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Neuroscience Is BIG
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Information Processing in Neural
Circuits

|dentified neurons
In intact circuits
Relate signals to behavioural performance

Answer

1. What?
2. How?
3. Why?

See
Design



Flies' compound eyes — model systems for
analysing neural circuit design
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Circuits and signals - fly compound eye
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Secret 1

Mix analogue and
pulsatile



Hybrid computation (mixing analog & pulsatile) contributes to
Energy Efficiency
Rahul Sarpeshkar, MIT

Sarpeshkar, R. (1998). Analog versus digital: Extrapolating from electronics to neurobiology.
Neural Computation 10, 1601-1638
His book Ultra low power bioelectronics, C.U.P. 2010
Independently reaches many of the conclusion of my talk

synapse spike | synapse
s o "o o nsg
W L
- O | |¢w
\ lggy ©—O
W o y
|

stop noise accumulating

pyramidal neurons

use efficient analogue
operations to process information
directly at nodes (rich analogue primitives)



Question

Are brains efficient?



“Joe” with IBM Road Runner
Supercomputer (2007)

101 events st

20 watts



Allocating
Materials and Space

Electric fish brain Naked mole rat



Secret 2

Allocate resource
according to need
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Adaptations that conserve
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Minimal rationality
Christopher Cherniak




C elegans (aka “The Worm”)




Efficient layout reduces wiring costs

High wiring cost
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Low wiring cost
After Cherniak, 1992



Segregating neurons according to
function reduces wire length

Mitchison 1992



Secret 3

Minimise wiring costs



Brains are wired efficiently
Allocate materials efficiently

Do they need to be
Energy Efficient?



Brains need to be energy efficient because
demand is high enough to limit
signal traffic

Major sites of energy use

synapse spike | synapse

spike % The energy consumed by
cerebral cortex
limits cortical signal traffic

to 1 — 10 spikes/neuron/sec
Attwell & Laughlin 2001

pyramidal neurons

drive membrane resistance
charge membrane capacitance




Distribution of energy costs

spikes (action potentials)

maintenance

svnapses’ synapses’
y p_ chemical
electrical :

) signals
signals

electrical — expensive
chemical - cheap



Secret 4

Distribute signals
sparsely



sparse coding is energy efficient
(after Levy & Baxter, 1996)

A
i
AAA

1 active, 63 at rest 2 active, 10 at rest 4 active, 4 at rest
capacity = 64 capacity = 66 capacity = 70
. costs costs costs
cost ratio

signalling fixed  signalling fixed  total signalling fixed  total signalling fixed  total
1001 100 64 *164 200 12 212 400 8 408

10:1 10 64 74 20 12 *32 40 8 A8

51 5 64 69 10 12 *22 20 8 28

1:1 1 64 65 2 12 14 4 8 *2



Secret 5

Send only what Is
needed



“The neat packaging of information”

Horace Barlow 1961

redundancy reduction as a goal of early sensory
processing




Predictive coding
Srinivasan, Dubs and Laughlin, 1982

. intrinsic
weighted noise

—
OO0 3l linear sum

(D"(D_(D'Q-)_ — D n +
0-0-0-0-0- —*-»Cfb - f D
0-0-0-0- - to

) higher
O-0-0- :: weighted centres
—P

linear sum

‘*RECEPTORS*‘% ENCODER "

(interneuron with centre—surround
receptive field)




THEORY (@) S = 0.03

N = 0.003
(Srinivasan, Dubs and Laughlin, 1982) ]‘é ’: ; Hi S/IN
E = 0.014 S/N = 10
Predictive coding
requires an
Intensity dependent -5|-4f3l-2[1f0g 1]2]3]4]5
surround
Take wider
samples when input
IS unreliable

(photon noise)

Lo S/N




Maximise information coded in a channel limited bydynamic
range and noise
(Hans van Hateren, 1992)

MODEL

Input "naturalistic” 1/f statistics

Natural
signals

Optics |—

Neuron

Photon noise

‘ . Limited power

Intrinsic noise




Test model

R1-6 LMC LMC Data |
Model
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Model generalises
Similar redundancy reduction model applied to
human vision (Atick & Redlich, in Atick, 1992)
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Secret 5
Send only what's needed

e eliminate redundancy
 Improve SNR before transmission

e boil Information down to " what the
destination needs to know, no less, no
more"



Secret 6

Match neural resources to natural
distributions of signals and tasks. Match
components across levels
(“symmorphosis")

Redundancy reducing adaptive
filter matched to input SNR

Gain adapted to input amplitude
distribution



Amplifying signal to fill the response range
HISTOGRAM EQUALISATION
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Histogram equalisation at the
photoreceptor — LMC synapse
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Equalising the response histogram
iIn Drosophila olfactory glomeruli

Bhandawat et al 2007
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Figure from Abbott & Luo, Nature Nsci News and Views 2007



Working efficiently within
device constraints

electrical signalling



Signal quality in single neurons
basic biophysics — graded responses
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More ion channels — better performance

| (bandwidth)
Amplitude
_ Reliability
(SNR)
Number of ion channels '
Energy costs;
—

plus space and materials




Energy takes space
mitochondria in neurons




Secret 7

Reduce voltage and
INncrease resistance



Secret 8

send information at the lowest rate
(minimise bandwidth and precision)



More ion channels — better performance
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Testing for a Law of Diminishing Returns
bit cost vs capacity (max rate)

Sarcophaga
carnaria

Drosophila

melanogaster
Calliphora

vicina N\ |

Drosophila
virilis

Jeremy Niven, John Anderson and Simon Laughlin PLoS Biol 2007



Quantum
bumps

Response

White-noise
stimulus

The data
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Capacity increases with bandwidth and
precision

I=TI0g2[1+S(f)/N(f)]-df



Larger cells - higher capacities
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Big cell are faster and more precise

S. carnaria —

4 D. melanogaster —

log,[1 +S(f)/N(f)]
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Membrane model gives energy consumption

Laughlin et al, Nature Nsci 1998
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Different levels of energy consumption
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Bigger cells are less energy efficient
(they have traded economy for capacity)
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Cost Increases out of proportion to
capacity
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The Law of Diminishing Returns
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How to implement
Send at the lowest rate

Distribute information and processing tasks among
parallel low rate channels

sparse coding, parallel pathways

Only use high speed/precision where it is essential
small number of high speed/precision streams
larger number of low speed/precision stream

Massively parallel processing in low rate
channels each dedicated to small part of the
task



Secret 9

Nanofy!

(reduce to the irreducibly small)



Miniaturisation
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Dendrites (D) of CA1 pyramidal cells — EM section by
Univ Czech Rep. Visit Synapse Web for more details



What Is this spaghetti?

synapse

synapse

3 km/mm?3

pyramidal neurons



A channel noise limit to axon miniaturisation
Aldo Faisal, John White and Simon Laughlin 2005

stochastic axon model
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Spontaneous rate increases rapidly with decreasing
diameter, below 0.2 um
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To be efficient
brains push down to
the molecular limits
of information transfer




Secret 10

Do it with chemistry
(because ye have flesh)



The voltage sensitive sodium channel
a molecular machine
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Voltage
sensors

Voltage
sensors

From Horn, Nature 2011
summarising Payandeh et al, Nature 2011



Protein power

Nano (single molecule) finite state machines
switching by conformational changes



G protein cycle for the 3,AR—Gs complex.

a Agonist G protein coupling Activated G protein subunits GTP hydrolysis and
binding and nucleotide exchange regulate effector proteins inactivation of Ga protein

AR A AR AARAT
JT g OB =

Reassembly of heterotrimeric G protein

SGF Rasmussen et al. Nature 000, 1-7 (2011) doi:10.1038/nature10361

natare



Receptor-G protein interactions.

SGF Rasmussen et al. Nature 000, 1-7 (2011) doi:10.1038/nature10361

Note: This figure is from a near-final version AOP and may change prior to final publication in print/online

natare



Changing protein nano machine states
by changing their energy landscape

affinities  sensitivity

Kinetics impulse response
T permit
new interaction logic

exposed

bind ligand )
P-sites

phosphorylated



Protein molecules are flexible and versatile

 Easlily fine tuned
— variable gain amplifiers
— temporal filters
* Process information
— coincidence detectors (AND gates)
— NAND gates

 Assembled into information processing
complexes and networks



Fine tuning
photoreceptor protein network implements
van Hateren's optimum filter

Tune

response R1-6 LMC Model

to SNR

(light level) \/\ » Very dim
\ Quite dim

50 ms
\/L daylight



Molecular machinery for phototransduction
in the fly photoreceptor

Hardie & Raghu, 2001



Networks revealed

The chemical synapse before
the molecular neurobiology revolution

bouton

vesicle

\ synaptic

fused
vesicle

bound receptor



The outcome of revolution - promiscuity

Monoaminergic Monoaminergic
interneuron interneuron
Channel o PLC

ST i ur
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Presynaptic Postsynaptic
neuron neuron
Retrograde
signal(s)

Current Biology

Glanzman Curr Biol 2010



Protein potential

Nano-scale devices

Receive transduce and transmit signals

Select, amplify and filter signals

Rich repertoire of analogue and logic operations

Form networks that integrate and process
signals, therefore

Control and drive all cellular processes
Reconfigure networks — demand, history
Allocate resources — demand, history



Changing sensor sensitivity — day to night
Locust

light . dark

David Williams, Science 1982




Chemistry Is cheaper than
Electronics



Cost of signalling at single
cortical spine

Synaptic current flowing through
receptor ion channels

200,000 ions, 67,000 ATPs

Post-synaptic Ca transient
triggered by G-protein coupled
receptors

1000 ions 1000 ATP

Attwell & Laughlin, 2001



A heavy weight chemical signalling network

Plasma
membrane

Outer
segment

Cilium

Mitochondria
(Ellipsoid
body)

Endoplasmic
reticulum

Inner
segment

Nucleus

Synaptic
terminal

Spherule

rod photoreceptors

Cyclase Na*/Ca2*
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O o
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Current Biology

Fain, Hardie & Laughlin, Current Biology 2010



Energy costs of
electrical and chemical

signalling in a mouse rod X107
photoreceptor -
_ _ 8x10"
Okawa, Sampath, Laughlin & Fain, 2008 ) 0S Na+
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Secret 11

Mix electronics and chemistry



Getting the mix
balance pro and cons

Chemistry
versatile

computationally
powerful

economical
links all levels
slow

no universal currency at a
node

Electricity
less versatile

computationally
weak

expensive
Isolated (uses chem)
fast

universal currency,
"Instantaneous"
Integration of many to
one.
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