
EACO Workshop, University of Bristol Luis Ceze, University of Washington

Luis Ceze

sa pa Safe MultiProcessing Architectures

at the University of Washington

areas: computer architecture, OS, programming languages

Safe and General Energy-Aware Programming
with Disciplined Approximation

Adrian Sampson, Werner Dietl, Emily Fortuna, Danushen Gnanapragasam

Luis Ceze, Dan Grossman

sa paUniversity of Washington

EACO Workshop, University of Bristol Luis Ceze, University of Washington

Motivation

Energy is already a first class concern in
systems design

Lower power bills
Longer battery life (or smaller battery ;)

Better energy efficiency likely necessary for
continued scaling (Dark Silicon)
 Won’t be able to power all transistors at once
 Need to either go specialized, or use drowsy transistors

EACO Workshop, University of Bristol Luis Ceze, University of Washington

How can programmers help make systems
more energy efficient?

What are the language constructs and
system support to enable that?

EACO Workshop, University of Bristol Luis Ceze, University of Washington

EnerJ:
Save energy
using programmer controls
over execution correctness.

EACO Workshop, University of Bristol Luis Ceze, University of Washington

EACO Workshop, University of Bristol Luis Ceze, University of Washington

Perfect correctness is not required

information retrieval

machine learning

sensory data

scientific computing

physical simulation

games

augmented reality

computer vision

EACO Workshop, University of Bristol Luis Ceze, University of Washington

Anant Agarwal, Martin Rinard, Stelios Sidiroglou, Sasa Misailovic, and Henry
Hoffmann. Using code perforation to improve performance, reduce energy
consumption, and respond to failures. Technical report, MIT, 2009.

[1]

B.E.S. Akgul, L.N. Chakrapani, P. Korkmaz, and K.V. Palem. Probabilistic
CMOS technology: A survey and future directions. In IFIP Intl. Conference on
VLSI, 2006.

[2]

M. de Kruijf and K. Sankaralingam. Exploring the synergy of emerging
workloads and silicon reliability trends. In SELSE, 2009.

[3]

Larkhoon Leem, Hyungmin Cho, Jason Bau, Quinn A. Jacobson, and
Subhasish Mitra. ERSA: Error resilient system architecture for probabilistic
applications. In DATE, 2010.

[4]

Xuanhua Li and Donald Yeung. Exploiting soft computing for increased fault
tolerance. In ASGI, 2006.

[5]

Song Liu, Karthik Pattabiraman, Thomas Moscibroda, and Benjamin G. Zorn.
Flicker: Saving refresh-power in mobile devices through critical data
partitioning. Technical Report MSR-TR-2009-138, Microsoft Research, 2009.

[6]

Sriram Narayanan, John Sartori, Rakesh Kumar, and Douglas L. Jones. Scalable
stochastic processors. In DATE, 2010.

[7]

Vicky Wong and Mark Horowitz. Soft error resilience of probabilistic inference
applications. In SELSE, 2006.

[8]

http://hdl.handle.net/1721.1/46709
http://hdl.handle.net/1721.1/46709
http://hdl.handle.net/1721.1/46709
http://hdl.handle.net/1721.1/46709
http://dx.doi.org/10.1109/VLSISOC.2006.313282
http://dx.doi.org/10.1109/VLSISOC.2006.313282
http://dx.doi.org/10.1109/VLSISOC.2006.313282
http://dx.doi.org/10.1109/VLSISOC.2006.313282
http://pages.cs.wisc.edu/~dekruijf/docs/selse2009.pdf
http://pages.cs.wisc.edu/~dekruijf/docs/selse2009.pdf
http://pages.cs.wisc.edu/~dekruijf/docs/selse2009.pdf
http://pages.cs.wisc.edu/~dekruijf/docs/selse2009.pdf
http://portal.acm.org/citation.cfm?id=1871302
http://portal.acm.org/citation.cfm?id=1871302
http://portal.acm.org/citation.cfm?id=1871302
http://portal.acm.org/citation.cfm?id=1871302
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.78.2997
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.78.2997
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.78.2997
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.78.2997
http://research.microsoft.com/apps/pubs/default.aspx?id=102932
http://research.microsoft.com/apps/pubs/default.aspx?id=102932
http://research.microsoft.com/apps/pubs/default.aspx?id=102932
http://research.microsoft.com/apps/pubs/default.aspx?id=102932
http://portal.acm.org/citation.cfm?id=1871008
http://portal.acm.org/citation.cfm?id=1871008
http://portal.acm.org/citation.cfm?id=1871008
http://portal.acm.org/citation.cfm?id=1871008
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.77.6301
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.77.6301
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.77.6301
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.77.6301

EACO Workshop, University of Bristol Luis Ceze, University of Washington

Storage
AND

NOR

NAND

Logic Algorithms

λ

EnerJ

Flikker
ASPLOS 2011

Kinds of imprecision

Relax
ISCA 2010

Green
PLDI 2010

EACO Workshop, University of Bristol Luis Ceze, University of Washington

Generality
A range of approximation strategies
supported with a single abstraction.

EACO Workshop, University of Bristol Luis Ceze, University of Washington

Critical Non-Critical

error-sensitive error-resilient

references

jump targets

JPEG header

pixel data

neuron weights

audio samples

video frames

EACO Workshop, University of Bristol Luis Ceze, University of Washington

EACO Workshop, University of Bristol Luis Ceze, University of Washington

EACO Workshop, University of Bristol Luis Ceze, University of Washington

Critical Non-Critical

error-sensitive error-resilient

✓
✗

references

jump targets

JPEG header

pixel data

neuron weights

audio samples

video frames

EACO Workshop, University of Bristol Luis Ceze, University of Washington

Safety
Separate critical and non-critical
program components.

Generality
A range of approximation strategies
supported with a single abstraction.

EACO Workshop, University of Bristol Luis Ceze, University of Washington

Java language extension
using type annotations

Proposed approximate hardware

Potential energy savings
in existing Java programs

EACO Workshop, University of Bristol Luis Ceze, University of Washington

Java language extension
using type annotations

Proposed approximate hardware

Potential energy savings
in existing Java programs

EACO Workshop, University of Bristol Luis Ceze, University of Washington

Java language extension
using type annotations

Type qualifiers: @Approx @Precise&

Endorsement

Operator overloading

Prevention of implicit flows

Objects: qualifier polymorphism

EACO Workshop, University of Bristol Luis Ceze, University of Washington

✓✗

int a = ...;

int p = ...;

@Approx

@Precise

p = a;

a = p;

Type qualifiers

EACO Workshop, University of Bristol Luis Ceze, University of Washington

endorse()✓✗

int a = expensiveCalc();

int p;

@Approx

@Precise

p = a;

Endorsement: escape hatch

quickChecksum(p);

output(p);

EACO Workshop, University of Bristol Luis Ceze, University of Washington

int a = ...;

int p = ...;

@Approx

@Precise

p + p;

p + a;
a + a;

+ : @Precise int, @Precise int → @Precise int

+ : @Approx int, @Approx int → @Approx int

Logic approximation: overloading

EACO Workshop, University of Bristol Luis Ceze, University of Washington

✗

int a = ...;

int p = ...;

@Approx

@Precise

if (
 p = 2;
}

a == 10) {

Control flow

EACO Workshop, University of Bristol Luis Ceze, University of Washington

✓
int a = ...;

int p = ...;

@Approx

@Precise

if (
 p = 2;
}

a == 10) {endorse()

Control flow

EACO Workshop, University of Bristol Luis Ceze, University of Washington

 float mean() {
 calculate mean
 }

float[] nums = ...;
class FloatSet {

new @Approx FloatSet()
new @Precise FloatSet()

}

Objects

EACO Workshop, University of Bristol Luis Ceze, University of Washington

 float mean() {
 calculate mean
 }

float[] nums = ...;
class FloatSet {

@Context

}

Objects

EACO Workshop, University of Bristol Luis Ceze, University of Washington

 float mean() {
 calculate mean
 }

float[] nums = ...;
class FloatSet {

@Context

}

@Approx float mean_APPROX() {
 take mean of first ½
}

@Approx FloatSet someSet = ...;
someSet.mean();

EACO Workshop, University of Bristol Luis Ceze, University of Washington

Java language extension
using type annotations

Proposed approximate hardware

Potential energy savings
in existing Java programs

EACO Workshop, University of Bristol Luis Ceze, University of Washington

Storage
AND

NOR

NAND

Logic Algorithms

λ

EnerJ

Hypothetical hardware

EACO Workshop, University of Bristol Luis Ceze, University of Washington

CPU

Proposed hardware

Memory

Registers Functional Units

Data Cache

Lower SRAM supply voltage
Lower DRAM refresh rate

Reduced VDD

Smaller FP mantissa

EACO Workshop, University of Bristol Luis Ceze, University of Washington

Key aspects of the ISA extensions

Registers implicitly set as approx/precise
based on the last writer

add.a $1, $2, $4

Memory regions declared as approximate
Set at a block granularity (bitmap per page)
Cache lines inherit property at fill time

Approximate flag in ops/mem instructions

EACO Workshop, University of Bristol Luis Ceze, University of Washington

Java language extension
using type annotations

Proposed approximate hardware

Potential energy savings
in existing Java programs

EACO Workshop, University of Bristol Luis Ceze, University of Washington

0%

25%

50%

75%

100%

FFT SOR MonteCarlo SMM LU ZXing jME ImageJ Raytracer

33%34%

19%

4%

23%

14%
20%

25%

33%

Annotated declarations

SciMark2 algorithms other kernels
full application

Annotations are sparse & straightforward to insert

EACO Workshop, University of Bristol Luis Ceze, University of Washington

0%

25%

50%

75%

100%

FFT SOR MonteCarlo SMM LU ZXing jME ImageJ Raytracer

Base Mild Medium Aggressive

Total energy used

Saved 10%—50% of total execution energy

(in simulation)

EACO Workshop, University of Bristol Luis Ceze, University of Washington

0%

25%

50%

75%

100%

FFT SOR MonteCarlo SMM LU ZXing jME ImageJ Raytracer

Base Mild Medium Aggressive

Quality-of-service tradeoff: output error

“Mild” configuration is a good fit for all

Some applications can tolerate more approximation

EACO Workshop, University of Bristol Luis Ceze, University of Washington

Also in the PLDI paper:

Formal semantics

Noninterference claim

Object layout

Hardware model

Quality-of-service metrics

Safe and General Energy-Aware Programming
with Disciplined Approximation

Adrian Sampson, Werner Dietl, Emily Fortuna, Danushen Gnanapragasam

Luis Ceze, Dan Grossman

sa paUniversity of Washington

EACO Workshop, University of Bristol Luis Ceze, University of Washington

Mild Medium Aggressive
per-second bit flip

probability

memory power saved

read upset
probability

write failure
probability

supply power saved

single-precision
mantissa bits

double-precision
mantissa bits

energy saved per
operation

arithmetic timing
error probability

energy saved per
operation

10-9 10-5 10-3

17% 22% 24%

10-16.7 10-7.4 10-3

10-5.59 10-4.94 10-3

70% 80% 90%*

16 8 4

32 16 8

32% 78% 85%*

10-6 10-4 10-2

12%* 22% 30%

D
R

A
M

SR
A

M
FP

U
FP

U
/A

LU

EACO Workshop, University of Bristol Luis Ceze, University of Washington

Energy model

integer operations 37 units

floating point operations 40 units

(22 fetch/decode)

(22 fetch/decode)

SRAM (cache & registers) 35% of chip power

instruction execution 65%

DRAM 45% of system power

processor 55%

EACO Workshop, University of Bristol Luis Ceze, University of Washington

0

50

100

150

200

FFT SOR MonteCarlo SMM LU ZXing jME ImageJ Raytracer

10
18

63

247

30102

174

156

5,96226,171283

38

59

36

168

Endorsements and lines of code

Lines of Code Endorsements

EACO Workshop, University of Bristol Luis Ceze, University of Washington

0%

25%

50%

75%

100%

FFT SOR MonteCarlo SMM LU ZXing jME ImageJ Raytracer

FP operations Integer operations DRAM storage SRAM storage

What can be approximated?

EACO Workshop, University of Bristol Luis Ceze, University of Washington

Green [Baek, Chilimbi; PLDI 2010]

Relax [de Kruijf, Nomura, Sankaralingam;
ISCA 2010]

Multiple method implementations

Online QoS monitoring

Annotate “relaxed” code blocks

Permit, detect, and report hardware faults

EACO Workshop, University of Bristol Luis Ceze, University of Washington

Memory layout

Approximation at cache line granularity

Objects can only save energy when
they occupy multiple cache lines

Large arrays of primitives provide
greater opportunities for approximation

EACO Workshop, University of Bristol Luis Ceze, University of Washington

