
Energy-Aware System
Design

(with a focus on software)

Kerstin Eder
Design Automation and Verification, Microelectronics Group

Department of
COMPUTER SCIENCE

“Energy-Aware System Design”

 Power management largely in domain of
Hardware Design
– Considerations to minimize/optimize

– Dynamic (switching) and static (leakage) power
– Energy consumption

– On-chip power management
– DVFS
– Modes: on, standby, suspend, sleep, off

 Where can the greatest savings be made?

Greater Savings at Higher Levels

“with a focus on software”

 Software controls the behaviour of the hardware
– Algorithms and Data Flow
– Compiler (optimizations)

• Traditional SW design goals:
– performance, performance, performance

 Software engineers often “blissfully unaware”
– Implications of algorithm/code/data on power/energy?
– Power/Energy considerations

• at best, secondary design goals

– BUT the biggest savings can be gained from
optimizations at the higher levels of abstraction in the
system stack – this includes Algorithms, Data and SW

Aligning SW Design Decisions with
Energy Efficiency Design Goal

 “Choose the best algorithm for the problem at hand and make sure it fits
well with the computational hardware. Failure to do this can lead to costs
far exceeding the benefit of more localized power optimizations.
 Minimize memory size and expensive memory accesses through algorithm

transformations, efficient mapping of data into memory, and optimal use of
memory bandwidth, registers and cache.
 Optimize the performance of the application , making maximum use of

available parallelism.
 Take advantage of hardware support for power management.
 Finally, select instructions, sequence them, and order operations in a way

that minimizes switching in the CPU and datapath.”
* Kaushik Roy and Mark C. Johnson. 1997. Software design for low power. In Low power design in deep

submicron electronics, Wolfgang Nebel and Jean Mermet (Eds.). Kluwer Nato Advanced Science Institutes
Series, Vol. 337. Kluwer Academic Publishers, Norwell, MA, USA, pp 433-460.

Key steps*:

The HW Design Stack

Layout

RTL (u architecture)
Synthesis

Functional Blocks

Gate

ISA

HW Power Analysis

ISA

HW Block
Profiling

Toggle Count

Capacitance

Functions

Layout

RTL (u architecture)
Synthesis

Functional Blocks

Gate

ISA

Hardware Power Analysis

 Late in the design
flow

 Computationally
expensive

 Slow

Towards Higher Abstraction Levels

ISA

HW Block
Profiling

Toggle Count

Capacitance

Functions

Layout

RTL (u architecture)
Synthesis

Functional Blocks

Gate

ISA

Wattch*

 Simulator for architectural-level power analysis
– power/performance tradeoffs more visible
– >1000x faster than layout-level power tools
– accuracy within 10% of estimated values
– based on SimpleScalar Tool Set

– requires parametrized power models of common functional
blocks (ALU, FPU, RF, I/D Cache) in superscalar processors

* D. Brooks, V. Tiwari, M. Martonosi, “Wattch: a framework for architecture-level power analysis and
optimizations,” Proc. 27th International Symp. on Computer Architecture (ISCA), pp. 83-94, 2000.

Performance
Estimate

Parameterizable
Power ModelsCycle-level

Performance
SimulatorBinary

HW Config

Cycle-by-Cycle HW Access Counts

Power
Estimate

Towards Higher Abstraction Levels

ISA

HW Block
Profiling

Toggle Count

Capacitance

Functions

Layout

RTL (u architecture)
Synthesis

Functional Blocks

Gate

ISA

Instruction-Level Power Analysis*

Instruction
Base Cost,
Bi, of each
instruction i

Other
Instruction
Effects
(stalls,
cache
misses,
etc)

Circuit State
Overhead,
Oi,j, for each
instruction
pair

Energy Cost (E) of a program (P):

* V. Tiwari, S. Malik and A. Wolfe, “Instruction Level Power Analysis and Optimization of Software”,
Journal of VLSI Signal Processing Systems, 13, pp 223-238, 1996.

Approaches at ISA Level

 Low power instruction encoding+
– Minimize the amount of switching by minimizing Hamming

distance between neighbouring instructions
– Requires profiling to optimize ISA for target applications
– Up to 62% reduction in switching activity in opcodes

+ S. Woo, J. Yoon and J. Kim, “Low-Power Instruction Encoding Techniques”, Proceedings of the
SOC Design Conference, 2001.

 Partitioning the Register File (RF)*
– Observation 25% registers account for 83% of RF access time
– Hot and cold RF regions motivate active and drowsy partitions
– Requires profiling, recompilation and HW support
– Average savings above 54% compared to nonpartitioned RF

* X. Guan and Y. Fei, “Registeer File Partitioning and Recompilation for Register File Power
Reduction”, ACM Transactions on Design Automation of Electronic Systems, 15(3)24, May 2010.

HW to SW

ISA

HW Block
Profiling

Toggle Count

Capacitance

Functions

Expose HW properties
to enable early system

analysis and
optimization

Layout

RTL (u architecture)
Synthesis

Functional Blocks

Gate

ISA

Towards Higher Abstraction Levels

Compiler

Program

SW Energy Analysis

Shortening the “deep loop”

 Early in the
design flow

 Computationally
less expensive

 Fast
 Less accurate

A Considerable
Challenge

HW to SW

ISA

HW Block
Profiling

Toggle Count

Capacitance

Functions

Expose HW properties
to enable early system

analysis and
optimization

Layout

RTL (u architecture)
Synthesis

Functional Blocks

Gate

Compiler

Program

ISA

Towards Higher Abstraction Levels

Data Profile

Accuracy

Timing

Energy-Aware Software Design
 New languages give more control to programmers

– Exploiting energy/accuracy tradeoffs at the SW level*
– Type system supports “precise” or “approximate” data types
– Provide support for “approximate” computation
– Programmers annotate code
– Type checker ensures separation of “precise” and “approx” code
* A. Sampson, W. Dietl, E. Fortuna, D. Gnanapragasam, L. Ceze and D. Grossman, “EnerJ: Approximate Data

Types for Safe and General Low-Power Computation” In Proc. of PLDI, June 2011.

 HW to provide approximate storage/computations
– Reduce FP power consumption by minimising data bit width+

– Up to 66% reduction in energy/operation without loss of accuracy
+ J. Y. F. Tong, D. Nagle and R.A. Rutenbar, “Reducing Power by Optimizing the Necessary Precision/Range of

Floating-Point Arithmetic”, IEEE Transactions on VLSI Systems, 8(3), pp 273-286, June 2000.

Requires collaboration between SW and HW Engineers

More “Power” to SW Developers
 Requires taking more responsibility for

– Algorithms (accuracy/fit to HW/encoding)
– Data types (width/accuracy)
– Budgets (time/power/energy)

 Toolchain must enable early design space exploration
– Communicate power/energy data from HW to SW developers
– Determine impact on power/energy consumption
– Develop intuition for power/energy budget of applications
– Two stages:

 Present energy consumption profile to software developer
 Enable the compiler and “ee” optimizer to use this data

– Complement static analysis with dynamic profiling

in 15ms do {...}

in 29000mJ do {...}

Workload

Use Case
Analysis

Data Profile

Timing

Accuracy

HW to SW

ISA

HW Block
Profiling

Toggle Count

Capacitance

Functions

Expose HW properties
to enable early system

analysis and
optimization

Compiler

Program

Layout

RTL (u architecture)
Synthesis

Functional Blocks

Gate

Algorithms

Application

ISA

Towards Higher Abstraction Levels

A Holistic “Systems” Approach

SW to HW

Workload

Use Case
Analysis

Data Profile

Timing

Accuracy

HW to SW

ISA

HW Block
Profiling

Toggle Count

Capacitance

Functions

Expose HW properties
to enable early system

analysis and
optimization

Design system
tailored to end user

needs

Energy Efficient SW

Compiler

Program

Algorithms

Application

Layout

RTL (u architecture)
Synthesis

Functional Blocks

Gate

ISA

Promoting Energy Efficiency to
a 1st Class System Design Goal

Challenges:
 Shortening the “deep loop” in the Toolchain

– early estimation/optimization of time/power/energy

 Re-evaluation of SOA for multi-threading and multi-core
 More “power” to SW engineers and programmers

– expressive power of languages
– resource budgets (WCET, power, energy)

The Energy efficient Software Challenge
 Increasing impact of static (leakage) power motivates

programming paradigm shift
– from always on “Busy Waiting” style
– to default off “Event-driven” programming

 Education and Collaboration

ElectronicsWeekly 15-21 June 2011 | No. 2472

Energy Aware COmputing

 New initiative at Bristol
 Kick off with 3 dedicated EACO workshops

– http://www.bristol.ac.uk/ias/workshops/current-
workshops/energy-aware-computing.html

– Sponsored by the IAS

 Intellectual Challenges
– Incremental improvements
– Radically new innovative approaches

 Interested collaborators please contact:
Kerstin.Eder@bristol.ac.uk

Thank you

Any questions?

Acknowledgements: I gratefully acknowledge the feedback and contributions towards
this presentation from the Microelectronics Research Group and from the Engineers
at XMOS. The Royal Academy of Engineering are funding my secondment to XMOS

via the Industrial Secondment Scheme.

