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Figure 2. Multimodal Variational Autoencoder (M-VAE)
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Algorithm 1 Multimodal Sensor Fusion in the Latent Representation Space (SFLR)
1: Training data: 4 = {Xl M } Test data Z» = {X{l J)} Samplers {)1:m} 121
2: Stage 1: Train M-VAE using ¥ 7 ' e 2 -
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6: Sample the initial point 2 ~ p(z)
7: while not converged do 75 100 125 150 175
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Figure 4. Recovery W|th cempressed sensing
measurements as low as 784 out of 50,176 (1.56%).

Modality 1 - Initial guess Modality 1 - Recovered

0: _
. dz<—hi—noV:(||z||2)—nMV:(||yﬁ})—xM(wM(z)W) Table 1. Few-shot learning classification results (F1 macro) for HAR
12: end while

14; Downstream tasks: £, = W, (Zpap), classification tasks K-NN(Zp4p) per class per class per class

13: Zmap < 2
MAP  estimation procedure consists of 2channelCNN 0.4273 0.5709 0.6185 !
backpropagating through the sampler and decoder 1-channel CNN (Modality 1) 0.3491 0.4513 0.5045 M
using Stochastic Gradient Descent (SGD). 1-channel CNN (Modality 2) 0.4466 0.6000 0.6057 i am—— e
n i 2 M 1 i 2 anc .
tuap = argmax p (Vi =il ) o= exp (= ),ﬂexl’(_zqg|y£n)—%m(‘*’m(2))” ) Probability fusion (product rule) 0.4404 0.5847 0.6419
M i - 47
Objective to minimize: X(Z) — aﬂ||2||2+ z Am”)"r(?i) _xm(wm(z))HZ Dual branCh CNN 0.5082 05688 05759 - -~
= SFLR (ours) 0.6527 0.7182 0.7375 Flgure 5 Recovery under additive Gau55|an noise (std dev. = 0.4).

3. Results - Multimodal Fusion Transformer for Passive HAR 4. Conclusions
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i — L1l0SS model to predict the masked image improved performance for
features.

Predicted 2. pretrain model with both PWR and CSI downstream tasks such as Human
prledictin? aw dpixlel spectrograms, using all different views and Activity Recognition (HAR), which
values of the ranaomly 2 _ng : . c
masked patches by a One-layer prediction head Image-based features | serves a vital role in the E-Health
lightweight ~ one-layer 3. fine-tune the pretrained model in a paradigm
head (linear layer), Transformer encoder supervised way using few labelled

examples.
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image of size 16 x 16 x usion 3% 5% 7% 2% 9% .
64 (smaller feature o B e e B B - @ Ll b Transformer outperforms non-pretrained models
SRR, ._,: ey et under few-shot learning (i.e. under

15 images features (modalities) extracted from WiFi CSI and PWR data fEEREnE =2.6% 2b-87% 1 162.7% UERL 94.9% the condition that few labelled

(spectrograms, scalograms and Markov Transition Field). Each channel and (CNN) .

receiver can be seen as another view of the human activity being performed. Samp|eS are avallable).

60% of image features are masked during pretraining.
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