System-level Energy Modelling

Geza Lore

ARM

Jose Nunez-Yanez

University of Bristol

EACO Workshop 13-July-2011

rld® The Architecture for the

the Digital Wor

The Architecture for the Digital World®

Motivation

- The why is simple:
 - Today's systems are getting increasingly complex
 - Innovation requires information
- To build a competitive product:
 - you need to consider the big picture
- People are doing work on system level performance exploration
- The power side of the world is also non-trivial
 - Complex power management
 - Varying use cases
- Could we build tools to help us design systems and optimize software with a more power conscious mindset?

Problem statement

Goal

 Enable power estimation of full systems running complete user applications

It needs to be...

- Accurate
 - Can't use simple on/off models based on simple test vectors
- Fast
 - Can't use standard backend power analysis tools
- Full system
 - Need to be able to consider non-SoC parts

Abstraction levels for energy modelling

High level power models - Example

- Energy estimated based on:
 - Time spent in defined
 Macro States
 - Frequency of defined Architectural Events

$$E_T = \sum_n P_n t_n + \sum_m E_m N_m$$

- E_T : Total energy
- P_n : Power in state n
- t_n : Time spent in state n
- E_m : Energy of event m
- N_m : Count of event m
- Some example CPU states / events:
 - Core state: Active / Stall / WFI
 - SIMD unit: Clocked / Clock gated
 - Events: D cache hit / D cache miss / Instruction executed
 - Sub module level granularity of trace: CPU0 / CPU1 separate
- Remember: This is ONE option. You can build much more complex mathematical models

IP characterisation

- Power models need to be characterized
- For RTL IP, you can follow:
 - Implement design
 - Create an RTL and/or Netlist based test bench
 - Create a set of power benchmarks
 - Capture activity for PTPX (SAIF/VCD) and high level logs
 - Process activity information to get energy and activity vector
 - Create the models using linear regression

CPU average power model

- Relatively simple model
 - Based on 10 inputs
 - Mostly performance counters
- Characterized using random instruction sequences
- EEMBC benchmarks show max 7% error

Reference Power from PrimeTime PX

Some applications

System:

- Dual core ARM CPU
- Variable size L2 cache
- AMBA Interconnect
- Dynamic Memory ControllerLPDDR2 PHY
- LPDDR2 memory chip
- Variable BW traffic generator

Platform & Workload:

- HW emulation
- Running full benchmarks under Linux

The Architecture for the Digital World®

Microbenchmarks – P(t)

- Force system to corner cases
- Algorithm choice and dataset can cause 3x diff in **CPU** Power
- And possibly more in Energy
- You need to worry about the system

Web browser – P(t)

Power

The Architecture for the Digital World®

The Architecture for the Digital World®

Summary

- Accurate power estimation is possible
 - Accuracy is limited by the accuracy of your reference data and the accuracy of your simulator
- Methodology is flexible
 - Mathematical form of power models
 - Source of reference data
 - Can address non SoC parts and non RTL IP
- Speed is limited by the speed of the system simulator
 - Future work includes power modelling on an execution model
- Can explore system architecture tradeoffs
- Can profile applications for energy consumption

