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The Energy Problem

“We will soon spend more energy moving information
than moving actual goods.”
Prith Banerjee, Director of HP Labs. Keynote at HPCA 2009

BEE guardian.co.uk
NEWS Watt's up

; ; Intel has shifted focus from raw speed to "performance per
Carbon cost’ of Google revealed watt". Business users now face the challenge of getting more

work done while using less energy. Danny Bradbury reports

ARM THE ARCHITECTURE FOR THE DIGITAL WORLD

29 September 2008

Two search requests on the
internet website Google
produce "as much carbon
dioxide as boiling a kettle",
according to a Harvard
University academic. ARM, Chartered, IBM and Samsung Collaborate to Enable Energy-Efficient
32nm and 28nm Systems On Chip

US physicist Alex Wissner-Gross
, ARMto develop and license comprehensive Physical IP Design Platform targeted at achieving optimal
power, perfermance, and area for current and future ARM Cortex processors.

» Big impact tackling processor power consumption
» Using the compiler is novel & has large potential

Timothy M Jones 3



Where Can The Compiler Help?

» Compiler's primary job is to create binaries
> |t knows most about instructions

» The instruction cache is a good target
* Frequently accessed
* A hotspot
* Requires high performance
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Normal Instruction Cache Access
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All Tag and Insn Banks Acsed
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Tag Checks Performed
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T normal access
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Instruction Read Out
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Currently Wasteful If Instruction
Location is Known
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Tagless Access
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T tagless access
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Only One Bank Accessed
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No Tag Checks Required

¢ address

—_— e — -

TAG INSN A
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Instruction Read Out
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Tagless Accessing

» Use cache like a scratchpad when possible
* For power saving

» Use like a normal cache at other times
* When flexibility is required

» Requires careful management
* Performance losses otherwise
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> Tagless instruction caching
* Link-time optimisation
e Hardware modifications
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Two Aspects

ITLB
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Where Can The Compiler Help?
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Compiler Algorithm

» Our scheme uses new code placement algorithm
* Converts temporal locality to spatial locality

* Group frequently executed code into regions
- Access without tag checks
- Others accessed normally (with tag checks)

> Algorithm goals
e Spend as much time as possible in tagless regions
« Minimise switching between regions
 Fill regions as much as possible
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Original binary used as input
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Example - Algorithm

ol = [

Blocks sorted by execution frequency
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Example - Algorithm

ol = [

Control flow graph constructed
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Example - Algorithm

ol = [

Initial clusters created
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Example - Algorithm

S = [eSEoo

Clusters expanded where profitable
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» Spatial locality from temporal

» Hot basic blocks In regions
* No tag checks

» Maximise region code

> Minimise region switching
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Additional Hardware Support
» Tagless regions identified in the ITLB

» Each page descriptor records information
 Whether tagless or not
* Which region of the cache the page is mapped to

» ITLB maintains LRU chains for cache regions
 Used when a new tagless page is brought into the TLB
* Prevents conflicts between regions

Timothy M Jones
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ITLB Support

ITLB

¢ address
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ITLB Support

ITLB
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‘ address
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Whether a page is tagless
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ITLB Support

ITLB

The way In the cache
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ITLB Support

ITLB

The region in the cache
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ITLB Support

ITLB

Prevent conflicts in ITLB
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Speculate
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Tagless valid bits mark lines as valid in tagless mode
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TAG INSN TAG INSN

Tagless and tagged instructions can coexist

Timothy M Jones 39




TAG INSN TAG INSN

Conflicts reset the region's tv-bits
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Hardware Summary

> Mostly ITLB changes e
 Whether a page is tagless
« Cache way
e Cache region

- — = - - - =

» Tagless valid bits in cache
 Mix tagged and tagless data

TAG INSN TAG

» Speculate ITLB information
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» Evaluation

» Conclusions
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Evaluation

» Compiler pass in Diablo link-time optimiser

» Spec Integer benchmarks

» High performance system simulated
* Intel Core type processor (OoO superscalar and SMT)

» Three comparison schemes
 Hardware (no link-time layout)
e Layout only (no hardware support)
e Tagless (both link-time layout and hardware support)
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Does Not Slow Processor Down

Hardware ——— Layout Only Tagless mmmm
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And Large Power Savings 9%)

Hardware ——— Layout Only Tagless mmmm
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Power Savings with SMT * %)

Hardware ——— Layout Only = Tagless mmm
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Conclusions

» Tagless access to instruction cache
* New linker code layout algorithm
- Places frequently-executed code into regions

 Mostly ITLB hardware support
- Keeps track of mappings into the cache

» Evaluation shows benefits of joint approach
* No performance loss
e Large power savings
e Savings maintained with SMT too
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Thank Youl!

Collaborators: Jonas Maebe, Sandro Bartolini and Dominique Chanet
Link-Time Optimization for Power Efficiency in a Tagless Instruction Cache, CGO 2011
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