.com/2012/06/14/carat-battery/  
“Carat: The Brilliant App That Increases Your Battery Life By Showing What Other Apps To Kill” 

 Identifies “energy bugs” and “energy hogs” 

 Bugs (unsurprisingly) are very common... 

 Hogs (unsurprisingly) require you to pay for what you get... 

 Fixing energy hogs might require algorithmic changes or large-scale architectural changes 

12 

https://amplab.cs.berkeley.edu/2012/06/14/carat-now-on-ios-and-android/�
http://techcrunch.com/2012/06/14/carat-battery/�


V0.5 

Hugely simplified mobile application stack  
Some key challenges 

13 

CPUs GPU 

Memory 

Display 

I/O I/O I/O 

Sys ctrl Hardware 
bits 

Drivers Power mgmt Boot etc Firmware 

LOC x 107, interfaces x 103 OS 

LOC x 105, interfaces x 102 Middleware 

LOC x 105+, interfaces x 102+ Application 

Quality of experience UI Intentions User 



V0.5 

How shall we visualise what’s going on? 

14 

CPUs GPU 

Memory 

Display 

I/O I/O I/O 

Sys ctrl Hardware 
bits 

Drivers Power mgmt Boot etc Firmware 

LOC x 107, interfaces x 103 OS 

LOC x 105, interfaces x 102 Middleware 

LOC x 105+, interfaces x 102+ Application 

Quality of experience UI Intentions User 
Profiling, animation, measurement across levels, 

interfaces, conflicting policies and intentions  



V0.5 

How shall we control power use? 

15 

CPUs GPU 

Memory 

Display 

I/O I/O I/O 

Sys ctrl Hardware 
bits 

Drivers Power mgmt Boot etc Firmware 

LOC x 107, interfaces x 103 OS 

LOC x 105, interfaces x 102 Middleware 

LOC x 105+, interfaces x 102+ Application 

Quality of experience UI Intentions User 

Thermal monitoring + active control of power 
to avoid damage and meet the user’s goals 



V0.5 

Energy-efficient software architecture or a mess? 

16 

CPUs GPU 

Memory 

Display 

I/O I/O I/O 

Sys ctrl Hardware 
bits 

Drivers Power mgmt Boot etc Firmware 

LOC x 107, interfaces x 103 OS 

LOC x 105, interfaces x 102 Middleware 

LOC x 105+, interfaces x 102+ Application 

Quality of experience UI Intentions User 

Interfaces everywhere! Are they fit for purpose?  
How shall we model or reason about efficiency 
of software architectures? Matlab/Simevents? 



V0.5 

Basic hygiene is harder than it needs to be 
(even for ‘turn it off when unused’...) 

17 

CPUs GPU 

Memory 

Display 

I/O I/O I/O 

Sys ctrl Hardware 
bits 

Drivers Power mgmt Boot etc Firmware 

LOC x 107, interfaces x 103 OS 

LOC x 105, interfaces x 102 Middleware 

LOC x 105+, interfaces x 102+ Application 

Quality of experience UI Intentions User 

Extreme care managing the power states of each 
hardware resource but too many uncoordinated 

agents all with an opinion... 



V0.5 

Issues requiring attention within a software component 

Placement of code and data in the memory hierarchy  
 There can be big ratios between the energy-cost of accessing on-chip SRAM, on-chip cache, on-chip 

FLASH,  off-chip FLASH or DRAM 

 Unfortunately, the more expensive accesses also suffer longer latencies which cause busy idling, not 
just by the CPU but by whole servers or HPC ‘nodes’ – the energy cost can be huge... 

Design and implementation of the application, at every level of abstraction 
 Choice of algorithm, mapping the algorithm to the available hardware, low-level coding practices 

Quality of code generation by the compiler 
 A minor factor until all others have been exploited or ruled out 

(I admit that there is a discussion to be had here around what (only) compilers can do versus what (only) 
application authors can easily do in the context of what can (not) be feasibly funded and deployed...) 

 

18 



V0.5 

Some top-level models 
(In the spirit of Every BIG helps) 

Segment by segment analysis 

19 



V0.5 

High Performance Computing 
(Big picture model) 

20 

Node Node Node 

Node 

Node 

Node 

Node 

Node 

Node 

Core Core Core Core 

Core Core Core Core 

Memory 

N 
nodes 

C 
cores 

 An application is scaled out over many nodes; nodes exchange 
data over a network using MPI (Message Passing Interface) 

 Nodes are units of power management and cooling 
E Application = N * W Node * T Node T Node = T Busy + T Idle  

 Energy is minimized when T Idle → 0 and T Comm-busy → 0  

 Node processing 100% overlapped with inter-node communication, 
which limits parallelization 

 MPI (or similar) busy overhead (T Comm-busy) minimized (also limiting) 

 Each node is a NUMA, shared-memory multi-processor; 
application scaled out using OpenMP® extensions, or similar 

E Node = (C *  W Core + W Memory) * (T Busy + T Idle) 

 Important to minimize idle (stall) time, minimum per-node energy is 
almost 100% aligned with maximum node performance 

The OpenMP name is a registered trademark of the OpenMP Architecture Review Board. 



V0.5 

Scale-out servers 
(Idleness remains the enemy...) 
 Historically, server utilization is low – 10%-40% 

 Difficult to improve without threatening response times  

 Virtualization lets a data centre pack multiple 
virtual servers onto fewer physical servers 
 Server power varies 50%-100% as load varies 10%-90% 

 Driving physical utilization up to 70% reduces the 
demand for physical servers by 1.75-7x 

 A double win for Total Cost of Operation (TCO) even 
though virtualization overhead reduces the gain 

 Virtual machines can be moved between physical 
machines at software/network speed (critical to 
managing virtualization) 

21 

Virtual servers,  
{10, 15, 15, 30}% 
loaded 

Physical server  
70%-75% loaded 



V0.5 

How virtualization saves energy 

22 

Servers loaded 
{10, 15, 15, 30}% 

18% 

77% 

217% 

87% 

0% 

50% 

100% 

150% 

200% 

250% 

Physical Virtualized 

Utilization Energy 

10% 
15% 15% 

30% 

50% 53% 53% 
61% 

0% 

10% 

20% 

30% 

40% 

50% 

60% 

70% 

80% 

90% 

100% 

1 2 3 4 

Utilization Energy (100% flat-out servers) 

Energy  ↓ 2x 
Servers ↓ 4x 
Capital (servers + software) ↓ >2x (guess) 
TCO ↓ 1.6x 



V0.5 

Big picture: Business model, taxation, and regulation matters 

 Assume (IaaS): 
 Changing 1 line of application code costs $10, changing 100 

lines increases performance by 10% (so 10% fewer instances)  

 Scale-out Linux instances cost 25¢/hr 
(http://en.wikipedia.org/wiki/Amazon_EC2#Cost...) 

 Project risk, NPV, etc double the break-even cost 

 Spending $1,000 to save 10% is justified by 80,000 instance-
hours, ~10 instances for 1 year, 24/7... 

Who has enough scale to justify the cost of optimizing applications? 

 Contrast PaaS: 
 The service provider has the scale and the business incentive 

(e.g. Salesforce.com,  etc...) 

23 

Infrastructure 
as a Service 
Rent virtual 
machines 

Platform as 
a Service 
Rent 
application 
instances 

http://en.wikipedia.org/wiki/Amazon_EC2�


V0.5 

Things (ain’t what they used to be) 
 Radio – < 10mW Rx/Tx (when chirping), < 1μW sleep 

 Achievable today – see for example http://sunrisemicro.com/  

 μ-controller – < 10 μW/MHz (core only) 
 ARM® Cortex®-M0+ achieves this, equivalent to ~ 10-20pJ/instruction 

(excluding memory-access cost) 

 RAM, ROM, FLASH, I/O 
 A less happy story... 

 On-chip FLASH ~100pJ/32-bit access? 
(10 instructions’ worth...) 

 SRAM ~50pJ/32-bit access? 

 Active/dormant cost ratios 100-10,000 so busy-idle and inactive-not dormant 
are the mortal enemies of energy efficiency 

 Placement of code and data in memory is critical to efficiency 

24 

Th
e 

th
in

g 
fr

om
 Io

T.
.. 

Radio 

μ-controller 

Accelerators, etc 

RAM, ROM, FLASH 

I/O 

Chirp! 

http://sunrisemicro.com/�


V0.5 

IoT enables the Cloud and the Cloud enables IoT 

IoT is all about data aggregation and analysis, in the Cloud 
 Every IoT transaction will have an echo in the Cloud... 

 Energy efficiency is an end-to-end concern spanning the 
thing, services in the Cloud, and all the things en route to 
the Cloud... 

 Energy efficiency is now an architectural problem and we 
will need efficient architectures not just efficient things... 

Network architecture, service architecture, business architecture 
must all favour energy efficiency... 

25 

Chirp! 



V0.5 

Software meets hardware 

How it goes horribly wrong close to the metal 

26 



V0.5 

Some IC fundamentals 

27 

 Model the power state in any cycle as Off < Ready < Busy-idle < Busy} 
Each state includes the power of its predecessor 

 P Busy is the power when functional units are typically busy (short of power-virus busy...) 

 P Busy-idle is the power when unused functional units are clock-gated, rest of system is running 

 P Leak is the ‘leakage’ power dissipated by being powered on and ready but not clocked 

 E = P Busy * T Busy + P Busy-idle * T Busy-idle + P Leak * T Ready  

 E is minimum when there is no Busy-idle time and no Ready time or no Leakage 
 Ideally, run fast then enter a lower power  (‘Off’’) state or reduce voltage and frequency and run 

slower to eliminate Busy-idle 

Alas, limitations of DVFS and state save/restore/retention overheads often favour Busy-idle 



V0.5 

Run, Busy-idle, and Leakage power vary 

These proportions are indicative 
 Really good low-leakage processes show barely 

measureable leakage power 

 Busy-idle power is significant in all cases 

 Proportions depend on the ASIC and the system 
design not just the process 

 Combine these stacks with cycles per instruction 
(CPI) to give energy per instruction (EPI) 

 

 

28 

0% 

10% 

20% 

30% 

40% 

50% 

60% 

70% 

80% 

90% 

100% 

Low power 
'traditional' 

General 
purpose 

(desktop) 

High 
performance 

Mobile  

Advanced 
process 

%Busy 

%Busy-idle 

%Leak 



V0.5 

CPI for Firefox 3.5 running Bbench on ARM® Cortex®-A8 
(Some software fundamentals – real software sucks energy...) 

29 

Cause Contribution 

Access to L3 memory system (DRAM) 0.26 

Branch misses 0.64 

Access to L2 cache 
(55% TLB misses, 45% L1 misses) 

0.77 

LDR to dependent register delay 0.26 
(estimated) 

Total of the above ~1.93 

Execution CPI absent above factors ~0.97 

Total CPI 2.9 CPI = 2.9  



V0.5 

How much energy might a mobile browser waste? 
(Two example mobile fabrication processes, ‘typical’ ASICs...)  
Total EPI = 0.97 * 1.0 + 1.93 * %Busy-idle 
 Low power 2.03 (48% useful) 

 High performance 2.28 (42% useful) 

< 50% of average EPI is used usefully; >50% busy idling 

Corollary: fast code (few stalls) is good code; scaled 
performance code is good code (fewer stalls) 

 
Leakage is another story (too long for this presentation) 

So is GPU + display... CPU just one small component 

30 

0% 

10% 

20% 

30% 

40% 

50% 

60% 

70% 

80% 

90% 

100% 

Low power 
'traditional' 

High 
performance 

Mobile  

%Busy 

%Busy-idle 

%Leak 



V0.5 

An aside on out-of-order processors and the EPI model 

A modern out-of-order machine is never truly Busy (unless power virus is running) and rarely 
truly Idle 

 This matters little if a crude power-state model is composed with a cycle stack 
 The degree of busyness averages into the CPI number 

 We do rely on Busy power being reasonably linear between min-Busy and max-Busy 

31 



V0.5 

An aside on busy-idle versus truly idle 

To some extent I have obsessed about the energy wasted in the busy-idle state, partly because it 
is a problem that spans HPC to IoT 

 The concern I raised initially (IEA) was about devices being on, ready, but doing nothing 

 Models (or levels) of idleness include 
 Busy-idle – stalled waiting on memory – ~50% dynamic power, 100% leakage 

 Wait For Interrupt (WFI),  clock stopped – 0% dynamic power, 100% leakage 

 WFI, state retention – 0% dynamic power, much reduced% leakage 

 WFI, power off – 0% dynamic power, 0% leakage 

All applying at the component (e.g. CPU, GPU) level... IoT devices need to get to WFI, power off 

32 



V0.5 

Summary and open problems 

33 



V0.5 

Summary 
(Energy-efficient software) 
Every Big helps 
 Find and tackle the big issues first... 

System architecture is critical 
 We can design efficiency in or out at the topmost level... 

Busy idling is evil 
 To first order, faster ⇒ more energy efficient so ideally run fast and stop but... 
 State save/restore and state retention (stopping) also have overheads... 
 Heterogeneous computing is another answer that swaps one evil for several others... 
 Dynamic voltage and frequency scaling let us run slower more efficiently but scaling is limited... 

Placement of code and data in the memory hierarchy is critical from HPC to IoT 
 Critical to performance and energy efficiency (often doubly so) 

34 



V0.5 

Some open problems 
(Energy-efficient software) 
 Lack of common ontology impairs deployment, time to market, creation of reusable tools, 

education of engineers and programmers... 
 Lack of reliable, up-to-date, citable data about energy and power consumption are 

problems for business and academics alike 
 But these data are very sensitive in the industry... Need academics to do more measurement! 

 An hierarchy of independent agents, policies, and intents makes software fights itself or fight 
the hardware or firmware 
 Xeon power management versus Linux power management now well known and rather tragic 
 Needs better, global coordination frameworks that allow independent agents to share policy intentions and 

resolve potential conflicts between them 

 End-to-end energy-efficient system architecture 
 How can we define it, model it, implement it? 

35 



V0.5 

The end 

fin, Ende, loppu, τέλος, конец  
 

36 


	Energy Efficient Software
	About me and about this talk
	Inspiration and motivation
	An historical business invariant for ARM
	A vision statement�(From ARM’s 2012 Corporate Responsibility report)
	More Data, Less Energy�Making Network Standby More Efficient in Billions of Connected Devices
	One of my modern heroes...�(Prof David J C Mackay, Regius Professor of Engineering, Cambridge University)
	A (or The) BIG problem...�(Busy doing nothing, idling the whole day through...)
	Finally, Publish or Perish reinvented
	Energy efficient software�
	Anecdote: iPhone 1 Battery Life Was Doubled in 6 Months�(According to its earliest customers...)
	Fast forward to 2014 – Carat on iOS and Android
	Hugely simplified mobile application stack �Some key challenges
	How shall we visualise what’s going on?
	How shall we control power use?
	Energy-efficient software architecture or a mess?
	Basic hygiene is harder than it needs to be�(even for ‘turn it off when unused’...)
	Issues requiring attention within a software component
	Some top-level models�(In the spirit of Every BIG helps)
	High Performance Computing�(Big picture model)
	Scale-out servers�(Idleness remains the enemy...)
	How virtualization saves energy
	Big picture: Business model, taxation, and regulation matters
	Things (ain’t what they used to be)
	IoT enables the Cloud and the Cloud enables IoT
	Software meets hardware
	Some IC fundamentals
	Run, Busy-idle, and Leakage power vary
	CPI for Firefox 3.5 running Bbench on ARM® Cortex®-A8�(Some software fundamentals – real software sucks energy...)
	How much energy might a mobile browser waste?�(Two example mobile fabrication processes, ‘typical’ ASICs...) 
	An aside on out-of-order processors and the EPI model
	An aside on busy-idle versus truly idle
	Summary and open problems
	Summary�(Energy-efficient software)
	Some open problems�(Energy-efficient software)
	The end

