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Motivation

Energy is already a first class concern in 
systems design

Lower power bills
Longer battery life (or smaller battery ;)

Better energy efficiency likely necessary for 
continued scaling (Dark Silicon)
  Won’t be able to power all transistors at once 
  Need to either go specialized, or use drowsy transistors
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How can programmers help make systems 
more energy efficient?

What are the language constructs and 
system support to enable that?
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EnerJ:
Save energy
using programmer controls
over execution correctness.
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Perfect correctness is not required

information retrieval

machine learning

sensory data

scientific computing

physical simulation

games

augmented reality

computer vision
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Kinds of imprecision

Relax
ISCA 2010

Green
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Generality
A range of approximation strategies
supported with a single abstraction.



EACO Workshop, University of Bristol              Luis Ceze, University of Washington

Critical Non-Critical

error-sensitive error-resilient

references

jump targets

JPEG header

pixel data

neuron weights

audio samples

video frames
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Critical Non-Critical

error-sensitive error-resilient

✓
✗

references

jump targets

JPEG header

pixel data

neuron weights

audio samples

video frames
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Safety
Separate critical and non-critical
program components.

Generality
A range of approximation strategies
supported with a single abstraction.
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Java language extension
using type annotations

Proposed approximate hardware

Potential energy savings
in existing Java programs
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Java language extension
using type annotations

Proposed approximate hardware

Potential energy savings
in existing Java programs
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Java language extension
using type annotations

Type qualifiers: @Approx @Precise&

Endorsement

Operator overloading

Prevention of implicit flows

Objects: qualifier polymorphism
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✓✗

int a = ...;

int p = ...;

@Approx

@Precise

p = a;

a = p;

Type qualifiers
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endorse( )✓✗

int a = expensiveCalc();

int p;

@Approx

@Precise

p = a;

Endorsement: escape hatch

quickChecksum(p);

output(p);
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int a = ...;

int p = ...;

@Approx

@Precise

p + p;

p + a;
a + a;

+ : @Precise int, @Precise int → @Precise int

+ : @Approx int, @Approx int → @Approx int

Logic approximation: overloading
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✗

int a = ...;

int p = ...;

@Approx

@Precise

if (       
    p = 2;
}

a == 10) {

Control flow
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✓
int a = ...;

int p = ...;

@Approx

@Precise

if (       
    p = 2;
}

a == 10 ) {endorse( )

Control flow
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    float mean() {
        calculate mean
    }

float[] nums = ...;
class FloatSet {

new @Approx FloatSet()
new @Precise FloatSet()

}

Objects



EACO Workshop, University of Bristol              Luis Ceze, University of Washington

    
    float mean() {
        calculate mean
    }

float[] nums = ...;
class FloatSet {

@Context

}

Objects
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    float mean() {
        calculate mean
    }

float[] nums = ...;
class FloatSet {

@Context

}

@Approx float mean_APPROX() {
    take mean of first ½
}

@Approx FloatSet someSet = ...;
someSet.mean();
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Java language extension
using type annotations

Proposed approximate hardware

Potential energy savings
in existing Java programs
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Hypothetical hardware
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CPU

Proposed hardware

Memory

Registers Functional Units

Data Cache

Lower SRAM supply voltage
Lower DRAM refresh rate

Reduced VDD

Smaller FP mantissa
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Key aspects of the ISA extensions

Registers implicitly set as approx/precise 
based on the last writer

add.a $1, $2, $4

Memory regions declared as approximate
Set at a block granularity (bitmap per page)
Cache lines inherit property at fill time

Approximate flag in ops/mem instructions
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Java language extension
using type annotations

Proposed approximate hardware

Potential energy savings
in existing Java programs
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4%

23%

14%
20%
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Annotated declarations

SciMark2 algorithms other kernels
full application

Annotations are sparse & straightforward to insert
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0%

25%

50%

75%

100%

FFT SOR MonteCarlo SMM LU ZXing jME ImageJ Raytracer

Base Mild Medium Aggressive

Total energy used

Saved 10%—50% of total execution energy

(in simulation)
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0%

25%

50%

75%

100%

FFT SOR MonteCarlo SMM LU ZXing jME ImageJ Raytracer

Base Mild Medium Aggressive

Quality-of-service tradeoff: output error

“Mild” configuration is a good fit for all

Some applications can tolerate more approximation
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Also in the PLDI paper:

Formal semantics

Noninterference claim

Object layout

Hardware model

Quality-of-service metrics
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Mild Medium Aggressive
per-second bit flip 

probability

memory power saved

read upset 
probability

write failure 
probability

supply power saved

single-precision 
mantissa bits

double-precision 
mantissa bits

energy saved per 
operation

arithmetic timing 
error probability

energy saved per 
operation
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Energy model

integer operations 37 units

floating point operations 40 units

(22 fetch/decode)

(22 fetch/decode)

SRAM (cache & registers) 35% of chip power

instruction execution 65%

DRAM 45% of system power

processor 55%
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Endorsements and lines of code

Lines of Code Endorsements
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0%

25%

50%
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100%

FFT SOR MonteCarlo SMM LU ZXing jME ImageJ Raytracer

FP operations Integer operations DRAM storage SRAM storage

What can be approximated?
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Green [Baek, Chilimbi; PLDI 2010]

Relax [de Kruijf, Nomura, Sankaralingam; 
ISCA 2010]

Multiple method implementations

Online QoS monitoring

Annotate “relaxed” code blocks

Permit, detect, and report hardware faults
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Memory layout

Approximation at cache line granularity

Objects can only save energy when 
they occupy multiple cache lines

Large arrays of primitives provide 
greater opportunities for approximation
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