

The challenges of modelling and optimising energy for multithreaded programs **Creating energy efficient software for multi-threaded, multi-core processors**

Steve Kerrison µ Research Group University of Bristol steve.kerrison@bris.ac.uk

The problem

- XMOS XS1 architecture
- Multi-threading breaks existing models
- Fixing the model
- New tricks
- Unanswered questions

The problem

- Hardware power figures
 - Maximum? Minimum? Typical?
- What will that translate to for my application?
- How can the compiler help me?

The problem

- Furnish the workflow with this information
 - The developer
 - The compiler
- Packaged in a fast, safe, easy to support way

Traditional methods

- Map processor activity onto some energy metric.
- Requires some cost of executing an instruction.
- Plus the cost of switching data & switching between instructions.

Traditional methods Structure Structure The Structure St

What are we trying to save?

- Turn off
- Switch less
- Lower
 - frequency/Voltage
- Take less time

Contents

The problem

XMOS XS1 architecture

- Multi-threading breaks existing models
- Fixing the model
- New tricks
- Unanswered questions

XMOS XS1

- 32-bit micro-processor for embedded systems.
- ISA incorporates I/O instructions
- Event driven, real-time
- Message passing
- 64KB fast SRAM per core
- Deterministic WCET analysis
- Hardware multi-threaded pipeline

- Up to eight threads per core
- Four stage pipeline
- Simple scheduling
- At 500MHz, 125MIPS per thread for <= 4 threads</p>

Steve Kerrison, μ Research Group, University of Bristol

...and others

- Consider also...
- SMT "hyper-threaded" architectures
- Super-scalar CPUs
- Out-of-order execution

All affect switching through the CPU

Contents

- The problem
- XMOS XS1 architecture
- Multi-threading breaks existing models
- Fixing the model
- New tricks
- Unanswered questions

Breaking the model

- ISA-level example
- Model four threads
 - Get power figures
 - Determine energy consumption
- Run at architectural level
 - Interleaving in pipeline changes switching behaviour
 - For better or worse?
 - Regardless, less accurate!

Breaking the model

Data-path context switch example

Contents

- Introduction
- The problem
- XMOS XS1 architecture
- Multi-threading breaks existing models
- Fixing the model
- New tricks
- Unanswered questions

Fixing the model

- Exactly how unpredictable is the pipeline?
- Independent unsynchronised threads very unpredictable
- Interacting threads more predictable
 - Known points of synchronisation
 - Explicit sync
 - Communication
 - Events

Fixing the model

- Thread interaction example
 - I/O & protocols govern activity
 - More detail gives a higher accuracy model.
 - The more we can **predict**, the more **energy we can save**.

Fixing the model

- Incorporate thread sync/communication.
- Use protocol timing to inform thread schedule.
- Find sections of threads that execute together.
- Identify optimisation candidates.

Contents

- The problem
- XMOS XS1 architecture
- Multi-threading breaks existing models
- Fixing the model
- **New tricks**
- Unanswered questions

Trick 1: Migrate

- Assign less demanding tasks to low frequency cores.
- Move tasks that interfere with other optimisation efforts onto a different core
- We have to deal with the timing implications of doing this.

Trick 2: Data width

- Example: 32-bit XCore hardware.
- The full width of the data path is always active.
 - No architectural specialisation for narrower data.
- Let's compare the switching with 32-bit and 16-bit values.

Trick 2: Data width

10-25% improvement for some instruction pairings

processed/2011-04-12/16.c.dat.png

processed/2011-04-12/32.c.dat.png

Per-bit entropy sampled over the lifetime of a register.

Steve Kerrison, μ Research Group, University of Bristol

Trick 2: Data width

Per-bit entropy sampled over the lifetime of a register.

 $\,\,$ Steve Kerrison, μ Research Group, University of Bristol

Trick 2.5: Precision

- Do we really need all 12-bits of that ADC sample?
- If we reduce precision of some data, what will the cumulative error be?
- How do we choose an appropriate trade-off between error, accuracy and energy?

Trick 3: Format

- Think of a sequence of audio samples.
- How often do we cross zero?
- What happens in twos complement when we do this?
 - **10 -> -10**
 - 00001010 -> 11110110
 - 7 of 8 bits switch!

Trick 3: Format

- Think of a sequence of audio samples.
- How often do we cross zero?
- What happens in twos complement when we do this?
 - **10 -> -10**
 - 00001010 -> 11110110
 - 7 of 8 bits switch!

- So what about signmagnitude?
 - 10 -> -10
 - 00001010 -> 10001010
 - i bit switch!
 - 5-15% reduction seen by changing format.
- Unfortunately:
 - Redundant zero representation
 - No hardware support.

Contents

- The problem
- XMOS XS1 architecture
- Multi-threading breaks existing models
- Fixing the model
- New tricks
- Unanswered questions

Unanswered questions

- How do we knit together timing data, thread schedules and the energy cost of code segments?
- To what extent can inter-thread optimisation be performed?
 - How great are the benefits and when do they become worth the effort?

Unanswered questions

- What's the best way to present energy data to the developer? How do we minimise the amount of additional annotation required?
- - We want to improve workflow, not complicate it

XMOS[®]

Questions welcomed...

More information

XMOS: http://www.xmos.com

UoB Micro research group: http://www.cs.bris.ac.uk/Research/Micro

Me: steve.kerrison@bris.ac.uk

Tuesday, 12 July 2011

Steve Kerrison, µ Research Group, University of Bristol