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ABSTRACT 

In current electronic systems the amount of power needed by the 

memory components can represent a large percentage of overall 

power requirements, and while modern DRAM memories offer 

very low idle power states, the reduction in active power is much 

more modest. Motivated by these observations, this paper presents 

a system architecture in which a hardware lossless data 

compressor/decompressor is connected to the application 

processor present in the same chip. The compressor increases the 

amount of time that the DRAM memories can remain in low 

power state by reducing the number of memory accesses and 

hence reducing the DRAM memory power consumption. The data 

compressor is instantiated in the programmable logic side of a 

ZYNQ device and is controlled by the ARM processors present in 

this chip moving data between the on-chip local memory and the 

off-chip DDR memory through the AXI interconnect. Memory 

active time and power are monitored in the board while different 

tests are run under the Linux operating system. The presence of 

the compressor enables the memory to move to a low power mode 

more frequently and it achieves an overall system power reduction 

of 12.4%. This figure includes the power overhead introduced by 

the presence of the compressor itself and it is limited by the 

efficiency of the low power modes of the considered DDR3 

devices and data compressibility.   

Categories and Subject Descriptors 

C.1.3 [Computer System Organization]: Other Architecture 

Styles – Heterogeneous (hybrid) systems.  

General Terms 

Design 
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1. INTRODUCTION 
Memory Compression was extensively researched during the past 

decade and brought important benefits to high performance 

computing [1], signal and image processing [2], personal mobile 

devices [3] and web servers [4]. Although increasing memory and 

bus bandwidth has been the main motivation of memory 

compression research, recent studies have demonstrated that this 

approach can also be exploited when the ultimate target is the 

energy (or power) minimization of a processor-based system. 

However, these studies either do not aim to reduce the DRAM 

power consumption, which accounts for a large percentage of 

overall power requirements in today’s embedded system, or do 

not take full advantage of memory compression for power 

reduction. This paper proposes a lossless compressor-

decompressor engine paired with a hardened processor present in 

the same chip. The compressor-decompressor engine uses a DMA 

(Direct Memory Access) technique to move data independently 

from processor activity. The device selected for this work is the 

ZYNQ [5] chip with the lossless data compression algorithm 

created in the PL (Programmable Logic) side of this hybrid chip. 

The DMA technique manages data transfer between the OCM 

(On-Chip Memory) and DDR through the ACP (Accelerated 

Coherence Port) interface available in ZYNQ devices. This design 

reduces the DDR active time and hence the system power 

consumption. All the experiments presented in this paper were 

processed using the ZC702 Evaluation Board [6] and all the 

source files are made available at OpenCores [7]. 

The remainder of this paper is organized as follows: Section 2 

presents a review of related works. Section 3 reviews the lossless 

data compression algorithm and hardware employed in the 

proposed system. Section 4 analyses the techniques to power 

down the DDR memory during idle periods in which there is no 

application running in the ZYNQ board. Section 5 describes the 

hardware architecture of the design used to achieve the DDR 

power reduction. Section 6 compares the power consumption of 

the proposed design with that of a design without lossless data 

compression, and Section 7 concludes this paper. 

2. RELATED WORK 
Currently available techniques to reduce the system power 

consumption include bus encoding which reduces bus power by 

changing the format of the data transmitted on the processor-

memory bus, and memory organization which changes the way 

data is stored in memory so that the address streams generated by 

the processor have low transition activity. Code and data 

compression schemes have been applied to memory-processor 

systems in order to optimize the system power consumption. 

Previous works on reducing RAM power requirements with 

memory compression can be categorized as either hardware based 

or software based. 
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1) Hardware-Based Approach: Systems designed under 

the hardware-based approach are implemented with, and rely on, 

special-purpose hardware which performs compression and 

decompression at both the instruction and data level. At the 

instruction level, code compression techniques [8] store 

instructions in compressed format and de-compress them during 

execution by using code compression techniques. Power 

minimization at this level is achieved by reducing the energy 

requirements of either I-caches [9][10] or program memory 

[11][12] through instruction compression. However in this case, 

only a small part of the main memory, which stores programmes, 

is being compressed and all data access the memory in their 

original, uncompressed form. At the data level, the main memory 

compression techniques [13]-[15] implement a hardware 

compressor/de-compressor between the cache and RAM. 

Compared with the compression at the instruction level where 

only a decompressor engine is required, compression at the data 

level requires both compressor and decompressor engines during 

the execution. Memory compression at the data level enables 

energy saving in two ways. First, storing data in compressed form 

requires a smaller number of memory accesses to retrieve or write 

the same amount of information [16]. Second, bus traffic is 

reduced [17]. However, besides establishing both compression 

and decompression processes on-line, which would affect the 

system performance, the design in [16] was tested on SRAM.  

DRAM thanks to its cost effectiveness is being used as main 

memory in almost all computers, laptops, embedded systems etc., 

and since SRAM is only used on components like cache, TLB 

etc., where fast access is strictly required, the results produced by 

this design could not be generalized. Moreover, although Shafiee 

et al. in achieved considerable memory energy reduction [17], the 

method used in the paper utilized the spare spaces made available 

by memory compression for extra codings. This design therefore 

did not take full advantage of memory compression to achieve 

memory power reduction. 

2) Software-Based Approach: The software-based 

approach focuses mainly on swap compression [18] and 

compressed caching [19]. However, instead of reducing system 

power consumption, the software-based approach has the main 

design goals of improving system performance and targeting 

general-purpose systems with hard disks. Therefore, none of these 

works has been evaluated on embedded systems for which power 

consumption and performance are critically important, and few of 

them provide analysis of their effects on memory power reduction. 

Our own work follows the hardware-based approach to exploit 

data-level memory compression which is interface with software 

running under a Linux operating system. Different from previous 

work, our design acts as a DMA master and it investigates how 

data-level memory compression can be fully utilized to reduce the 

number of DRAM memory accesses (or memory active time 

counted in clock cycles), hence reducing the DRAM power 

consumption. XMatchPRO, a lossless data compression algorithm 

developed in [20], was selected in this research due to its high 

throughput and full exploitation of the in-RAM data regularities 

via its internal parallel architecture. Moreover, the compressed 

data, although with different lengths, are automatically packed 

together into streams of 32-bit words that can then be stored in 

external DRAM. These properties make XMatchPRO a perfect 

candidate to access the memory efficiently. The recent availability 

of devices that embed a hardened processor system and a FPGA 

fabric means that it is possible to closely couple the compressor 

and processor in a real chip and measure the effects in overall 

system power which constitutes the main aim of this paper. 

3. XMATCHPRO OVERVIEW 
XMatchPRO is a dictionary-based lossless data compression 

hardware which can achieve good compression rates and high 

throughput. It uses a parallel dictionary of previously seen data in 

it attempts to match or partially match the current data element 

with an entry in the dictionary. Compression is achieved by 

replacing repeated phrases with references to the dictionary; these 

replaced code words are smaller than the phrase itself. The 

dictionary is fully adaptive and is built simultaneously to the 

compression process. The detailed algorithms and architectures 

are presented in [20]. This section gives an overview of 

XMatchPRO before moving on to our own design architecture. 

At the architecture level, Fig. 1 shows the design architecture of 

XMatchPRO, which contains a compressor and a decompressor 

channel. During compression, the compressor receives 

uncompressed input words through an input buffer and activates 

the compression model, which generates the required code words. 

The code words are combined successively into fixed 32-bit width 

words by the packer and are written to external memory through a 

write buffer. The decompressor is responsible for the reverse 

process, in which data is read from the external memory and the 

required dictionary references are generated to allow the 

decompressed data to be created. To optimize compression 

efficiency, XMatchPRO allows partial matches of different widths 

together with run-length coding when the same dictionary 

location is hit two or more times. The compression ratio in this 

paper is defined as the ratio of input bits over the output bits and 

XMatchPRO achieves a typical 2:1 compression ratio at 

throughput of 400Mbytes/s. 

4. LOW POWER DDR STATE 
The ZYNQ System on Chip memory controller supports both 

DDR3 and LPDDR2 (Low-Power-DDR2). JEDEC Solid State 
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Fig. 1 The Architectural Overview of XMatchPRO 

Table 1 Memory Power Mode 

DDR3 Power Mode LPDDR2 Power Mode 

Active Active 

Idle Idle 

Self-Refresh Self-Refresh 

 Temperature Compensated 

Self-Refresh 

 Partial Array Self-Refresh 

 Deep Power Down 

 



Technology in [21] gives a comprehensive comparison between 

the two. Besides using a 1.2V voltage supply compared to the 

1.5V power required for DDR3, additional power savings of 

LPDDR2 come from extra low power modes as shown in Table 1. 

The temperature-compensated self-refresh mode enables DRAMs 

to refresh less often at low temperature. Moreover, compared to 

the self-refresh mode applied on DDR3, LPDDR2 can be 

programmed to enter a partial array self-refresh mode, a technique 

which allows refresh operations to perform not across the full 

memory cell arrays but only within specific banks where data 

retention is required. Furthermore, LPDDR2 offers a deep power 

down mode, which sacrifices all memory content for power 

reduction. Any command that arrives while the DRAM is in deep 

power down mode is stored in the Content Addressable Memory 

(CAM) and is processed after deep power down exit and DRAM 

re-initialization. 

Our current board ZC702 includes DDR3 type memory. Although 

this has been used for all the experiments, except the deep power 

down mode in which all the memory contents are sacrificed, the 

results should be extendible to LPDDR2 memory, which offers 

deeper power down states. Before describing the hardware design 

to reduce the power of DDR3 when active, this section describes 

some techniques to power down the DDR3 in its idle period, 

when no application is running. 

The memory controller in the ZYNQ device allows users to clock-

gate the DRAM and hence reduces power in the memory. When 

this feature is enabled, the DDR PHY is allowed to stop the 

clocks going to the DRAM. Moreover, the DDR memory 

controller can dynamically use pre-charge power down mode to 

reduce the power consumption during the idle period. All these 

features are effective only when the DDR is in self-refresh mode. 

In this mode, DRAM contents are maintained even when the DDR 

controller core logic is fully powered down, hence allowing the 

DDR clocks to be stopped. During self-refresh mode, software 

must ensure that no transactions arrive. 

Fig. 2 shows the measured DDR power reduction effect for 20 

seconds when the memory is clock-gated. The memory is being 

read and written continuously in the active state, doing nothing in 

the idle state and being clock-gated in the low-power state. 

According to Fig. 2, more than 100mW DDR power is reduced 

from the idle state when the DDR is clock-gated, and an average 

power reduction of 17.6%, from 651.46mW to 537.03mW, is 

achieved. The power values were taken by software written to 

monitor various power rails of a ZC702 evaluation board. The 

details of the experiment setup are described in Section 6. 

Therefore, when there is no application running on board, the 

DDR memory can be clock gated so that most of the DDR 

dynamic power consumption is saved. 

5. HARDWARE ARCHITECTURE 
The compressor/decompressor and control logic are shown as the 

shaded component in Fig. 3 and were created on the 

Programmable Logic side of the ZYNQ System on Chip with all 

interfaces necessary to communicate with the Processing System 

side through ACP interconnect. Solid arrows show control from 

master to slave and data flow in both directions. Data is 

transmitted, as shown by the dotted arrows, between the OCM 

 

Fig. 2 DDR Power Consumption in different memory states 
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Fig. 3 Design Architecture without XMatchPRO 

 



and the off-chip DDR. 

When the CPU needs to write data to the DDR, it writes it first to 

the On-Chip Memory, which has a smaller access latency 

compared to the DDR, (1 clock cycle vs hundreds of clock cycles) 

and sends control signals to the compression logic in the PL. Then 

this compressor logic reads data from the OCM, processes and 

transfers it to the L2 cache and hence to the off-chip DDR through 

the ACP. Finally, this compressor logic sends a signal back to the 

CPU indicating the completion of the transfer. A reverse 

mechanism is used when the CPU needs to read data from the 

DDR. The decompressor logic, after being activated by the CPU, 

then transfers data from the DDR to the OCM for the CPU to 

read. 

Since memory active time and power consumption are measured 

and compared with and without lossless data compression, we 

have developed two different versions: 

5.1 Design Without XMatchPRO 
In this case, data is directly transferred from one memory location 

to another without compression or decompression. Therefore, the 

control unit only contains a read buffer, a write buffer, 32-bit 

counters which measure the main memory active time and the 

total time duration when a benchmark is running in clock cycle 

and DMA logic which manages all data transfer, as shown in Fig. 

3. 

The Read Buffer is a 256x32-bit duplex buffer which can perform 

simultaneous read (from memories) and write (to the DMA). This 

buffer is read and written from address 0 again when overflowed. 

The design of the Write Buffer uses the same logic. Similar to the 

Read Buffer, the Write Buffer content can be filled (by the DMA 

Logic) and sent (to the memory) simultaneously. 

Whenever the CPU wants to activate the DMA Logic for data 

transaction, it first sends a burst read request with data sizes and 

source memory address to enable reading from the memory to the 

read buffer. The DMA Logic is activated and outputs data to the 

Write Buffer when the number of 32-bit words in the Read Buffer 

reaches a pre-defined threshold value. The Write Buffer starts to 

output data to memories when the number of 32-bit words in it 

reaches a pre-defined threshold value. Moreover, acknowledge 

signals are sent from the DMA Logic to the CPU indicating the 

completion of the data transfer. 

5.2 Design With XMatchPRO 
In this case, data transferred from OCM to DDR are sent through 

a compressor, and those transferred from DDR to OCM are sent 

through a decompressor, so that the DDR always stores the data in 

compressed states. Besides all the components discussed in the 

previous section, a compressor and a decompressor are now added 

to the original design, as shown in Fig. 4. 

While other components remain the same, as described in Part 

5.1, the Read and Write Buffer are connected directly to the 

compressor and decompressor. Whenever the CPU wants to 

activate a data transfer, it first sends compressor/decompressor-

choice signals and write corresponding compressor/decompressor 

registers to enable XMatchPRO. Depending on which engine is 

chosen, compressor or decompressor, XmatchPRO automatically 

produces compressed data to the DDR through the compressor or 

produces uncompressed data to the OCM through the 

decompressor. After then, the rest process is the same as described 

in Part 5.1. Data saved in the DDR are now in compressed form 

and the data saved in the OCM remain uncompressed. 

6. POWER COMPARISON 
The hardware design was tested by running six software 

benchmarks, each contains artificial data that was generated to 

obtain certain compression ratios in order to measure the power 

savings and trade-offs regarding compressor utility, under Linux 

OS on ZC702 Evaluation Board. ZC702 is bootable by an SD 

card which contains both the hardware design as well as a Linux 

Operating System and which communicates with a host desktop 

through Secure Shell (SSH). Whenever running a benchmark, 

power-analysis software is running simultaneously with it, 

recording and printing power values used by various sections of 

the system. This power-analysis software calculates and outputs 
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power consumptions for PS, PL, Block Memory, DDR and 

External IO by monitoring various power rails on ZC702. 

Our power consumption comparison is based on data transaction 

with and without lossless data compression. Six data sets, each 

with a size of 16kB, were chosen with different levels of 

compressibility. Data Set 1 has a compression ratio higher than 

100:1, and Data Set 6 is not compressible. Sets 2 to 5 were chosen 

with data compression ratios of 5.6:1, 2.7:1, 1.6:1 and 1.2:1 

respectively.  The compression ratio of data is defined as the ratio 

of the input bits over the output bits. Hence a higher compression 

ratio indicates a better compressibility of data. Therefore, six tests 

were performed, with each test transferring one of the six data sets 

from the OCM to the DDR and back from the DDR to the OCM 

500 times so that the duration was long enough for the power 

analysis software to capture the power value.  Every time when 

the same set of data moved back into the OCM from the DDR, the 

CPU checks that the received data is the same as the data 

previously stored in the OCM. Any mismatch of data terminated 

the transfer loop with an error message printed out. 

Fig. 5 presents the reduction ratio of memory active time for every 

Data Set. It shows that the reduction on memory active time is 

proportional to the compressibility of the data, and a good 

compression ratio can significantly reduce the memory active 

time. Therefore, Data Set 1 shows a large reduction of memory 

active time (dark shaded) due to its large compression ratio and 

the normalized memory active time (light shaded) is very small. 

Fig. 6 shows the comparison results in terms of average DDR 

power, PS power, PL power and total power. Even the switch 

between active and idle period of the memory is sometimes too 

fast for the software to capture, the average DDR power can be 

calculated, using the two timer values provided by the counters in 

the control logic, by averaging the total memory energy 

consumption during both active and idle period throughout the 

duration of the test. Average power consumed by the rest of the 

system was obtained by averaging all values from the power 

measurement software. Average total power was obtained by 

adding the Averaged DDR, PS, PL and all other components’ 

power consumption. 

According to Fig. 6(a), there is an average DDR power reduction 

of up to 12.4%, from 728.6mW to 637.8mW, when running Data 

Set 1. This amount of power is the DDR dynamic power saved 

due to the reduction of memory active time. However, while 

transfer with XMatchPRO does not affect the PS power as shown 

in Fig. 6(b), XMatchPRO itself adds an average of 22.4mW to the 

PL power, shown in Fig. 6(c). (The power values in Fig. 6(b) and 

Fig. 6(c) do not have any meaningful variance when measurement 

accuracy is accounted.) This additional power consumption is 

introduced since more hardware is used in the PL side. Therefore, 

if the compressibility (represented by the compression ratio) of 

data is worse  than 1.25:1, the reduction of the DDR power is 

smaller than the 22.4mW power introduced by XMatchPRO, and 

the system will suffer from a net increasing in average total 

power, as shown in Fig. 6(d) when running Data Set 6. However, 

the research results in [20] show an average compression ratio of 
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2:1 for typical main memory data used in an engineering 

environment. In conclusion, the compressor/decompressor 

achieves up to 12.4% memory power reduction by increasing the 

amount of time that the DRAM memories can remain in idle state 

when running an application, and the power down techniques 

described in Section 4 achieves a further 17.6% memory power 

reduction by putting the memory from the idle state to the low 

power state when there is no application running. Therefore, in a 

perfect system where XMatchPRO runs so fast that the memory 

can always be put in the low-power state, a 26.3% reduction of 

the memory power can be achieved by putting the memory 

directly to the low power state from the active state. 

Table 2 shows a summary of the hardware implementation details. 

The hardware design with XMatchPRO utilizes 2% more registers 

and 13% more LUTs. Both designs achieve the same frequency. 

7. CONCLUSION 
This paper has presented the integration of a lossless data 

compression engine in the FPGA fabric of a hybrid ZYNQ chip. 

The close coupling of a compressor/decompressor engine with the 

processing functions running in the Cortex A9 processor means 

that the processor can use a simple API to request that data 

compressed in the main memory be decompressed and stored in 

the on-chip tightly coupled memories. Similarly uncompressed 

data in the on-chip memory can be compressed and moved to 

external DDR. In both cases there is a significant power 

advantage possible by maintaining external DDR memory in a 

power down state for longer. Our experiments used a DDR3 type 

memory to illustrate this advantage, and future work will include 

data with LPDDR type memories that have more effective power 

down states and stand to benefit more from the proposed 

technique.  In the considered memory chips, the experimental 

results show, when running an application, up to 12.4% reduction 

of DDR power is achieved taking into account the additional 

power required in the PL side due to the presence of the 

compression/decompression engine. The level of power reduction 

is closely related to the compressibility of memory data, but other 

research [20] has shown that a 2 to 1 compression ratio is typical. 

In addition, when there is no application running, clock-gating the 

memory can achieve a 17.6% DDR power reduction as shown in 

Section 4. Future work will involve using the compression 

technology with real applications run on the Cortex A9 processors 

to investigate the power and performance benefits when both data 

and instructions are maintained in a compressed state in external 

DDR memories and will also considered  LPDDR memory types 

with more sophisticated power modes. 
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