
Optimizing Memory Power in Hybrid ARM-FPGA Chips

With Lossless Data Compression
Peng Sun

Microelectronics Group
University of Bristol

Merchant Venturers’ Building
Woodland Road Clifton

p.sun@bristol.ac.uk

Jose Nunez-Yanez
Microelectronics Group

University of Bristol
Merchant Venturers’ Building

Woodland Road Clifton

j.l.nunez-yanez@bristol.ac.uk

ABSTRACT

In current electronic systems the amount of power needed by the

memory components can represent a large percentage of overall

power requirements, and while modern DRAM memories offer

very low idle power states, the reduction in active power is much

more modest. Motivated by these observations, this paper presents

a system architecture in which a hardware lossless data

compressor/decompressor is connected to the application

processor present in the same chip. The compressor increases the

amount of time that the DRAM memories can remain in low

power state by reducing the number of memory accesses and

hence reducing the DRAM memory power consumption. The data

compressor is instantiated in the programmable logic side of a

ZYNQ device and is controlled by the ARM processors present in

this chip moving data between the on-chip local memory and the

off-chip DDR memory through the AXI interconnect. Memory

active time and power are monitored in the board while different

tests are run under the Linux operating system. The presence of

the compressor enables the memory to move to a low power mode

more frequently and it achieves an overall system power reduction

of 12.4%. This figure includes the power overhead introduced by

the presence of the compressor itself and it is limited by the

efficiency of the low power modes of the considered DDR3

devices and data compressibility.

Categories and Subject Descriptors

C.1.3 [Computer System Organization]: Other Architecture

Styles – Heterogeneous (hybrid) systems.

General Terms

Design

Keywords

Hybrid-FPGA, Low Power, Energy Efficient

1. INTRODUCTION
Memory Compression was extensively researched during the past

decade and brought important benefits to high performance

computing [1], signal and image processing [2], personal mobile

devices [3] and web servers [4]. Although increasing memory and

bus bandwidth has been the main motivation of memory

compression research, recent studies have demonstrated that this

approach can also be exploited when the ultimate target is the

energy (or power) minimization of a processor-based system.

However, these studies either do not aim to reduce the DRAM

power consumption, which accounts for a large percentage of

overall power requirements in today’s embedded system, or do

not take full advantage of memory compression for power

reduction. This paper proposes a lossless compressor-

decompressor engine paired with a hardened processor present in

the same chip. The compressor-decompressor engine uses a DMA

(Direct Memory Access) technique to move data independently

from processor activity. The device selected for this work is the

ZYNQ [5] chip with the lossless data compression algorithm

created in the PL (Programmable Logic) side of this hybrid chip.

The DMA technique manages data transfer between the OCM

(On-Chip Memory) and DDR through the ACP (Accelerated

Coherence Port) interface available in ZYNQ devices. This design

reduces the DDR active time and hence the system power

consumption. All the experiments presented in this paper were

processed using the ZC702 Evaluation Board [6] and all the

source files are made available at OpenCores [7].

The remainder of this paper is organized as follows: Section 2

presents a review of related works. Section 3 reviews the lossless

data compression algorithm and hardware employed in the

proposed system. Section 4 analyses the techniques to power

down the DDR memory during idle periods in which there is no

application running in the ZYNQ board. Section 5 describes the

hardware architecture of the design used to achieve the DDR

power reduction. Section 6 compares the power consumption of

the proposed design with that of a design without lossless data

compression, and Section 7 concludes this paper.

2. RELATED WORK
Currently available techniques to reduce the system power

consumption include bus encoding which reduces bus power by

changing the format of the data transmitted on the processor-

memory bus, and memory organization which changes the way

data is stored in memory so that the address streams generated by

the processor have low transition activity. Code and data

compression schemes have been applied to memory-processor

systems in order to optimize the system power consumption.

Previous works on reducing RAM power requirements with

memory compression can be categorized as either hardware based

or software based.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

FPGAWorld\’14, September 9–11, 2014, Stockholm and Copenhagen.

Copyright © 2014 ACM 987-1-4503-3130-2…\$15.00

1) Hardware-Based Approach: Systems designed under

the hardware-based approach are implemented with, and rely on,

special-purpose hardware which performs compression and

decompression at both the instruction and data level. At the

instruction level, code compression techniques [8] store

instructions in compressed format and de-compress them during

execution by using code compression techniques. Power

minimization at this level is achieved by reducing the energy

requirements of either I-caches [9][10] or program memory

[11][12] through instruction compression. However in this case,

only a small part of the main memory, which stores programmes,

is being compressed and all data access the memory in their

original, uncompressed form. At the data level, the main memory

compression techniques [13]-[15] implement a hardware

compressor/de-compressor between the cache and RAM.

Compared with the compression at the instruction level where

only a decompressor engine is required, compression at the data

level requires both compressor and decompressor engines during

the execution. Memory compression at the data level enables

energy saving in two ways. First, storing data in compressed form

requires a smaller number of memory accesses to retrieve or write

the same amount of information [16]. Second, bus traffic is

reduced [17]. However, besides establishing both compression

and decompression processes on-line, which would affect the

system performance, the design in [16] was tested on SRAM.

DRAM thanks to its cost effectiveness is being used as main

memory in almost all computers, laptops, embedded systems etc.,

and since SRAM is only used on components like cache, TLB

etc., where fast access is strictly required, the results produced by

this design could not be generalized. Moreover, although Shafiee

et al. in achieved considerable memory energy reduction [17], the

method used in the paper utilized the spare spaces made available

by memory compression for extra codings. This design therefore

did not take full advantage of memory compression to achieve

memory power reduction.

2) Software-Based Approach: The software-based

approach focuses mainly on swap compression [18] and

compressed caching [19]. However, instead of reducing system

power consumption, the software-based approach has the main

design goals of improving system performance and targeting

general-purpose systems with hard disks. Therefore, none of these

works has been evaluated on embedded systems for which power

consumption and performance are critically important, and few of

them provide analysis of their effects on memory power reduction.

Our own work follows the hardware-based approach to exploit

data-level memory compression which is interface with software

running under a Linux operating system. Different from previous

work, our design acts as a DMA master and it investigates how

data-level memory compression can be fully utilized to reduce the

number of DRAM memory accesses (or memory active time

counted in clock cycles), hence reducing the DRAM power

consumption. XMatchPRO, a lossless data compression algorithm

developed in [20], was selected in this research due to its high

throughput and full exploitation of the in-RAM data regularities

via its internal parallel architecture. Moreover, the compressed

data, although with different lengths, are automatically packed

together into streams of 32-bit words that can then be stored in

external DRAM. These properties make XMatchPRO a perfect

candidate to access the memory efficiently. The recent availability

of devices that embed a hardened processor system and a FPGA

fabric means that it is possible to closely couple the compressor

and processor in a real chip and measure the effects in overall

system power which constitutes the main aim of this paper.

3. XMATCHPRO OVERVIEW
XMatchPRO is a dictionary-based lossless data compression

hardware which can achieve good compression rates and high

throughput. It uses a parallel dictionary of previously seen data in

it attempts to match or partially match the current data element

with an entry in the dictionary. Compression is achieved by

replacing repeated phrases with references to the dictionary; these

replaced code words are smaller than the phrase itself. The

dictionary is fully adaptive and is built simultaneously to the

compression process. The detailed algorithms and architectures

are presented in [20]. This section gives an overview of

XMatchPRO before moving on to our own design architecture.

At the architecture level, Fig. 1 shows the design architecture of

XMatchPRO, which contains a compressor and a decompressor

channel. During compression, the compressor receives

uncompressed input words through an input buffer and activates

the compression model, which generates the required code words.

The code words are combined successively into fixed 32-bit width

words by the packer and are written to external memory through a

write buffer. The decompressor is responsible for the reverse

process, in which data is read from the external memory and the

required dictionary references are generated to allow the

decompressed data to be created. To optimize compression

efficiency, XMatchPRO allows partial matches of different widths

together with run-length coding when the same dictionary

location is hit two or more times. The compression ratio in this

paper is defined as the ratio of input bits over the output bits and

XMatchPRO achieves a typical 2:1 compression ratio at

throughput of 400Mbytes/s.

4. LOW POWER DDR STATE
The ZYNQ System on Chip memory controller supports both

DDR3 and LPDDR2 (Low-Power-DDR2). JEDEC Solid State

Input

Buffer

CRC

Unit

Compression

Model
Packer

Output

Buffer

Uncompressed

Input

Compressed

Output

Input

Buffer

CRC

Unit

Unpacker
Decompression

Model

Output

Buffer

Compressed Input

Uncompressed

Output

Compressor

Decompressor

Fig. 1 The Architectural Overview of XMatchPRO

Table 1 Memory Power Mode

DDR3 Power Mode LPDDR2 Power Mode

Active Active

Idle Idle

Self-Refresh Self-Refresh

 Temperature Compensated

Self-Refresh

 Partial Array Self-Refresh

 Deep Power Down

Technology in [21] gives a comprehensive comparison between

the two. Besides using a 1.2V voltage supply compared to the

1.5V power required for DDR3, additional power savings of

LPDDR2 come from extra low power modes as shown in Table 1.

The temperature-compensated self-refresh mode enables DRAMs

to refresh less often at low temperature. Moreover, compared to

the self-refresh mode applied on DDR3, LPDDR2 can be

programmed to enter a partial array self-refresh mode, a technique

which allows refresh operations to perform not across the full

memory cell arrays but only within specific banks where data

retention is required. Furthermore, LPDDR2 offers a deep power

down mode, which sacrifices all memory content for power

reduction. Any command that arrives while the DRAM is in deep

power down mode is stored in the Content Addressable Memory

(CAM) and is processed after deep power down exit and DRAM

re-initialization.

Our current board ZC702 includes DDR3 type memory. Although

this has been used for all the experiments, except the deep power

down mode in which all the memory contents are sacrificed, the

results should be extendible to LPDDR2 memory, which offers

deeper power down states. Before describing the hardware design

to reduce the power of DDR3 when active, this section describes

some techniques to power down the DDR3 in its idle period,

when no application is running.

The memory controller in the ZYNQ device allows users to clock-

gate the DRAM and hence reduces power in the memory. When

this feature is enabled, the DDR PHY is allowed to stop the

clocks going to the DRAM. Moreover, the DDR memory

controller can dynamically use pre-charge power down mode to

reduce the power consumption during the idle period. All these

features are effective only when the DDR is in self-refresh mode.

In this mode, DRAM contents are maintained even when the DDR

controller core logic is fully powered down, hence allowing the

DDR clocks to be stopped. During self-refresh mode, software

must ensure that no transactions arrive.

Fig. 2 shows the measured DDR power reduction effect for 20

seconds when the memory is clock-gated. The memory is being

read and written continuously in the active state, doing nothing in

the idle state and being clock-gated in the low-power state.

According to Fig. 2, more than 100mW DDR power is reduced

from the idle state when the DDR is clock-gated, and an average

power reduction of 17.6%, from 651.46mW to 537.03mW, is

achieved. The power values were taken by software written to

monitor various power rails of a ZC702 evaluation board. The

details of the experiment setup are described in Section 6.

Therefore, when there is no application running on board, the

DDR memory can be clock gated so that most of the DDR

dynamic power consumption is saved.

5. HARDWARE ARCHITECTURE
The compressor/decompressor and control logic are shown as the

shaded component in Fig. 3 and were created on the

Programmable Logic side of the ZYNQ System on Chip with all

interfaces necessary to communicate with the Processing System

side through ACP interconnect. Solid arrows show control from

master to slave and data flow in both directions. Data is

transmitted, as shown by the dotted arrows, between the OCM

Fig. 2 DDR Power Consumption in different memory states

FPU and NEON Engine

MMU
ARM Cortex

A9 CPU

32 KB L1

I-Cache

32 KB L1

D-Cache

FPU and NEON Engine

MMU
ARM Cortex

A9 CPU

32 KB L1

I-Cache

32 KB L1

D-Cache

Snoop Control Unit

256 KB On-

Chip

Memory

OCM

Controller

A

X

I

The

Compressor

/Decompressor

and Control

Logic

ACP

DDR Memory

Controller

512KB L2 Cache

Off Chip DDR

Processing System (PS)

Control Signal from CPU

Programmable Logic (PL)

Read

Buffer

Write

Buffer

DMA Logic

2xNormal

Counters

2xOverflow

Counters

Data from OCM/DDR

Data to OCM/DDR

Read_Fill

Write_Fill

Control Signal From CPU

Data_in

Data_out

Ren_from_mem

Ren_from_buf

Wen_to_mem

Wen_to_buf

Enable

Overflow

C_Out

O_Out

Software Reset from CPU

ACP AXI Interface Signals

Fig. 3 Design Architecture without XMatchPRO

and the off-chip DDR.

When the CPU needs to write data to the DDR, it writes it first to

the On-Chip Memory, which has a smaller access latency

compared to the DDR, (1 clock cycle vs hundreds of clock cycles)

and sends control signals to the compression logic in the PL. Then

this compressor logic reads data from the OCM, processes and

transfers it to the L2 cache and hence to the off-chip DDR through

the ACP. Finally, this compressor logic sends a signal back to the

CPU indicating the completion of the transfer. A reverse

mechanism is used when the CPU needs to read data from the

DDR. The decompressor logic, after being activated by the CPU,

then transfers data from the DDR to the OCM for the CPU to

read.

Since memory active time and power consumption are measured

and compared with and without lossless data compression, we

have developed two different versions:

5.1 Design Without XMatchPRO
In this case, data is directly transferred from one memory location

to another without compression or decompression. Therefore, the

control unit only contains a read buffer, a write buffer, 32-bit

counters which measure the main memory active time and the

total time duration when a benchmark is running in clock cycle

and DMA logic which manages all data transfer, as shown in Fig.

3.

The Read Buffer is a 256x32-bit duplex buffer which can perform

simultaneous read (from memories) and write (to the DMA). This

buffer is read and written from address 0 again when overflowed.

The design of the Write Buffer uses the same logic. Similar to the

Read Buffer, the Write Buffer content can be filled (by the DMA

Logic) and sent (to the memory) simultaneously.

Whenever the CPU wants to activate the DMA Logic for data

transaction, it first sends a burst read request with data sizes and

source memory address to enable reading from the memory to the

read buffer. The DMA Logic is activated and outputs data to the

Write Buffer when the number of 32-bit words in the Read Buffer

reaches a pre-defined threshold value. The Write Buffer starts to

output data to memories when the number of 32-bit words in it

reaches a pre-defined threshold value. Moreover, acknowledge

signals are sent from the DMA Logic to the CPU indicating the

completion of the data transfer.

5.2 Design With XMatchPRO
In this case, data transferred from OCM to DDR are sent through

a compressor, and those transferred from DDR to OCM are sent

through a decompressor, so that the DDR always stores the data in

compressed states. Besides all the components discussed in the

previous section, a compressor and a decompressor are now added

to the original design, as shown in Fig. 4.

While other components remain the same, as described in Part

5.1, the Read and Write Buffer are connected directly to the

compressor and decompressor. Whenever the CPU wants to

activate a data transfer, it first sends compressor/decompressor-

choice signals and write corresponding compressor/decompressor

registers to enable XMatchPRO. Depending on which engine is

chosen, compressor or decompressor, XmatchPRO automatically

produces compressed data to the DDR through the compressor or

produces uncompressed data to the OCM through the

decompressor. After then, the rest process is the same as described

in Part 5.1. Data saved in the DDR are now in compressed form

and the data saved in the OCM remain uncompressed.

6. POWER COMPARISON
The hardware design was tested by running six software

benchmarks, each contains artificial data that was generated to

obtain certain compression ratios in order to measure the power

savings and trade-offs regarding compressor utility, under Linux

OS on ZC702 Evaluation Board. ZC702 is bootable by an SD

card which contains both the hardware design as well as a Linux

Operating System and which communicates with a host desktop

through Secure Shell (SSH). Whenever running a benchmark,

power-analysis software is running simultaneously with it,

recording and printing power values used by various sections of

the system. This power-analysis software calculates and outputs

Read

Buffer

Write

Buffer

2xNormal

Counters

2xOverflow

Counters

Data from OCM/DDR

Data to OCM/DDR

Read_Fill

Write_Fill

Data_in

Data_out

Ren_from_mem

Ren_from_buf

Wen_to_mem

Wen_to_buf

Enable

Overflow

C_Out

O_Out

Compressor

De-compressor

Transfer Logic

M
U

X

Data Management

Logic

XMatchPRO

Register File

Register_signals

Out_sel

CPU Control Signals

Software Reset

XMatchPRO

A

X

I

The

Compressor

/Decompressor

and Control

Logic

Control Signal from CPU

Programmable Logic (PL)

Fig. 4 Design Architecture with XMatchPRO

power consumptions for PS, PL, Block Memory, DDR and

External IO by monitoring various power rails on ZC702.

Our power consumption comparison is based on data transaction

with and without lossless data compression. Six data sets, each

with a size of 16kB, were chosen with different levels of

compressibility. Data Set 1 has a compression ratio higher than

100:1, and Data Set 6 is not compressible. Sets 2 to 5 were chosen

with data compression ratios of 5.6:1, 2.7:1, 1.6:1 and 1.2:1

respectively. The compression ratio of data is defined as the ratio

of the input bits over the output bits. Hence a higher compression

ratio indicates a better compressibility of data. Therefore, six tests

were performed, with each test transferring one of the six data sets

from the OCM to the DDR and back from the DDR to the OCM

500 times so that the duration was long enough for the power

analysis software to capture the power value. Every time when

the same set of data moved back into the OCM from the DDR, the

CPU checks that the received data is the same as the data

previously stored in the OCM. Any mismatch of data terminated

the transfer loop with an error message printed out.

Fig. 5 presents the reduction ratio of memory active time for every

Data Set. It shows that the reduction on memory active time is

proportional to the compressibility of the data, and a good

compression ratio can significantly reduce the memory active

time. Therefore, Data Set 1 shows a large reduction of memory

active time (dark shaded) due to its large compression ratio and

the normalized memory active time (light shaded) is very small.

Fig. 6 shows the comparison results in terms of average DDR

power, PS power, PL power and total power. Even the switch

between active and idle period of the memory is sometimes too

fast for the software to capture, the average DDR power can be

calculated, using the two timer values provided by the counters in

the control logic, by averaging the total memory energy

consumption during both active and idle period throughout the

duration of the test. Average power consumed by the rest of the

system was obtained by averaging all values from the power

measurement software. Average total power was obtained by

adding the Averaged DDR, PS, PL and all other components’

power consumption.

According to Fig. 6(a), there is an average DDR power reduction

of up to 12.4%, from 728.6mW to 637.8mW, when running Data

Set 1. This amount of power is the DDR dynamic power saved

due to the reduction of memory active time. However, while

transfer with XMatchPRO does not affect the PS power as shown

in Fig. 6(b), XMatchPRO itself adds an average of 22.4mW to the

PL power, shown in Fig. 6(c). (The power values in Fig. 6(b) and

Fig. 6(c) do not have any meaningful variance when measurement

accuracy is accounted.) This additional power consumption is

introduced since more hardware is used in the PL side. Therefore,

if the compressibility (represented by the compression ratio) of

data is worse than 1.25:1, the reduction of the DDR power is

smaller than the 22.4mW power introduced by XMatchPRO, and

the system will suffer from a net increasing in average total

power, as shown in Fig. 6(d) when running Data Set 6. However,

the research results in [20] show an average compression ratio of

Fig. 5 Reduction of Memory Active Time

Fig. 6(a) Reduction of DDR Power due to Memory Compress

Fig. 6(b) Processing System Power Consumption

Fig. 6(c) Programmable Logic Power added by XMatchPRO

2:1 for typical main memory data used in an engineering

environment. In conclusion, the compressor/decompressor

achieves up to 12.4% memory power reduction by increasing the

amount of time that the DRAM memories can remain in idle state

when running an application, and the power down techniques

described in Section 4 achieves a further 17.6% memory power

reduction by putting the memory from the idle state to the low

power state when there is no application running. Therefore, in a

perfect system where XMatchPRO runs so fast that the memory

can always be put in the low-power state, a 26.3% reduction of

the memory power can be achieved by putting the memory

directly to the low power state from the active state.

Table 2 shows a summary of the hardware implementation details.

The hardware design with XMatchPRO utilizes 2% more registers

and 13% more LUTs. Both designs achieve the same frequency.

7. CONCLUSION
This paper has presented the integration of a lossless data

compression engine in the FPGA fabric of a hybrid ZYNQ chip.

The close coupling of a compressor/decompressor engine with the

processing functions running in the Cortex A9 processor means

that the processor can use a simple API to request that data

compressed in the main memory be decompressed and stored in

the on-chip tightly coupled memories. Similarly uncompressed

data in the on-chip memory can be compressed and moved to

external DDR. In both cases there is a significant power

advantage possible by maintaining external DDR memory in a

power down state for longer. Our experiments used a DDR3 type

memory to illustrate this advantage, and future work will include

data with LPDDR type memories that have more effective power

down states and stand to benefit more from the proposed

technique. In the considered memory chips, the experimental

results show, when running an application, up to 12.4% reduction

of DDR power is achieved taking into account the additional

power required in the PL side due to the presence of the

compression/decompression engine. The level of power reduction

is closely related to the compressibility of memory data, but other

research [20] has shown that a 2 to 1 compression ratio is typical.

In addition, when there is no application running, clock-gating the

memory can achieve a 17.6% DDR power reduction as shown in

Section 4. Future work will involve using the compression

technology with real applications run on the Cortex A9 processors

to investigate the power and performance benefits when both data

and instructions are maintained in a compressed state in external

DDR memories and will also considered LPDDR memory types

with more sophisticated power modes.

8. ACKNOWLEDGEMENTS
We acknowledge with gratitude the support of EPSRC with the

ENPOWER (Elastic and Non-Stationary POWER) project.

9. REFERENCES
[1] M. Ekman and P. Stenstrom, “A Robust Main-Memory

Compression Scheme,” Proc. of 32nd International

Symposium on Computer Architecture, pp.74-85, June 2005.

[2] Ahmed A. Aqrawi and Anne C. Elster, “Bandwidth

Reduction Through Multithreaded Compression of Seismic

Images,” IEEE International Symposium on Parallel and

Distrubuted Processing, pp.1730-1739, May 2001.

[3] M. Kato and C-T. Lo, “Power Consumption Reduction in

Java-enabled, Battery-powered Handheld Devices through

Memory Compression,” IEEE Inernational Symposium on

Consumer Electronics, pp.1-6, June 2007.

[4] V. Beltran, Jordi Torres and E.Ayguade, “Improving Web

Server Performance Through Main Memory Compression,”

14th IEEE International Conference on Parallel and

Distrubuted System, pp. 303-310, Dec 2008.

[5] http://www.xilinx.com/support/documentation/user_guides/u

g585-Zynq-7000-TRM.pdf, “Zynq-7000 All Programmable

SoC Technical Reference Manual,” UG585 (v1.7), February

2014.

[6] http://www.xilinx.com/support/documentation/boards_and_k

its/zc702_zvik/ug850-zc702-eval-bd.pdf, “ZC702 Evaluation

Board for the Zynq-7000 XC7Z020 All Programmable SoC

User Guide,” UG850 (v1.3), June 2014.

[7] http://opencores.org/project.xmatchpro, XmatchPro Lossless

Data Compressor project maintained by J.L.Nunez-Yanez.

[8] C.Lefurgy, P.Bird, I.Cheng and T.Mudge, “Code Density

Using Compression Techniques,” Proc. Of the 30th Annual

International Symposium on MicroArchitecture, pp.194-203,

December, 1997.

[9] H. Lekatsas, J.Henkel, and W.Wolf, “Code Compression for

Low Power Embedded System Design,” in Proc, Design

Automation Conference, 2000, pp. 294-299.

Fig. 6(d) Net Average Total Power of the System

TABLE 2

Implementation Details

Complexity
With

XmatchPRO

Without

XMatchPRO

Frequency 200MHz 200MHz

Register Use 18% 20%

LUT Use 20% 33%

Slice Use 53% 65%

I/O Use 4% 4%

BUFG Use 6% 6%

http://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf
http://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf
http://www.xilinx.com/support/documentation/boards_and_kits/zc702_zvik/ug850-zc702-eval-bd.pdf
http://www.xilinx.com/support/documentation/boards_and_kits/zc702_zvik/ug850-zc702-eval-bd.pdf
http://opencores.org/project.xmatchpro

[10] L.Benini, A.Macci, A.Nannarelli, “Cache-Code Compression

for Energy Minimization in Embedded Processors,”

ISLPED-01, pp.322-327, 2001.

[11] Y.Yoshida, B.Y.Song, H.Okuhata, T.Onoye, I.Shirakawa,

“An Object Code Compression Approach to Embedded

Processors,” ISLPED-97, pp.265-268, Augst, 1997.

[12] L.Benini, A.Macii, E.Macii, M.Poncino, “Selective

Instruction Compression for Memory Energy Reduction in

Embedded Systems,” IEEE/ACM Proc. of International

Symposium on Low Power Electronics and Design, pp. 206-

211, 1999.

[13] R.B.Tremaine et al. “IBM Memory Expansion Technology,”

IBM Journal of Research and Development, vol.45, no.2,

2001.

[14] G.Pekhimenko, V.Seshadri, Y.Kim, H.Xin, O.Mutlu,

M.A.Kozuch, P.B.Gibbons and T.C.Mowry, "Linearly

Compressed Pages: A Low-Complexity, Low-Latency Main

Memory Compression Framework," proc. of MICRO, 2013.

[15] J.Ziv and A.Lempel, "A Universal Algorithm for Sequential

Data Compression," IEEE Transactions on Information

Teory, Vol.23, No.3, pp.337-343, 1997.

[16] L. Benini et al. “Hardware-assissted Data Compression for

Energy Minimization in Systems with Embedded

Processors,” in Proc. Design, Automation&Test in Europ,

2002.

[17] A.Shafiee, M,Taassori, R.Balasubramonian and A.Davis,

"MemZip: Exploring Unconventional Benefits from Memory

Compression," in proc of 20th International Symposium on

High Performance Computer Architecture, Feburary 2014.

[18] T.Cortes, Y.Becerra, and R.Cervera, “Swap Compression:

Resurrecting Old Idears,” in Software-Practice and

Experience Journal, no.30, pp.567-587, June 2000.

[19] F.Douglis, “The Compression Cache: Using online

Compression to Extend Physical Memory,” in Proc.

USENIX Conf., 1993.

[20] J.L.Nunez-Yanez, S.Jones, “Gbit/s Lossless Data

Compression Hardware,” IEEE transactions on Very Large

Scale Integration (VLSI) Systems, 2003, vol.11, issue.3,

pp.93-98.

[21] “Low Power Double Data Rate 2 (LPDDR2),” JEDEC Solid

State Techonology Associateion, 2010, retrieved 2010-12-

30.

