Link-Time Optimization for
Instruction Cache Power Efficiency

Timothy M. Jones

Computer Laboratory
University of Cambridge

[ |
1 IPEAC
COMPILATION WaAGR{@ I1IS@Rv]i=




BH UNIVERSITY OF
» CAMBRIDGE

WSS
P

Outline

> Instruction cache power usage

.
!
\
\
[ 4
!
g
3
!
i

_
s

Timothy M Jones 2




The Energy Problem

“We will soon spend more energy moving information
than moving actual goods.”
Prith Banerjee, Director of HP Labs. Keynote at HPCA 2009

BEE guardian.co.uk
NEWS Watt's up

; ; Intel has shifted focus from raw speed to "performance per
Carbon cost’ of Google revealed watt". Business users now face the challenge of getting more

work done while using less energy. Danny Bradbury reports

ARM THE ARCHITECTURE FOR THE DIGITAL WORLD

29 September 2008

Two search requests on the
internet website Google
produce "as much carbon
dioxide as boiling a kettle",
according to a Harvard
University academic. ARM, Chartered, IBM and Samsung Collaborate to Enable Energy-Efficient
32nm and 28nm Systems On Chip

US physicist Alex Wissner-Gross
, ARMto develop and license comprehensive Physical IP Design Platform targeted at achieving optimal
power, perfermance, and area for current and future ARM Cortex processors.

» Big impact tackling processor power consumption
» Using the compiler is novel & has large potential

Timothy M Jones 3



Where Can The Compiler Help?

» Compiler's primary job is to create binaries
> |t knows most about instructions

» The instruction cache is a good target
* Frequently accessed
* A hotspot
* Requires high performance

Timothy M Jones 4



Normal Instruction Cache Access

# address

—_— — — — -

TAG INSN TAG INSN

Timothy M Jones S



All Tag and Insn Banks Acsed

‘ address

- - -

T normal access

Timothy M Jones 6



Tag Checks Performed

‘ address

T normal access

Timothy M Jones 7



Instruction Read Out

¢ address

-@

Timothy M Jones 8



E® UNIVERSITY OF

lllﬁ

&Y CAMBRIDGE

Currently Wasteful If Instruction
Location is Known

Timothy M Jones 9



—_— — — -

TAG INSN

Timothy M Jones 10




—_— — — -

Timothy M Jones 11




Timothy M Jones 12




—_— — — -

TAG

Timothy M Jones 13




E® UNIVERSITY OF

lllﬁ

&Y CAMBRIDGE

Timothy M Jones 14




—_—— — — —

Timothy M Jones 15




Tagless Access

‘ address

—_— — -

TAG INSN TAG INSN

T tagless access

Timothy M Jones 16




Only One Bank Accessed

‘ address

—_— e — -

TAG

INSN

TAG

T tagless access

Timothy M Jones

17



No Tag Checks Required

¢ address

—_— e — -

TAG INSN A

T tagless access

Timothy M Jones 18




Instruction Read Out

# address

—_— e — -

TAG INSN TAG

T tagless access ltlnsn out

L
Timothy M Jones 19




Tagless Accessing

» Use cache like a scratchpad when possible
* For power saving

» Use like a normal cache at other times
* When flexibility is required

» Requires careful management
* Performance losses otherwise

Timothy M Jones 20




2.3 UNIVERSITY OF

BUG Hl‘ﬁl

<P CAMBRIDGE

Outline

> Tagless instruction caching
* Link-time optimisation
e Hardware modifications

.
!
\
\
[ 4
!
g
3
!
i

p
o

Timothy M Jones 21




Two Aspects

ITLB

‘ address

- —_ — - - - e

TAG INSN TAG

Timothy M Jones 22




BB UNIVERSITY OF
¢p CAMBRIDGE

Where Can The Compiler Help?

100

80

60

40

Percentage of Time

20

64 128 256 512 1024 2048 4096

Instruction Window Size

Timothy M Jones 23




Compiler Algorithm

» Our scheme uses new code placement algorithm
* Converts temporal locality to spatial locality

* Group frequently executed code into regions
- Access without tag checks
- Others accessed normally (with tag checks)

> Algorithm goals
e Spend as much time as possible in tagless regions
« Minimise switching between regions
 Fill regions as much as possible

Timothy M Jones 24




Original binary used as input

Timothy M Jones 25




2.3 UNIVERSITY OF

liﬁil

&P CAMBRIDGE

Example - Algorithm

ol = [

Blocks sorted by execution frequency

Timothy M Jones 26




2.3 UNIVERSITY OF

liﬁil

Example - Algorithm

ol = [

Control flow graph constructed

Timothy M Jones 27




2.3 UNIVERSITY OF

BUG H‘i‘i‘

- <P CAMBRIDGE
Example - Algorithm

ol = [

Initial clusters created

Timothy M Jones



B UNIVERSITY OF
CAMBRIDGE

WS KRS
P

Example - Algorithm

S = [eSEoo

Clusters expanded where profitable

Timothy M Jones



2.1 UNIVERSITY OF
¢¥ CAMBRIDGE

Example - Algorithm

Timothy M Jones



E® UNIVERSITY OF

lllﬁ

&Y CAMBRIDGE

» Spatial locality from temporal

» Hot basic blocks In regions
* No tag checks

» Maximise region code

> Minimise region switching

Timothy M Jones 31




Additional Hardware Support
» Tagless regions identified in the ITLB

» Each page descriptor records information
 Whether tagless or not
* Which region of the cache the page is mapped to

» ITLB maintains LRU chains for cache regions
 Used when a new tagless page is brought into the TLB
* Prevents conflicts between regions

Timothy M Jones

Ky



ITLB Support

ITLB

¢ address

TAG INSN TAG

Timothy M Jones 33




ITLB Support

ITLB

Timothy M Jones

‘ address

TAG INSN TAG

Whether a page is tagless

34



ITLB Support

ITLB

The way In the cache

‘ address

TAG INSN TAG

Timothy M Jones 35




ITLB Support

ITLB

The region in the cache

‘ address

TS HNEN TS

Timothy M Jones 36




ITLB Support

ITLB

Prevent conflicts in ITLB

‘ address

Speculate

Timothy M Jones 37




| |
(v TV Y, TV |
v TV Y, TV |
| Vv TV Vv TV |
| Vv TV Vv TV |
| v TAG TV INSN v TAG TV INSN |
| Vv TV Vv TV |
| Vv TV V TV |
| Vv TV Vv TV |
| V TV V TV |
| V TV V TV |
| |
| |
| way 0 way 1 |
| |

Tagless valid bits mark lines as valid in tagless mode

Timothy M Jones 38




TAG INSN TAG INSN

Tagless and tagged instructions can coexist

Timothy M Jones 39




TAG INSN TAG INSN

Conflicts reset the region's tv-bits

Timothy M Jones 40




Hardware Summary

> Mostly ITLB changes e
 Whether a page is tagless
« Cache way
e Cache region

- — = - - - =

» Tagless valid bits in cache
 Mix tagged and tagless data

TAG INSN TAG

» Speculate ITLB information

Timothy M Jones 41




2.3 UNIVERSITY OF

BUG Hl‘ﬁl

Outline

p
o

.
!
\
\
[ 4
!
g
3
!
i

» Evaluation

» Conclusions

Timothy M Jones 42




Evaluation

» Compiler pass in Diablo link-time optimiser

» Spec Integer benchmarks

» High performance system simulated
* Intel Core type processor (OoO superscalar and SMT)

» Three comparison schemes
 Hardware (no link-time layout)
e Layout only (no hardware support)
e Tagless (both link-time layout and hardware support)

Timothy M Jones 43




Does Not Slow Processor Down

Hardware ——— Layout Only Tagless mmmm

140 285 164 186 173 197 291 189 166
> 130 Lo e o e e e e e -
)
£
= 120 Lo o o oo e e e e §
c
9O
3
S 110 Lo e o o e e b e e §
>
LIJ —
8 - 3 B -
I 100 ||| SN TR R T o R ] ] e L e -
©
£
@) 90 |. o
] l
80

4. C Q o N N7 S ) o) %Y & L S

> 2 0 S) C > S) Q 0, X

o Y R0 T TRy %O),f KT %‘%

Timothy M Jones 44




And Large Power Savings 9%)

Hardware ——— Layout Only Tagless mmmm

120
o 100 Lo RSN - S | [E— | — J—
o ) T
O _
S 3 i i
-(_2 %/ 8O Lol bl e e e e e e B -
5 2 I
Sa 60 Ltl Il TRt o O
A m “f =
B E ) ]
= 5 40 |
= g
O
Z 20 L.
0

Timothy M Jones 45




Power Savings with SMT * %)

Hardware ——— Layout Only = Tagless mmm

120

100

80

60

40

20

Normalized Dynamic Icache
and ITLB Power (%)

Timothy M Jones 46




Conclusions

» Tagless access to instruction cache
* New linker code layout algorithm
- Places frequently-executed code into regions

 Mostly ITLB hardware support
- Keeps track of mappings into the cache

» Evaluation shows benefits of joint approach
* No performance loss
e Large power savings
e Savings maintained with SMT too

Timothy M Jones 47




Thank Youl!

Collaborators: Jonas Maebe, Sandro Bartolini and Dominique Chanet
Link-Time Optimization for Power Efficiency in a Tagless Instruction Cache, CGO 2011

Timothy M Jones 48




	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48

