
Run-Time Power Gating
in Hybrid ARM-FPGA Devices

Mohammad Hosseinabady and Jose Luis Nunez-Yanez
Department of Electrical and Electronic Engineering University of Bristol, UK.

Email: {m.hosseinabady, j.l.nunez-yanez}@bristol.ac.uk

Abstract—Energy proportional computing (EPC) enables the
allocation of energy to tasks depending on computational demands.
Computing at full speed and then dynamically turning off modules
when they are not required for a period of time can be used to
obtain EPC and it is an alternative to voltage scaling techniques in
which the computation is slowed down. This paper investigates the
viability of physical power gating FPGA devices that incorporate
a hardened processor in a different power domain. The run-time
power gating approach is applied to Xilinx ZYNQ devices that
incorporate a hardened Cortex A9 multi-processor. The paper
demonstrates that power down followed by a full reconfiguration
can be controlled by the embedded processor autonomously. The
results show that the minimum time that the FPGA fabric must
remain in power-off state for the technique to be energy efficient is
in the order of milliseconds and up to 96% power reduction occurs
when the fabric voltage is lowered below critical level. These results
take into account the overheads of controlling the programmable
voltage regulators interfaced to the FPGA and the overhead of the
reconfiguration needed when the device must be returned to the
active state.

Keywords—Energy Proportional Computing, Power Gating,
ZYNQ, FPGA

I. INTRODUCTION

Energy consumption is one of the main constraints in the
new area of embedded and mobile multi/many-core heteroge-
neous systems [1]. Energy proportional computing (EPC) has
emerged as a solution to restrict the energy to the exact amount
required by a respective application [2]. The dynamic behaviour
of EPC requires that the target system provides fine grained
software and hardware reconfiguration features. Modern FPGAs
(Field Programmable Gate Arrays) offer partial and dynamic
reconfiguration and recent research has shown that they are also
suitable for dynamic voltage and frequency scaling [3]. This
makes them a suitable candidate to realise the underlying hard-
ware required to implement an energy proportional computing
platform.

One of the effective techniques in EPC is the power gating
of unused modules [4][5] in which the modules that are not used
for a certain amount of time are shut down and then turned on
whenever they are required. This technique reduces the energy
consumption caused by leakage and clock activity while the
module is not required in a system.

This paper investigates a software-controlled power gating
technique applied to the Zynq-7000 All Programmable SoC
platform [6]. The Zynq-7000 consists of a dual-core ARM
Cortex-A9 processor as the processing system (PS) and a Xilinx
7 series FPGA as the programmable logic (PL). The PL and PS
are in two different power domains supplied by programmable
voltage regulators. This enables the PS to control the PL power
rails programmatically. In this investigation, run-time software-
controlled PL power gating is used to reduce the energy

consumption in an application containing idle modules. In this
technique, when the hardware design in the PL is in its idle mode
or it is not required any more, the PL power can be reduced
by clearing the PL configuration data and reducing its power
supplies. In order to reuse the PL, its power supplies should
be increased to nominal levels and it should be reconfigured
again. The usage of this technique is twofold: shutdown the PL
to reduce power and replace a hardware module with another
which increases the hardware utilization and delivers EPC. The
experimental results show that for a large design in the PL which
contains five MicroBlaze soft processor cores [7] to save energy
the module idle time should be longer than 42.58msec. In this
case, the idle module power reduces by the factor of 30.43. For
the other smaller designs the idle module power reduces by the
factor between 2.56 and 17.05.

The rest of this paper is organized as follows. The next
section reviews the previous work on power-gating in FPGAs.
The motivations and contributions of this paper are explained
in Section 3. Section 4 discusses the details of the proposed
technique and its accuracy. Experimental results are presented
in Section 5. Finally, Section 6 concludes the paper.

II. PREVIOUS WORK

Power gating in which some parts or the design are shut
down for a period has been proposed as a low-power technique
in the FPGA area especially for reducing leakage power. Re-
searchers have proposed techniques to implement power gating
in different levels of design granularity including transistor level,
gate level, look-up table level, and module level.

The basic idea for power gating is adding a switch to
the design in order to disconnect the power supply from the
circuit. At the transistor level, a single transistor called sleep
transistor can realise this switch as shown in Fig. 1. The SLEEP
input in Fig. 1 controls the sleep transistor. When the sleep
transistor is off the leakage power is limited to that of the sleep
transistors which is negligible. Considering this sleep transistor,
researchers have proposed different power gating techniques for
FPGA architectures. Note that in the FPGA area, as well as
the performance overhead caused by sleep transistors, adding
these transistors requires modification to the underlying FPGA
fabric. Therefore, researchers usually use simulation techniques
along with synthetic applications to evaluate their proposed
techniques. In contrast to the logic design techniques reviewed in
this section, the technique proposed in this paper can be applied
to commercially available FPGAs and controls the FPGA power
lines directly by adjusting the voltage levels at the output of the
programmable voltage regulators which provide power to the
fabric.

Statically control of the sleep transistor using FPGA con-
figuration data is presented in [8]. This technique utilises a



Fig. 1: Basic idea of power gating in logic design

new design methodology by grouping the design into clusters
based on temporal locality and then turn-off/on clusters by
configuration data.

Dynamically controlled power gating is presented in [9]
in which the SLEEP signals are connected to general-purpose
routing fabrics in the FPGA and are controlled by separate
circuits or circuits part of the FPGA itself. This technique, can
switch off a specific part of the design or a logic cluster in
FPGA. This technique is evaluated by HSPICE simulation using
an application model. In contrast, the technique proposed in this
paper is applied to a commercial FPGA and can be used by all
designers.

Ishihara et al. [10] propose a look-up table level power
gating technique in which the power of the look-up tables with
fine granularity can be controlled by a sleep transistor. This
techniques relies on a new FPGA architecture and it is not
applicable to commercially available FPGAs.

FPGA manufactures have used different static power gating
at the module level to shut down unused PLLs, DCMs, I/Os
during the FPGA configuration. For example, as block RAMs
are the source of the 30% of total leakage power in an FPGA
[11], Xilinx provides static power gating techniques for block
RAMs in 28nm 7-series devices. Therefore, only the block
RAMs used by a design cause leakage.

III. MOTIVATIONS AND CONTRIBUTIONS

Using a simple design, this section explains the motivations
and contributions behind this research. Before delving into the
details, the next subsection describes the underlying platform
considered in this research.

A. Zynq-7000 platform description

The ZC702 [6] evaluation board is used to perform this
research. The board utilises a Zynq-7000 SoC consisting of a
dual-core ARM Cortex-A9 processor as the processing system
(PS) and a Xilinx 7-series FPGA as the programmable logic
(PL). The PS and PL power domains are completely independent
[6]. Each PS and PL has six different power pins to provide
power for their different parts. As this paper only focuses
on PL power gating, the power lines for PL are mentioned
here. Interested readers can refer to [6] for more details on
these power pins. VCCINT , VCCAUX , VCCO #, VCC BATT ,
VCCBRAM , and VCCAUX IO G# are the PL power pins [6].
The two PL power lines that are considered in this paper are
VCCINT and VCCAUX . Whereas VCCINT provides the power
for the internal core logic, the VCCAUX provides the power
for auxiliary logic such as I/O buffer pre-drivers, along with
Mixed-Mode Clock Managers (MMCMs) and PLLs.

(a) Xilinx XPower Analyzer (b) Real power measurement
on ZC702

Fig. 2: Power consumption

B. Motivations

A simple motivation example is considered in this subsec-
tion. The example consists of a MicroBlaze soft processor core
configured in the PL and the ARM processor available in the PS.
The MicroBlaze runs two different programs, separately. The
first one just prints messages on the console and the second one
performs a 32× 32 floating point matrix multiplication. Table I
shows the PL resources used by this design.

TABLE I: PL resources used by the MicroBlaze example
Slice
LUTs

Slice
Register

MMCM DSP48E RAM36E

1725 1525 1 3 4

Fig. 2(a) shows the contribution of each part of the PL
design in the consumed power obtained by Xilinx XPower Anal-
yser [12] without applying any input patterns. As it can be seen,
the MMCM module is the most power intensive due to clock
activity. Leakage is the next important part in the consumed
power. Logic and signals show a negligible contribution in the
power consumption. Note that, leakage power is consumed as
long as the design exist in the PL, whether the design is used or
is in the idle mode. A real measurement for the same design on
the ZC702 board, depicted in Fig. 2(b), shows that VCCINT

and VCCAUX are the two power rails that provide most of
the power consumed by the PL. Since VCCINT provides the
voltage for logic circuits in the PL then it mainly represents the
leakage power due to lack of input activity in this measurement.
In addition, as VCCAUX provides the voltage for MMCM, it
represents the power consumption caused by the clock activity
as well as the leakage power in the related logic.

Considering the two aforementioned programs, Fig. 3 shows
the contribution of consumed power in the PL for three different
phases: PL turn-on without configuration (i.e., Before configu-
ration), PL with configuration (i.e., Configuration), and PL used
by the application (i.e., Running software). As it can be seen,
the PL power consumption after configuration is a considerable
portion of power even if PL does not run any program yet and
PL is in the idle mode. Therefore, turning-off the PL for designs
in which PL is in idle model for a long time can reduce the
total power consumed by the corresponding application. This
motivates our research to investigate power savings with PL
power-off in commercial FPGAs. Note that, although using the
clock gating technique can reduce the power consumption due
to clock activity in the MMCM, PL power gating technique
reduces both leakage and clock activity power consumption.

C. Contributions

The main contribution of this paper, compared to the previ-
ous work, is to investigate software-controlled run-time power-



(a) MicroBlaze processor in PL printing messages on
terminal

(b) MicroBlaze processor in PL running floating point
matrix multiplication

Fig. 3: MicroBlaze power consumption

gating in a system formed by and FPGA (i.e., PL) and ARM
processor (i.e., PS) subsystems. For this purpose, considering
the ZC702 board, this paper:

• provides a group of functions for turning off, turning
on and reconfigure the PL at run-time

• measures the time and energy overhead associated with
PL power gating

• identifies the possible utilisation scenarios when power
gating is a viable option

The software-controlled FPGA power gating can be used in
two main scenarios. In the first scenario the PL can be turned
off to save energy. In the second scenario, the configuration in
the PL can be replaced with more efficient design in respect to
the workload at run-time to increase the application throughput
and obtain energy consumption proportional to computing.

D. Problem formulation

This subsection formulates the contributions of this research
in which the PL is shut down when its design is in idle mode
and it is powered off/on and reconfigured by the PS. Fig. 4
shows the PL power gating timeline considered in this research.
This timeline shows three periods for turning off the PL and
three periods for turning on the PL. These periods are explained
below. As the PL loses its configuration after turning off, the
state of the design should be saved to be used after resumption.
The time and power associate to this period are denoted by tss
and Pss. To turn off the PL, the signalling between PS and PL
should be terminated and the voltage levels of the corresponding
power supplies should be reduced. The ttfpl and Ptfpl represent
the time and power associated to this period, respectively. After
turning off the PL, there is not any signalling between PS and PL
and PL power consumption is almost zero. The time and power
associated to this period are denoted by tpltf and Ppltf . If we
want to reuse the PL, its power supplies should be increased to
the nominal values. The ttnpl and Ptnpl determine the time and
power associated to this period, respectively. The next period

(after turning on the PL) is reconfiguring the PL and associated
time and power are denoted by treconf and Preconf . Finally,
the last period is to restore the previous state and the associated
time and power are denoted by trs and Prs.

The total power consumption during these periods is

PpowerGating = Pss + Ptfpl + Ppltf + Ptnpl + Preconf + Prs

(1)

For simplicity, a constant average power is considered for
each period. With this assumption, the total energy during this
periods equals to

EpowerGating = tss.Pss + ttfpl.Ptfpl + tpltf .Ppltf+

ttnpl.Ptnpl + treconf .Preconf + trs.Prs (2)

To save energy using the PL turn-off technique, this energy
should be less than the energy consumed by the PL in the idle
state, i.e.,

EpowerGating < Eplidle (3)

in which Eplidle denotes the energy consumed by PL when its
design is idle, without considering the power gating technique.
This energy is equal to the multiplication of tplidle and Pplidle

which denote the duration of PL in idle model and its corre-
sponding average power consumption, respectively.

By substituting the EpowerGating and Eplidle in Equ. 3 with
the corresponding expression, Equ. 4 can be obtained.

tss.Pss + ttfpl.Ptfpl + tpltf .Ppltf + ttnpl.Ptnpl+

treconf .Preconf + trs.Prs < tplidle.Pplidle (4)

In addition, to use the PL turn-off technique the PL idle time
should greater than the technique timing overhead, therefore:

tplidle > tss + ttfpl + ttnpl + treconf + trs (5)

If we assume Ppltf is very small and negligible then, to save
energy, PL idle time should satisfy Equ. 6, using Equ. 4

tplidle > (tss.Pss + ttfpl.Ptfpl+

ttnpl.Ptnpl + treconf .Preconf + trs.Prs)/Pplidle (6)

The minimum PL idle time for which PL power-off can
save energy is called power-off-efficiency time in this paper and
should satisfy Equs. 5 and 6.

IV. PL POWER GATING FRAMEWORK

This section explains the PL power gating framework and
its accuracy.

A. Framework setup

A framework has been developed to implement the PL
power gating technique and power measurement in the
ZC702 evaluation board. Fig. 5 shows an overview of this
framework. It consists of three components: PS, PL, and
UCD9248 which is a digital PWM controller. The ZC702
board utilises three UCD9248 digital PWM controllers to
control PL and PS voltages and monitor energy consumption
in different parts of the system. This controller supports a wide
range of PMBus [13] commands including voltage/current



Fig. 4: PL power-gating timeline

Fig. 5: ZC702 PL power shut down framework

monitoring and adjustment. The three UCD2948 available in
the ZC702 board provides ten power rails supplying the PS
and PL parts. The output voltage at a rail can be adjusted by
PMBus commands via determining a few parameters in the
control circuit including V OUT MARGIN HIGH ,
V OUT MARGIN LOW , V OUT COMMAND,
V OUT MAX , and V OUT CALL OFFSET [13].
UCD9248 employs different protection mechanisms to
prevent the circuits from getting damaged. To adjust
the output voltage at a rail, the voltage protection
levels should also be modified. The protection level
parameters include V OUT OV FAULT LIMIT ,
V OUT OV WARN LIMIT ,
POWER GOOD ON , V OUT UV WARN LIMIT ,
V OUT UV FAULT LIMIT , POWER GOOD OFF ,
and IOUT OC LV FAULT LIMIT . For detail
information about each parameter and the corresponding
PMBus command, interested readers can consult [13]. The
PS component runs the software part which performs and
controls the PL power gating. This software consists of three
parts: turn-off PL, turn-on PL and PL reconfiguration. In
addition, the software parts can monitor voltage and current
at each power rail. The software part employs three groups of
functions including energy measurement, power gating, and PL
reconfiguration functions. Using the PMBus commands, the
first group of functions read the current and voltage on each
output power rail provided by the UCD9248. The details of
these commands can be found in [14]. The second group of
functions adjust the voltage levels at the output of UCD9248
which are used to turn-off and turn-on PL. These functions use
the PMBus commands and UDC9248 driver provided by Xilinx.
Algorithm 1 contains the PMBus commands for reducing the
VCCINT power rail connected to PL. The algorithm consists of
three steps: pre-adjustment, adjustment, and post-adjustment.
Lines 3-8 modify the lower voltage level protections, Line 10
sends the PMBus command to change the voltage level at the

VCCINT . Finally, Lines 12-17 modify the upper voltage level
protections.

Algorithm 1: Turn off VCCINT

1 Reduce-VCCINT() {
2 //Step 1: pre-adjustment
3 Modify POWER GOOD OFF,
4 POWER GOOD ON,
5 IOUT OC LV FAULT LIMIT,
6 VOUT UV FAULT LIMIT,
7 VOUT UV WARN LIMIT,
8 VOUT MARGINE LOW
9 //Step 2: adjustment

10 Reduce VCCINT voltage using VOUT COMMAND
11 //Step 3: post-adjustment
12 Modify VOUT MARGIN HIGH,
13 VOUT MAX,
14 VOUT OV FAULT LIMIT,
15 VOUT OV WARN LIMIT,
16 VOUT MARGIN HIGH,
17 }

Reconfiguration functions in the software part use the xde-
vcfg driver through Processor Configuration Access Port (PCAP)
interface which is 32 bits wide and clocked at 100 MHz and
provides 400 MB/s download via non-secure PL configuration
mechanism[6]. These functions use a Direct Memory Access
(DMA) mechanism to transfer the configuration bitstream to
the PL part at run-time.

B. Framework Accuracy

PL shut-down is an option considered by the manufacture
to save power [16]. According to the Zynq-7000 technical
reference [16], the sequence for turning-off the PL consists of
three steps: stop using signals between PS and PL, disable PS-
PL level shifter, and shut-down PL. To get the biggest benefit
of PL power gating, all PL power supplies (i.e., VCCINT ,
VCCBRAM , VCCAUX , VCCAUX IO, and VCCO) should be
turned off in the correct order. However, the ZC702 board
has a deficiency in revision 1.0 that uses VCCAUX to supply
power to a clock generator for the PS therefore, turning off
the VCCAUX freezes the PS which is not desired. Hence, this
research, instead of completely shutting down the PL, reduces
the PL VCCINT voltage to a level in which the PL loses its
configuration and significantly lower PL energy. As the VCCINT

goes below V DRINT [17](i.e., data retention voltage) the PL
configuration is lost. By reducing the VCCINT voltage, Fig. 6
shows the changes in power consumption in the PL provided
by VCCINT and VCCAUX for the motivation example. As it
is expected reducing the VCCINT reduces the corresponding
power consumption. Fig. 6 shows that at the VCCINT voltage of
around 0.55V , the PL loses its configuration such that VCCAUX

does not deliver power to the circuits, especially to MMCMs.



Fig. 6: Power versus VCCINT voltage on ZC702

Fig. 7: PL shut-down slop

This results in a sharp drop in VCCAUX power. The voltage
level 0.4V is investigated as a critical level to turn off the PL.
At this voltage level the ZC702 board shows a stable behaviour
such that it can be turned on without instability in other parts
of the system.

Fig. 7 shows the VCCINT voltage reduction time it takes
to reach 0.4v. As it can be seen it takes 2.73msec to reduce
this voltage. As shown in Algorithm 1, adjusting the VCCINT

voltage consists of three steps: pre-adjustment, adjustment and
post-adjustment. The timing delay for changing the VCCINT

comprises of pre-adjustment and adjustment execution times as
well as the time required to change the voltage from 1v to 0.4v.
This delay can be considered as the timing overhead for turning
off the PL.

Ttfpl = Tpre−adjustment + Tadjustment + TVCCINT (1to0.4) (7)

These times, shown in Equs. 8-10 are measured for the moti-
vation example. Note that these times are not dependant on the
design in the PL, becuase they are defined by the UCD9248.

Tpre−adjustment = 1.9msec (8)
Tadjustment = 205usec (9)

TVCCINT (1to0.4) = 2.73msec (10)

An algorithm similar to Algorithm 1 can be used to turn-on the
PL. Therefore,

Ttnpl = Tpre−adjustment + Tadjustment + TVCCINT (0.4to1)

(11)

After turning on the PL, the PS uses PCAP to reconfigure
the PL. Before reconfiguration, PS consumes the power corre-
sponding to the running OS and software applications. During
reconfiguration, which lasts about 34.33msec, the PS power
consumption increases by an average of 20mW . The configura-
tion time consists of PL initialization and DMA transfer delay.

V. EXPERIMENTAL RESULTS

This section explains experimental results obtained by ap-
plying the proposed technique to four different designs in the
PL. Table II shows statistics of FPGA resources used by these
designs. The smallest design is an AXI-timer which is a simple
32-bit counter connected to PS via AXI bus interface. The
second design is a motion estimation processor [18]. The third
design consists of a MicroBlaze in the PL. Finally, the last and
largest design contains five MicroBlazes. Note that, we have
assumed that these four designs do not require to keep their
states during PL turn-off and the state saving/recovery timing
overhead is zero.

TABLE II: PL resources used by different designs
AXI-
Timer

Motion
Estimation

One-
MicroBlaze

Five-
MicroBlaze

Slice
LUTs

936 18351 1725 12708

Slice
Register

890 14484 1525 30762

MMCM 0 1 1 1
DSP48E 0 0 3 5
RAM36E 0 43 4 135

Table III shows the timing overhead for turning off, turning
on, and reconfiguring the PL. As mentioned in Subsection IV-B,
the tuning off/on timing is determined by the UCD9248 and
are independent of the design in the PL. In addition, the PL
reconfiguration time depends on the bitstream file size. Since for
each FPGA the size of the bitstream file is constant, and for the
Zynq 7020 FPGA used in this research the PL configuration file
used by PCAP is 4, 045, 564 bytes then the configuration time
is about 34.33msec. This configuration time, which consists
of PL initialization timing overhead and bitstream transferring
delay is measured between the PL initialization call and the
time when the FPGA DONE signal is asserted [6]. Note that the
PCAP theoretical throughput is 400 MB/s resulting in 10msec
delay for transferring 4, 045, 568 bytes. Considering the con-
figuration software overhead the throughput is lower than this
maximum value. Kohn [19] has reported 32msec and 44msec
for only DevC DMA transfer delay in standalong and Linux
environments, respectively. Vipin and Fahmy [20] has proposed
a partial reconfiguration management technique called ZyCAP
that reaches 382 MB/s throughput for PL configuration. Another
partial reconfiguration management technique proposed by [21]
reaches 385 MB/s throughput for PL partial reconfiguration.
However, these work have used the PL itself to achieve this
throughput which makes that suitable for partial reconfiguration
not PL complete configuration.

TABLE III: Timing overheads in msec
Period Time

(msec)
Turn-off PL 4.84
Turn-on PL 4.84

Reconfiguration PL 34.33

By reducing VCCINT to 0.4V , the PL loses its configuration
and PL power consumption reduces to 20.7mW . Table IV shows
the PL idle power consumption, PL turn-off power consumption
and power reduction for different design examples. As it is
expected, the power reduction of the PL shut down is high,
however, to make this technique efficient in an EPC scenario,
the PL shut down period should be longer than a minimum value
which is called turn-off-efficiency time as mentioned in Subsec-
tion III-D. Table V shows the lower level times determined by
Equs. 5 and 6 for the four designs. As it can be seen, the turn-



off-efficiency times are determined by the timing overhead of
the proposed technique and are 42.58msec. Table VI shows
the percentage of the energy reduction during the idle time
considering the turn-off-efficiency time. Note that, the proposed
technique shows much more energy reduction if the PL idle
time is much larger than the turn-off-efficiency time.

TABLE IV: Power consumption comparison
AXI-
Timer

Motion
Estimation

One-
Microblaze

Five-
Microblaze

Power of the PL in
idle mode (W)

0.053 0.15 0.353 0.63

Power of the PL
shut down (W)

0.0207 0.0207 0.0207 0.0207

Power reduction 60.9% 86.2% 94.1% 96.7%

TABLE V: Turn-off-efficiency time in msec
AXI-Timer Motion

Estima-
tion

One-
Microblaze

Five-
Microblaze

Lower level time by
Equ. 6

18.6 6.5 2.7 1.5

Lower level time by
Equ. 5

42.58 42.58 42.58 42.58

Turn-off-efficiency time 42.58 42.58 42.58 42.58

TABLE VI: Energy reduction in %
AXI-Timer Motion

Estima-
tion

One-
Microblaze

Five-
Microblaze

56.4 84.59 93.45 96.33

As it can be seen, the FPGA reconfiguration time is the
dominant component in the turn-off-efficiency time parameter.
Therefore, as a rule of thumb, this reconfiguration time can be
considered as the timing overhead of PL turn-off for the ZYNQ
platform. In addition, the efficiency of this technique depends
on the power consumption of the PL during its idle period. Note
that, this power can also be reduced by other techniques such
as voltage/frequency scaling or clock gating.

VI. CONCLUSIONS AND FUTURE WORK

This paper has demonstrated a run-time software-controlled
power gating technique applied to the Xilinx ZYNQ embedded
system platform to reduce FPGA power consumption when idle
states can be identified during system operation. The Xilinx
ZYNQ platform consists of two parts: a dual-core ARM pro-
cessor and an FPGA. In the proposed technique, the ARM pro-
cessor controls the FPGA power supplies via the programmable
voltage regulator available in the ZC702 evaluation board. The
ARM processor also reconfigures the FPGA after turning on
the corresponding power supplies.The experimental results show
that the overhead of this technique is in the order of milliseconds
which makes it suitable to be used in energy proportional
computing techniques. As the PL configuration overhead is the
main bottleneck in the proposed technique, one of the future goal
of this research is proposing new architectures and strategies to
reduce this overhead. In addition, future work will compare the
proposed technique with the voltage scaling technique proposed
in [3].

ACKNOWLEDGEMENT

The authors would like to thank the reviewers for their valu-
able comments and especially our colleague Dr. Arash Farhadi,
whose suggestions helped us to do this research. This research
is a part of the ENPOWER project sponsored by EPSRC and
done in collaboration with Queen’s University Belfast.

REFERENCES

[1] ITRS, “International technology roadmap for semiconductors:
System drivers,” Tech. Rep., 2011 EDITION. [Online]. Available:
http://www.itrs.net/Links/2011ITRS/2011Chapters/2011SysDrivers.pdf

[2] K. W. Cameron, “The challenges of energy-proportional computing,”
IEEE Computer, vol. 5, no. 4, pp. 82–83, 2010.

[3] J. L. Nunez-Yanez, “Adaptive voltage scaling with in-situ detectors in
commercial FPGAs,” IEEE Transactions on Computers, 2013. [Online].
Available: http://doi.ieeecomputersociety.org/10.1109/TC.2013.73

[4] R. Das, S. Narayanasamy, S. K. Satpathy, and R. G. Dreslinski, “Catnap:
Energy proportional multiple network-on-chip,” in Proceedings of the
40th Annual International Symposium on Computer Architecture, ser.
ISCA ’13. New York, NY, USA: ACM, 2013, pp. 320–331. [Online].
Available: http://doi.acm.org/10.1145/2485922.2485950

[5] J. Leverich, M. Monchiero, V. Talwar, P. Ranganathan, and C. Kozyrakis,
“Power management of datacenter workloads using per-core power
gating,” IEEE Comput. Archit. Lett., vol. 8, no. 2, pp. 48–51, Jul. 2009.
[Online]. Available: http://dx.doi.org/10.1109/L-CA.2009.46

[6] Xilinx, “Zynq-7000 all programmable SoC,” Xilinx, Technical Reference
Manual, UG585 (v1.6.1), 2013.

[7] ——. (2014) Microblaze soft processor core. [Online]. Available:
http://www.xilinx.com/tools/microblaze.htm

[8] R. P. Bharadwaj, R. Konar, P. T. Balsara, and D. Bhatia, “Exploiting
temporal idleness to reduce leakage power in programmable
architectures,” in Proceedings of the 2005 Asia and South
Pacific Design Automation Conference, ser. ASP-DAC ’05. New
York, NY, USA: ACM, 2005, pp. 651–656. [Online]. Available:
http://doi.acm.org/10.1145/1120725.1120985

[9] A. A. M. Bsoul and S. J. E. Wilton, “An FPGA architecture supporting
dynamically controlled power gating,” in International Conference on
Field-Programmable Technology, ser. FPT’10, 2010, pp. 1–8.

[10] S. Ishihara, M. Hariyama, and M. Kameyama, “A low-power FPGA based
on autonomous fine-grain power gating,” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 19, no. 8, pp. 1394–1406,
2011.

[11] M. K. J. Hussein and M. Hart, “Lowering power at 28 nm with Xilinx 7
series devices,” Xilinx, White paper, WP389 (v1.2), 2013.

[12] Xilinx, “Xpower estimator user guide,” User Guide, UG440 (v2013.4),
2013.

[13] SMIF, “PMBus power system management protocol specification part
II-command language,” System Management Interface Forum, Protocol
Specification, 2007.

[14] T. Instrument, “UCD92xx digital PWM system controller PMBus com-
mand reference,” Texas Instrument, User’s Guide SLUU337, 2008.

[15] Xilinx. (2014) Xilinx linux kernel source. [Online]. Available:
https://github.com/Xilinx/linux-xlnx

[16] ——, “ZC702 evaluation board for the Zynq-7000 XC7Z020 all pro-
grammable SoC,” Xilinx, User Guide, UG850 (v1.2), 2013.

[17] ——, “Zynq-7000 All Programmable SoC(Z-7010, Z-7015, and Z-
7020):DC and AC Switching Characteristics,” Xilinx, Product Specifi-
cation DS187 (v1.11), 2014.

[18] J. L. Nunez-Yanez, A. Nabina, E. Hung, and G. Vafiadis, “Cogeneration
of fast motion estimation processors and algorithms for advanced video
coding.” IEEE Trans. VLSI Syst., vol. 20, no. 3, pp. 437–448, 2012.

[19] C. Kohn, “Partial reconfiguration of a hardware accelerator on zynq-7000
all programmable soc devices,” Xilinx, XAPP1159 (v1.0), 2013.

[20] V. K. and F. S. A., “Zycap: Efcient partial reconguration management
on the xilinx zynq,” in IEEE Embedded Systems Letters, 2013. [Online].
Available: http://dx.doi.org/10.1109/LES.2014.2314390

[21] A. Nabina and J. L. Nez-Yez, “Dynamic reconfiguration
optimisation with streaming data decompression.” in FPL.
IEEE, 2010, pp. 602–607. [Online]. Available: http://dblp.uni-
trier.de/db/conf/fpl/fpl2010.html#NabinaN10


