

Power and Energy Modelling of Multi-core Processors for System-Level Design Space Exploration

Santhosh Kumar Rethinagiri, **Oscar Palomar**, Osman Unsal, Adrian Cristal Barcelona Supercomputing Center Energy-Aware Computing Workshop 2014

This project and the research leading to these results has received funding from the European Community's Seventh Framework Programme [FP7/2007-2013] under grant agreement n 318693

ParaDIME Consortium

Why ParaDIME ?

- Parallel <u>Distributed Infrastructure for</u> <u>Minimization of Energy</u>
- Rising cost
 - Hardware cost
 - Programming efficiency
 - Runtime optimization
 - Energy aware data center computing

The ParaDIME Stack

Challenges of modelling power of heterogeneous systems

- Estimating power/energy is a critical design goal for electronic devices.
- Designers today must evaluate power estimation as early as possible in the electronics design.
- Design changes are easier in the design phase and have the greatest impact on application power estimation at System-Level.
- A platform to use **different processors and components**.

00 000 000 000 000 000 000 000

- Functional level is accurate but it's a course grain. Restriction in terms of measuring power from the real board.
- For fine grain, we can achieve it from gate level simulation. Restriction applies as we don't have the tools and RTL sources. Very slow simulation speed.
- Another challenge is power law holds for a simple processor but for complex processor system remains debatable ?

Power estimation methodology and tools

Unknownµ arch	itecture details	Tools /Methodologies	Inputs	
System level power estimation	Multi-Level Power Analysis	<i>CAT / FLPA</i> McPAT	AADL M	^{odel} Fast but
Algorithmic level power estimation	Functional Level Power Analysis	SoftExplorer / FLPA	C code ASM	coarse grained
	Instruction level	Jouletrack / ILPA		
Micro-Architectural		PowerTimer		COMPROMISE
level power estimation	Cycle level	Wattch	ASM	
		SimplePower		
Circuit level	Gate level	QuickPower	Binary	
poweresumation	Transistor level	SPICE		Slow but accurate
Known µ archite	cture details	Simula	tion and	
ILPA: $I(prog) = \Sigma$	$\Sigma I(instr) + \Sigma \Delta I$	Detai	ils	
FLPA: parameter	erized activity	Aco	curacy	

000

6

1F

()0

EACO Workshop, Sept. 10th 2014, Bristol

0

000

000

Hybrid design space exploration methodology

First step : FLPA (Functional Level Power Analysis)

parameters

000 000 000 000 000 000 000

FLPA

- 3 steps
- Complex architectures
- Simples models
- Precise estimations
- Processors Models
 - DSP & GPP
 - SoftExplorer Tool
- FPGA Models
- Flash Memory Models
- System ...

Processor Model

Functional block (ARM Cortex-A9)

Generic Power Model Parameters

The Parameters which influence the power in a system.

	Name	Description
	au	External memory access rate
	γ_1	L1 cache miss rate for a processor
	γ_2	L2 cache miss rate for a processor
	SCU	Snoop control unit counter
		for ARM Cortex-A9 multi-core
	γ_1	L1 cache miss rate for a processor
	ρ	parallelism rate for DSP processor
		fetch stage access
Algorithmic	β	DSP processor processing rate
		between instruction memory unit
		and processing unit
	PSR	Pipeline stall rate
		between instruction memory unit
		and processing unit
	IPC	Instruction Per Cycle
	α	area utilization for a CLB
	$F_{processor}$	Frequency of the processor
Architectural	F_{bus}	Frequency of the bus
	N	Number of cores

Power measurement environment

Variation of Instruction Per Cycle (IPC) in Power for ARM Cortex-A8

←Power (mW)

Instruction Per Cycle (IPC)

Power consumption models generated with FLPA

Processors	Power models
ARM Cortex-A7	$P(mW) = 0.39 F_{Processor} + 3.65 IPC$
	$+0.66(\gamma 1) + 2.12(\gamma 2) + 8.27$
ARM Cortex-A7	$P(mW) = a F_{processor} + b \sum_{i=1}^{4} (\gamma 1_{c_i})$
(dual/quad-core)	+ c $\sum_{i=1}^{4} (IPC_{c_i}) + d(\gamma 2) + 5.24$
ARM Cortex-A15	$P(mW) = 0.56 F_{processor} + 8.95 IPC +$
	$1.2(\gamma 1) + 3.5(\gamma 2) + 15.93$
(single core)	
ARM Cortex-A15	$P(mW) = a F_{processor} + b \sum_{i=1}^{4} (\gamma 1_{c_i})$
(dual/quad-core)	+ c $\sum_{i=1}^{4} (IPC_{c_i}) + d(\gamma 2) + 17.45$
Heterogeneous	$E(mJ) = \sum_{i=1}^{n} E_{p_i} + E_{mem} + E_{sync}$
architecture	$+ E_{I/O}$
reomeromero	no en o en o en o en est PARA

DIME

Second Step: System Level Power Analysis

Transaction System-level virtual platform

Result Interface

Result Interface

//	Cache miss rate (L1)	Cache miss rate (L2)	IPC	Power (mW)	Energy (mJ)	Power optimization
Estimation results	6.1	0.15	1.28	474,4	860,7	DVFS
Core details	ARM Cortex-A8	1 core	No multicore	JPEG	Power optimized 20 %	Work Load - NO

16

Results and Comparison (Power estimation)

Results and comparison (Energy)

Third step: Auto optimization

- DVFS
 - Runtime Inter task DVFS
 - Programmer annotation based DVFS

- Work-load balancing based on task
 - Runtime
 - Programmer based request

Task scheduling

Optimization based on work load balancing

Measurements of hand optimized code for dual-core
 Estimates of hand optimized for quad-core
 Measurements of hand optimized code for quad-core
 Error (%) (Hand-optimized dual-core)
 Error (%) (Hand-optimized quad-core)

Measurements of automated DSE for dual-core
 ■Estimates of automated DSE for quad-core
 ■Measurements of automated DSE for quad-core
 ◆Error (%) (DESSERT DSE dual-core)
 ■Error (%) (DESSERT DSE quad-core)

21

000 000 000 000 000 000

EACO Workshop, Sept. 10th 2014, Bristol

000

Optimization (Inter task DVFS)

Mixed processor core	Power estimated	Power measured	Error
	(mW)	(mW)	(%)
2 processor core	3854	3914	1.5
4 processor core	4587	4626	0.84
8 processor core	5327	5398	1.3

22

Conclusion

- In our tool, we have proved that our estimates are accurate.
- Adaptable for any kind of complex processor system.
- Added advantage, rapid prototyping of the components and porting of the applications made easy.
- Estimating power and designing applications made easy and time efficient.

The ParaDIME Stack

Hardware Architecture

- Energy-Efficient Message Passing
 - Message passing microarchitecture
 - Message passing accelerator
 - Task passing
- Operation Below Safe V_{dd}
 - Automatic HW lowering of V_{dd}
 - SW-guided (low-power annotation)

°0°°°0°°°0°°°0°°°0°°°0°

- Errors?
- Heterogeneous Computing
 - Architectural level
 - Device level

Heterogeneous system-level environment

Heterogeneous computing results and comparison

Programming model

- Message passing programming model
 - Actor model (Akka+Scala)
- Annotations to provide information to the hardware
 - Operation below Safe Vdd

00 000 000 000 000 000 000 000

Approximate Computing

```
@Storage(Array("precise=false", "VF_relax=true"))
var x = 5
@Calculation(Array("VF_relax=true", "VF_det=DMR",
VF_corr=TM"))
def calc(first:Array[double])
```

 Rewrite/Expand annotated code with Scala Macro Annotations

Power and Energy Modeling of Multi-core Processors for System-Level Design Space Exploration

Oscar Palomar (BSC) Energy-Aware Computing Workshop 2014

This project and the research leading to these results has received funding from the European Community's Seventh Framework Programme [FP7/2007-2013] under grant agreement n 318693

Computation of power and measurement of voltage for OMAP

http://169.254.45.32/				☆▼C 🛃 🕇
gle 🔻 🚸 dev.open-people.fr 🛛 📄 JPA 👻 📄 Per	so 🔻 📄 Axis2 🔻 📄 OMAP 🔻	P ▼		
Agilent Technologies	20 MSa/s D	igitizer		
Configure Digitizer Acquire Data Ut Run On Run Abort Trigger Record: 14532A 20 MSa/s Record 1 1 of 1 Image: Second 1 Channel Image: Second 1 2 Image: Second 1 Channel Image: Second 1 2 Image: Second 1 Vertical scale: Ch 1 500 mV/ Image: Second 1 Vertical position: Image: Second 1 Image: Second 1 Image: Second 1 Autoscale Gr Image: Second 1 Image: Second 1 Image: Second 1 Image: Second 1 Image: Second 1	Iities Status Idle View Measurement 134,205,440 sampl Timesta United and a status of the statu	No Errors Comman Clear Fetch amp: 0.0000000375 sec automatic dependent of the second s	d Monit Save Save Advanced New Measurement VREF (2) VSHUNT (1) Measurement VREF (2) VSHUNT (1)	ent Window- ighlighted on the graph i. 1.000.000 Samp. Close

000

000

0

PARA DIME

EACO Workshop, Sept. 10th 2014, Bristol

0()0

000

000

000