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1 Introduction

Despite continuous discussions, increased public awareness and an increase in the

measures goverments take, climate change remains one of the most urgent issues

of modern societies. Until 2100, we expect an increase of 4◦C in global average

temperature compared to pre-industrial levels, a scenario of catastrophic estimated

consequences. In the absence of a global institution able to monitor and enforce

commitments, countries seem reluctant or unable to implement the proposed policies

and the switch to renewable energy sources is slow. With the adoption of carbon

markets nowhere near the desired level 1 and countries being unlikely to reach the

Paris Agreement goal of limiting global warming to well below 2◦C, preferably to 1.5◦C

increase, compared to pre-industrial levels2, scientists urge for higher coordinated

effort.

Economic theory has largely modeled the phenomenon in a prisoner’s dilemma

strategic context (see bellow for details). There is a growing climate literature3,

press coverage4 and institutional studies5 that highlight the coordination nature of

the issue. As the planet gets warmer, the payoffs of the cooperative solution seem

to increase, due to the enormous costs that a climate disaster implies, while the

payoffs from unilateral deviation decrease since even topical mitigation starts having

an effect. Lastly the payoffs of what would be the equilibrium of the prisoners dilemma

decrease. If everyone free rides forever, a climate catastrophe is sure to occur. This

argument implies that as the environment affects the payoffs, there exists a natural

threshold such that the agents will want to coordinate their effort. In this case, a

climate disaster might occur not due to free riding incentives but rather due to a

coordination failure.

Importantly, this type of analysis highlights how the state of the climate can af-

fect the strategic interactions between agents. On the other hand, the climate is

a highly non-linear dynamic system with sensitive dependence on initial conditions

and exhibits chaotic behavior. Since we can determine initial conditions only with

finite precision, the long-term prediction of exact future climate states is not possible.

1DICE model finds that the price should be $36/ton while the temperature-limiting level is at
$100–$250 per ton. Today we are less than 10% of that price. (Nordhaus (2019))

2The latest UNEP (UN Environment Programme) “Emissions Gap Report” found out that all
efforts would prevent only 7.5% of greenhouse gas emissions by 2030. To reach the 1.5°C target,
however, it would have to be 55%.The models included the updated nationally determined contri-
butions (NDCs) to climate protection in the context of the 2021’s UN Climate Change Conference
in Glasgow. Even with these new targets, we would have a warming of 2.7°C within this century.

3See for example Carattini et al. (2019), DeCanio and Fremstad (2013), Milinski et al. (2008)
4Is Climate Change a Prisoner’s Dilemma or a Stag Hunt?, The Atlantic (2012).
5UN Says Unprecedented Coordination Needed to Tackle Climate and Disaster Risks, UN climate

change (2018) and coverage in all COPs since.
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Instead we have increasingly accurate probabilistic forecasts. With the state of na-

ture being uncertain, agents in turn face uncertainty on the strategic interaction they

face. This paper offers a framework to study these issues in an incomplete environ-

ment where incentives may change discontinuously depending on the underlying state

of nature. We explore equilibrium in these situations and describe policies that can

facilitate coordination in this environment. Importantly, we find that in this environ-

ment, information frictions matter. Taking into account the incomplete information

nature of the environment, we can offer a larger range of policies that can facilitate

coordination than what previous literature suggests.

There is a large economic literature that has explored the incentives that lead

economic agents to overuse common pool resources and the similar problem of public

goods. At the heart of the analysis is that unilateral deviation from the cooperative

action is beneficial to agents, resulting to a prisoner’s dilemma strategic interaction.

With this in mind economics proposed solutions to ameliorate the issue via taxa-

tion (Pigou (1928)), assigning property rights/introducing markets (Coase (1960))

or creating communities able to monitor and punish deviation from the cooperative

behaviour (Ostrom (1990)). These works have made distinct contributions to the

literature of governance. The common role of the proposed policies, from a game the-

oretic perspective, is that by internalising the externalities climate change causes, one

can change the game’s payoffs in a way that cooperation will be the strictly dominant

strategy of the game. The proposed solution is very appealing since it describes a

way to implement the cooperative solution even in the worst case, when agents have

the least incentive to cooperate. On the other hand, the proposed change in utility

seems to imply the adoption of measures that would be too costly for other sectors

in the economy resulting in slow adoption by countries.

As a result the climate situation has severely worsened and the strategic situation

may not still resemble a prisoner’s dilemma. As the planet gets warmer we have

reached a stage that partial or full coordination of countries is recquired to avoid a

climate catastrophe. In this case, the game resembles a pure free riding and ulti-

mately a coordination game depending on the participation needed. Even though

this analysis seems to describe the current situation, this is one of the first papers

that studies the strategic interactions and potential policies in this environment.

To make ideas more concrete consider a game between the US and China deciding

whether they should switch from a fossil fuel based production to a renewable energy

production. Since climate action remains costly, even if agents enjoy great benefits

from mitigation, they would rather free ride others’ action if their participation is

not pivotal. On the other hand, as the state of nature worsens, there exists a natural

threshold such that an agent’s action will have an effect only if others coordinate
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in acting as well. If for example the prediction for the increase in temperature was

2.5oC (lower than the actual one) then China or the US 6 unilaterally could achieve

the goal of 2oC by switching technologies. But both countries however, would have

an incentive to free ride the others effort. Under the current prediction though, the

Paris agreement goal can be reached only if both countries adopt the policy, opening

the door to the possibility of self-fulfilling coordination failures.

This paper studies what policies, interpreted as changes in agents’ utilities, can

guarantee coordination in this situation. The result crucially depends on information.

In a complete information environment, in order to guarantee coordination, a policy

maker needs to implement measures that would change utilities up to the point that

agents will find in strictly dominant to cooperate. A policy comparable with previous

recommendations. In the incomplete information version of the game though, there

exists a policy such that coordination can be achieved with a smaller change in utility.

This implies that by taking into account these different strategic interactions and the

incomplete information, one could propose a less harsh policy, potentially easier to

be adopted by countries, that still resolves the coordination issue. This policy might

be especially relevant for the most reluctant, to adopt climate policies, countries.

Coordination issues are prominent in many economic and social phenomena. Ex-

amples include bank runs, currency attacks, protest participation, and regime changes.

These situations have been depicted as coordination games with multiple equilibria,

some of which exhibit coordination failure. However, for economic theory to retain

predictive power in the face of multiple equilibria, it needs to provide a compelling

reason to select a particular equilibrium as the unambiguously right one.

Carlsson and van Damme (1993) were the first to show that the multiplicity of

equilibria is not robust to the introduction of a small uncertainty in the payoffs,

correlated among players via noisy private signals of some underlying fundamental.

Instead the risk dominant action is the one uniquely selected after iterated deletion of

strictly dominated strategies. The result depends on agents’ actions being strategic

complements, payoffs being continuous to the fundamental and on the existence of

extreme regions of the fundamental for which agents have a strictly dominant action.

With the predictive power thus reinstated, global games have been fruitfully applied

to various contexts, such as financial markets and social situations.

There are many situations though in which actions are not always strategic com-

plements, potentially changing discontinuously between complements and substitutes.

Coordination to mitigate the effects of climate change exhibits such characteristics.

Consider two countries deciding whether to take the costly action of reducing carbon

emissions in favor of a cleaner environment. If the environmental damage is moderate

6Accounting for 33% and 12% of total carbon emissions (World bank (2019)).
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and one country adopting the policy would suffice for restoration, adopting the policy

exhibits strategic substitutes. Either country would rather have its opponent act and

enjoy the benefits of the clean environment without incurring any cost. If the existing

damage is severe, on the other hand, both countries need to coordinate their effort in

order to tackle the issue, implying that actions exhibit strategic complements. If there

exists some uncertainty about the environmental damage, the actions of adopting a

carbon reducing policy are not always strategic complements.

Similar strategic interactions emerge in other collective action situations such

as contribution to a public good or protest participations. A defining feature of

these situations is that the successful outcome of the coordinated actions is a public

good that benefits everyone regardless of whether or not they contributed. This

precludes the coordinating actions from being invariably strategic complements due

to free-riding incentives, which is a crucial departure from the global games literature

hitherto.

From a theoretical standpoint, we depart from the Carlsson and van Damme

(1993) framework by assuming that there exists a critical fundamental value where

actions discontinuously change from being substitutes to complements. The key ob-

servation is that, in the incomplete information version of the game, the risk dominant

action can be strictly dominant around the discontinuity, even though it is nowhere

strictly dominant in the complete information game. This allows for an iterative pro-

cess similar to the one in global games to select that action for the entire range of

the fundamentals in which it is risk dominant. We examine the conditions on the

utilities around the critical value that warrant reverberation of the iterative process

throughout the risk-dominant region.

We consider a stylised regime change model, vastly studied in the global games

literature, modified to include free riding incentives. Two agents/countries simultane-

ously decide whether to take the costly action of adopting carbon emission reducing

policies or not. The policy will be successful if, given the current environmental dam-

age, enough countries adopt the policy benefiting both agents identically; the policy

fails otherwise, with no benefit to either. The cost of adopting the climate policy is

interpreted as the result of a global rule. If the rule is harsh, say the carbon price

is high due to the way that property rights were assigned, then the cost of adopting

the green policy is low and vice versa. We assume that harsher rules and smaller

costs are less likely to be adopted and thus we are interested in the largest cost that

can accommodate coordination. Importantly, taking climate action and adopting the

proposed rule is the same thing in our model.

The state of the environment, which dictates how many agents are needed to

adopt the policy, is modelled as the unobservable (underlying) fundamental which is
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a continuous random variable. However, each agent observes a private signal on the

state of the environment with a small random noise, from which they make inferences,

before deciding whether to adopt a policy. The signal also allows the agent to make

inference about the other agent’s signal and their inference on the fundamental. If

their signals are below 1 (above 1 but below 2, resp.) their policy adoptions are likely

to be strategic substitutes (complements, resp.); if they are well above 2, non-adoption

is dominant as there is no chance to succeed.7

We start by characterizing a class of equilibria in which action to protect the en-

vironment will be taken whenever a success is possible (asymptotically as the noise in

the signal vanishes) provided that acting is the risk-dominant action whenever actions

are strategic complements. In this equilibrium, referred to as an interval-threshold

equilibrium, one agent participates when their signal is below a threshold near 2 and

the other when their signal is approximately in the interval [1, 2]. Essentially, in

this class of equilibria, the participation is implemented whenever the policy can be

successful, in particular, avoiding coordination failure when actions feature strategic

complements. But for large noise these are not the only equiliria that exist.

The main finding is that the coordination failure is always prevented in any equi-

librium, because the risk-dominant action uniquely survives iterated eliminations of

strictly dominated strategies so long as the cost of adopting the policy is below a

bound which we identify, as noise vanishes. The key observation is that at the bor-

derline signal of 1, where agents’ participations are equally likely to be strategic com-

plements and substitutes, an agent is pivotal in succeeding with one half probability

whether the other agent participates or not. Consequently, his minimal expected

benefit from participating is bounded away from zero however the other agent mixes

between participating and not across her possible signals. If participation cost is be-

low this minimal benefit, therefore, participation is strictly dominant for him upon

observing a signal in a small neighborhood of 1, even though no action is strictly dom-

inant in the complete information version of the game. This allows for an iterative

procedure, similar to the one developed in the global games, to select the risk dom-

inant action for signals in an interval converging to [1,2] as the noise vanishes. This

insight about equilibrium selection in discontinuous global games can be generalised

for any 2× 2 environment as shown by Park and Smyrniotis (2022).

Crucially the costs that will warrant this result, would still imply a coordination

game in the complete information environment, and no action would be strictly dom-

inant. This implies that the range of costs we have in mind are strictly larger than

the ones that would warrant coordination in the complete information game. By

7That a strictly dominant action exists only when the fundamental is large enough, is a further
departure from the global games framework where it exists for low enough fundamentals as well.
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taking into account the incomplete information nature of the environment, one can

propose a policy that is less demanding in terms of changes in utility. To the extend

that changes in utility are associated with harsher environmental measures, the pro-

posed policy will be easier to adopt. By taking into account the incompleteness of

information, one could propose an easier to adopt measure that yet would guarantee

coordination.

The rest of the paper is organised as follows. Section 2 discusses the relevant

literature. Section 3 describes the model and the equilibrium concept. Section 4

characterizes interval-threshold equilibria and discusses equilibria when noise is large.

Section 5 establishes the iterative dominance of risk-dominant actions in the strategic

complements region and discusses equilibria with vanishingly small noise. Section 6

discusses and section 7 concludes.

2 Related Literature

This paper is related to a very large literature that studies the ”tragedy of the com-

mons” (Hardin (1968)) and whether economic agents provided with the right incen-

tives can avoid such situations. At the heart of the problem lie the externalities that

are present in collective action problems (Samuelson (1954), Bator (1958)). Pigou

(1928) was the first to observe that by providing appropriate tax schemes, a designer

could reduce these externalities while Coase (1960) showed how by assigning property

rights and introducing markets the issue can be ameliorated. The strategic interac-

tions these papers study can be boiled down on an one shot n−person prisoner’s

dilemma strategic situation. Ostrom (1990) extended the analysis by considering dy-

namic repeated environments and by showing how the introduction of communities

able to enforce credible threats could achieve the cooperative solution. This is a very

incomplete list of very influential works in the area. Compared to this literature this

paper studies a problem of ”global commons” where actions do not always exhibit

strategic substitutes but also can potentially be complements depending on the un-

derlying state of the environment. In this modified environment, we argue that taking

into account the incomplete information nature of the issue can changes the proposed

policy.

The theoretical underpinnings of the model are closely related with the global

games framework, firstly studied by Carlsson and van Damme (1993). They showed

that equilibrium selection in coordination games is possible if we embed complete in-

formation games in incomplete information environments. The risk dominant action

(Harsanyi et al. (1988)) is the uniquely selected equilibrium. Their framework was

later expanded by Morris and Shin (2001) and Morris and Shin (2002) who highlighted
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the effects of public information in such environments. The framework has been uti-

lized to study coordination issues in many theoretical and applied papers studying a

variety of phenomena. Examples include Angeletos et al. (2006) who demonstrated

how policy interventions can act as an endogenous signal and reintroduce multiplicity,

Angeletos et al. (2007) who studied coordination games in a dynamic environment

and many others. This line of literature assumes that actions feature strategic com-

plements and that utilities are continuous to the fundamentals. In our environment

actions change discontinuously from strategic complements to substitutes. Moreover,

main result does not require the existence of two dominance regions, an assumption

commonly made in this framework.

This paper is related to the line of literature that attempts to relax the comple-

ments assumption in global games. Karp et al. (2007) were the first to consider a

global game with the addition of congestion effects. Their result was later challenged

by Hoffmann and Sabarwal (2015) who argued that their existence result was in-

complete. Bunsupha and Ahuja (2018) completed their result fully characterizing an

equilibrium for this game with infinitely switching strategies. They showed that this

equilibrium is unique under any strategy in which the aggregate action is monotone

to the state of the fundamentals. Harrison and Jara-Moroni (2021) expand the global

games framework to games that feature only strategic substitutes with overlapping

dominance regions. Unlike us their payoffs are continuous to the fundamental and

they do not consider pure free riding alongside with coordination incentives.

Equilibrium existence issues in games that feature both strategic substitutes and

complements are discussed in Hoffmann and Sabarwal (2019a). While uniqueness in

such environments is considered in Hoffmann and Sabarwal (2019b). Their result

is different from ours since they assume that agents’ utility is continuous to the

state. Moreover, their uniqueness result relies on a contagion argument starting from

a dominance region. If an action is strictly dominant for some realizations of the

fundamentals, and if that dominance region is strong enough (they use a p-dominance

condition to measure the influence of the dominant region to nearby values of the

state), then for realizations of the fundamental close to this dominant region agents

will take the same action, allowing an iterative argument to select an equilibrium. Our

result is different to this line of literature since it relies on the discontinuity between

strategic substitutes and complements in order to establish an iterative process.

Moreover, this paper is related to the literature that employs the global games

framework to study collective action problems(Tullock (1971), Olson (1965)). Shad-

mehr (2018) study a collective action game where the strength of the regime is com-

monly known while there exists uncertainty on the participation cost of the agents.

The decision to act depends on that cost and they characterise a symmetric equi-
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librium with a cutoff strategy. Their equilibrium is unique if the uncertainty is not

too small. Actions can feature either strategic substitutes or complements depending

on the commonly known strength of the regime thus both cannot exist in the same

model as in our environment. Morris and Shadmehr (2020) study a problem where

the uncertainty is about the strength of the regime like us. The benefit that agents

receive from a successful collective action however depends on the individual’s effort,

a continuous variable. Thus actions do not necessarily feature free riding. Their

focus is the incentives that a leader needs to provide to heterogeneous agents to in-

duce coordination. Other examples that study different aspects of collective action

within this framework include Edmond (2013) who studies information manipulation

in regime change movements; Shadmehr and Bernhardt (2011) who study the effects

that uncertainty about the alternative regimes can have in the participation decision

and others.

Lastly, this paper is subject to Weinstein and Yildiz (2007) critique who demon-

strated that the particular departure from the complete information that is assumed

in the global games framework is with loss of generality. In their paper, they show that

the modelling choice of information can be modified in such a way that any action is

uniquely rationalizable. By considering more general perturbations, they were able to

recreate the global games result for any action. In a later paper Morris et al. (2016)

showed that the particular departure of global games coincides with the epistemic

foundation that has players being agnostic about their rank beliefs. That is players

do not know whether their type is higher compared to their opponents’. Although we

restrict ourselves to a less general class of games by considering the perturbation de-

veloped by Carlsson and van Damme, this form of incomplete information is believed

to be suitable for the phenomena that this paper considers.

3 Model

Two risk neutral agents denoted by i ∈ I =
{
1, 2

}
simultaneously make a binary

choice ai ∈
{
0, 1

}
. We refer to ai = 1 as the agent i’s choice to “adopt the carbon

reducing policy”, or simply “act” for short, and ai = 0 as his choice to “not adopt/not

act,” respectively. The two agents’ choices succeed in restoring the environment if

the number of agents who act exceeds θ. The random variable θ ∈ (0, 3) is realized

at the beginning of the game. We interpret θ as the state of the environment which

dictates how many agents need to act to restore it. Each agent receives a benefit of

b > 0 if the environment is restored. Each agent i incurs a cost ci if they act.

We interpret ci = Prenew − Pcarbon as the difference between the cost of fossil fuel

and renewable energy. Since carbon is more efficient, Prenew > Pcarbon, implying that
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changing to a green technology is costly, ci > 0. On the other hand, if policies are

in place this relationship could reverse. We interpret a global policy as a change in

Pcarbon since this is what policies have predominantly focused so far8. A large increase

in the prices of carbon, even though it implies more incentives for an agent/country

to adopt the green technology, may be rejected for other reasons not modelled here.

For example there may be political reasons (large body of voters adversely affected)

or lobbying from oil producers that would make this policy very hard for governments

to implement. A small ci would imply a larger Pcarbon and thus a strict policy that

we assume to be harder to implement due to exogenous reasons. Moreover, if ci ≤ 0

then agents would have a weakly dominant action to act. In this case, switching

technologies would be beneficial for the economy. This is the benchmark policy that

previous research suggests. Instead we focus on policies that are bounded away from

this, ci > 0 and are easier to implement. We ask whether such policies or equivalently

costs exist such that coordination is guaranteed. Lastly, notice that participation

in a carbon market and adopting the green technology is the same thing in this

formulation.

Thus, agent i’s utility is

ui(ai, a−i, θ) =

{
b− aici if a1 + a2 ≥ θ

−aici otherwise

and assume b ≥ ci. It is trivial that agent i would never act if b < ci.

We describe the state of nature as “moderate” if θ ≤ 1, “critical” if 1 < θ ≤ 2,

and “irreversible” if θ > 2. If the state is moderate, the two agents’ choices to act

are strategic substitutes as just one acting is enough to restore the environment,

generating free-riding incentives for the agents. If the state is critical, choices to

act are strategic complements since both agents need to act to succeed. If the state

of nature is irreversible, clearly both agents have a strictly dominant choice to not

act because regardless of agents’ actions the environment cannot be restored. The

description above is common knowledge, as is the information structure on θ explained

below.

In the complete information benchmark where the value of θ is common knowledge,

multiple equilibria arise due to standard coordination issues (when θ ≤ 2). When the

state is moderate and agents’ actions are strategic substitutes, there are two pure-

strategy equilibria depending on who acts and a mixed-strategy equilibrium in which

both agents randomize between acting and not. When the state is critical and agents’

actions are strategic complements, there exist an equilibrium in which neither agent

acts (coordination failure) as well as one in which both act. When θ > 2, there

8The analysis would be the same for changes in Prenew or both.
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is a unique dominant-strategy equilibrium where neither agent acts. Importantly

regardless how low the cost of adopting the policy is, all of these equilibria exist.

Only policies that would push ci > 0 could guarantee coordination. This implies

that in a complete information environment, changing ci < 0 has no effect on agents’

strategic interactions and do not facilitate coordination.

We study an incomplete information environment where each agent privately ob-

serves a noisy signal of the underlying fundamental θ drawn from a uniform distribu-

tion over the interval (0, 3).9 Specifically, each agent i observes a signal xi = θ + ϵi
where ϵi is an unbiased noise independently and identically distributed according to

a cdf F supported on [−σ, σ], with an associated density function f which is sym-

metric around and single-peaked at 0. Being interested in the impact of departure

from complete information, we assume that the noise is relatively small, in particu-

lar, σ ∈ (0, 1/6). With a slight abuse of notation, we denote the cdf of the random

variable θ + ϵi by F (·|θ) and the density function by f(·|θ), both with [θ − σ, θ + σ]

as their support.

Then, the posterior distribution (cdf) of θ conditional on any signal xi ∈ R is

F (·|xi) is because∫ θ

xi−σ
f(xi|θ′)dθ′∫ xi+σ

xi−σ
f(xi|θ′)dθ′

=

∫ θ

xi−σ
f(xi − θ′)dθ′∫ xi+σ

xi−σ
f(xi − θ′)dθ′

= 1− F (xi − θ) = F (θ − xi) = F (θ|xi),

where the third equality is due to symmetry distribution of noise around 0. That is,

upon observing a signal xi, agent i’s posterior belief on θ is also F , centered at θ = xi

with a support [xi − σ, xi + σ]; thus, the posterior distribution F (·|xi) shifts to the

right as xi increases by the same amount: F (θ|xi) = F (θ′|x′
i) if θ

′ − θ = x′
i − xi.

Finally, we assume that the cost of adopting the policy/acting satisfies

c1 + c2 < 1 and c1 ≤ c2.

The first inequality ensures that acting is risk dominant for the range of the fun-

damentals for which agents’ choices to act are strategic complements.10 The second

inequality is withought loss. When it strictly holds, it implies that agent 1 has a risk

dominant action to act whenever θ ≤ 1 and it is not risk dominant for agent 2 to act

is this range of signals.

9The distribution of θ is inessential for qualitative results so long as it has continuous and strictly
positive density on an interval containing [0, 2], but uniform distribution facilitates exposition greatly.
Moreover, for the limit results, as noise vanishes any prior would approximate a uniform distribution.

10The case where c1 + c2 > 1 would imply that “not act” would be the risk dominant action.
This would trivialise the problem and no agent would act in the strategic complements region in the
incomplete information version of the game.
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A strategy of agent i is a measurable function si : R → [0, 1] that specifies,

contingently on every possible signal xi ∈ R, a probability with which agent i chooses

to act. Agent i’s expected utility from taking ai ∈ {0, 1} upon observing a signal xi,

conditional on the other agent’s strategy s−i, is

Ui(ai, s−i, xi) :=

∫ ∫ [
s−i(x−i)ui(ai, 1, θ)+(1−s−i(x−i))ui(ai, 0, θ)

]
dF (x−i|θ) dF (θ|xi).

Let Ui(α, s−i, xi) = αUi(1, s−i, xi) + (1− α)Ui(0, s−i, xi) for α ∈ (0, 1).

Definition 1 A strategy profile (s∗1, s
∗
2) is a Bayesian Nash equilibrium (BNE) if

Ui(s
∗
i (xi), s

∗
−i, xi) ≥ Ui(ai, s

∗
−i, xi) ∀ai ∈ {0, 1}, ∀xi ∈ R, i = 1, 2.

4 Interval-threshold equilibrium

We start the analysis with characterising existence of equilibria in the incomplete

information environment. Ideally, the two agents would like to coordinate on both

acting when θ ∈ (1, 2) and only one of them acting when θ < 1, but this is infeasible

because they observe only noisy signals of θ. Since the noise is small, however, such

coordination may be approximated if one agent acts on all signals roughly below 2,

and the other agent acts on all signals roughly in the interval [1, 2].

We characterize the conditions under which such a strategy profile indeed consti-

tutes a BNE, specifically where one agent i acts below a threshold x∗
i and the other

agent −i acts in an interval [x−i, x
∗
−i] where max{x∗

1, x
∗
2} ∈ (2 − σ, 2 + σ). We refer

to such equilibrium as an interval-threshold equilibrium.

Intuitively, upon observing their respective upper threshold signals, the agent with

the higher threshold, say i with x∗
i > x∗

−i, infers that the regime is more likely to be

invincible (i.e., θ > 2 is more likely) and also that the other agent is less likely to

act, than the other agent −i does upon observing x∗
−i. Hence, the agent with the

higher upper threshold takes more risk by acting on his upper threshold signal and

therefore, his cost of acting should be lower. We start with this observation stated

below (and proved in Appendix).

Lemma 1 In every interval-threshold equilibrium, x∗
2 ≤ x∗

1 where the inequality is

strict if and only if c1 < c2.

An agent brings a benefit of b = 1 to himself by acting when his acting is pivotal in

restoring the environment, namely, when either (i) the state is critical (i.e., 1 < θ < 2)
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and the other agent acts or (ii) the state is moderate (i.e., θ < 1) and the other agent

does not. The probability of an agent’s action being pivotal is:

Pv(xi) = Prob(agent −i acts, θ ∈ (1, 2) |xi) + Prob(agent −i not act, θ < 1 |xi) .

Hence, conditional on his signal xi, it is optimal for an agent i to act if the probability

that his action is pivotal exceeds his cost of acting Pv(xi) > ci, not act if Pv(xi) < ci
and he is indifferent between acting and not if they coincide:

Since the LHS (left-hand side) of (4) is continuous in xi, (4) holds at each boundary

signals x∗
i , x∗

−i and x−i. We first determine the boundary signal levels from this

indifference condition, then verify optimality at other signals.

We start with the configuration that agent 1 acts below a threshold x∗
1, called

a “threshold-player,” and player 2 acts on signals in an interval [x2, x
∗
2], called an

“interval-player.”’ Subsequently, we examine the other configuration which is ana-

lyzed analogously subject to suitable modifications due to c1 ≤ c2.

Agent 1 acts on all signals below x∗
1 ∈ (2−σ, 2+σ) in the considered configuration.

Observing a signal x2 < x∗
1 − 2σ, therefore, agent 2 infers that agent 1 will act for

sure and thus, that he is pivotal if and only if the state is critical. Since the state

must be critical if x2 > 1+ σ, he should act at signals x2 ∈ (1+ σ, x∗
1 − 2σ), implying

that x2 < 1 + σ < x∗
1 − 2σ < x∗

2.

Moreover, upon observing x2, agent 2 is pivotal with the posterior probability that

the state is critical, 1− F (1|x2). Hence, the indifference condition for agent 2 at the

lower boundary signal x2 simplifies to the first term of (4) being equal to c2:

1− F (1|x2) = c2 =⇒ x2 ∈

{
(1− σ, 1] if c2 ≤ 0.5

(1, 1 + σ) if c2 > 0.5.
(1)

This equation determines the value of x2 uniquely and independently of x∗
1 and x∗

2.

To determine the upper threshold levels, note that upon observing their respective

upper boundary signal x∗
i , both agents deduce that the state is never moderate (i.e.,

θ > 1) because 1+σ < x∗
2 as verified above. Hence, either agent is pivotal if and only

if the state is critical (θ < 2) and the other agent acts, simplifying the indifference

condition at x∗
i to the first term of (4) being equal to ci:∫ 2

x∗
1−σ

F (x∗
2|θ) dF (θ|x∗

1) = c1 and

∫ 2

x∗
2−σ

F (x∗
1|θ) dF (θ|x∗

2) = c2. (2)

Here, the integrand F (x∗
i |θ) is the probability that agent i would act conditional on

θ, from the perspective of agent −i upon observing x∗
−i. This is clear for agent i = 1,

the threshold-player, because he is supposed to act at all signals below x∗
1; and so is

13



F (x∗
2|θ) because, upon observing x∗

1, agent 1 infers that x2 is at most 2σ away from

x∗
1 > 2− σ, hence x2 > 2− 3σ = 1 + 3σ > x2. Thus, the upper boundary signals x∗

1

and x∗
2 are determined as the solution to the two equations in (2), independently of

x2.

As we show in Appendix, there is a unique solution to (2) and 1+3σ < x∗
2 < x∗

1 ∈
(2 − σ, 2 + σ). It is clear that x∗

1, x
∗
2 < 2 + σ because if x∗

i ≥ 2 + σ then the state

must be irreversible (i.e., θ > 2) and there is no chance to restore the environment.

If x∗
1 ≤ 2 − σ so that x∗

2 < 2 − σ as well, on the other hand, upon observing their

respective upper boundary signal x∗
i , either agent i would infer that the state must

be critical and thus that he is pivotal when the other agent observes a signal below

x∗
−i. The probabilities for the two agents to be pivotal upon observing x∗

i as such are

complementary, implying that the LHS of the two equations in (2) add up to 1, but

this would contradict the assumption that c1 + c2 < 1.

We have so far determined the boundary signal levels by (1) and (2) in an equi-

librium where agents 1 and 2 adopt a threshold strategy and an interval strategy,

respectively. We now verify optimality of these strategies at other signals.

Conditional on agent 1’s strategy of acting on all signals below x∗
1, it is straight-

forward to see that it is optimal for agent 2 to act precisely at signals x2 ∈ [x2, x
∗
2]

because the expected gain from acting is lower at x2 < x2 than at x2 since the state

is less likely to be critical (while agent 1 will act for sure because x1 ≤ x2+2σ < x∗
1);

and it increases as x2 increases from x2 because the state is more likely to be crit-

ical, until x2 gets high enough so that the state starts to become more likely to be

irreversible and/or the other agent starts to be less likely to act; at that point the

expected gain starts to decline, down to c2 at x2 = x∗
2 by (2) and lower afterward.

Next, we check optimality of agent 1 acting at every x1 < x∗
1. Conditional on

agent 2 acting if and only if x2 ∈ [x2, x
∗
2], agent 1’s expected gain from acting on

observing a signal x1, i.e., the LHS of (4), is∫ 1

−∞
F (x2|θ)dF (θ|x1) +

∫ 2

1

[F (x∗
2|θ)− F (x2|θ)]dF (θ|x1). (3)

It is verified (in Appendix) that (3) decreases in x1 ≤ 1−σ (when the second integral

vanishes), but for x1 ≥ 1 + σ (when the first integral vanishes) it initially increases

then declines (when the posterior probability of agent 2 acting declines), down to c2
at x1 = x∗

1 and further afterwards. Therefore, it suffices to show that (3) exceeds c1
at every x1 ∈ [1 − σ, 1 + σ]. Note that F (x∗

2|θ) = 1 in (3) for x1 ≤ 1 + σ because

x∗
2 > 1 + 3σ as noted above.

First, consider the case that x2 ∈ (1 − σ, 1], that is, c2 ≤ 0.5 by (1). Recall that

agent 2’s expected gain from acting on observing x2 = x2, which equals c2 by definition
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of x2, is the probability that θ ∈ (1, 2), i.e., 1 − F (1|x2). Thus, upon observing the

same signal x1 = x2, if agent 1 is pivotal with a probability at least 0.5 conditional on

θ being in a subset with a posterior probability at least 2(1−F (1|x2)), then agent 1’s

expected gain from acting is at least 1−F (1|x2) = c2 ≥ c1. We identify, in Appendix,

a subset of θ that works as such (the top end of feasible θ’s upon observing x1 = x2),

and also show that the argument extends to other signals x1 ∈ (1 − σ, 1 + σ). In

addition, a symmetric logic applies to the case that x2 ∈ (1, 1 + σ).

We now consider the alternative configuration in which agent 1 acts in an interval

[x1, x
∗
1] and agent 2 below a threshold x∗

2. Analogously to the previous configuration,

the upper boundary levels x∗
1 and x∗

2 are determined by (2) and x1 is determined by

the condition c1 = 1− F (1|x1). In the current configuration, x1 ∈ (1− σ, 1) because

c1 < 0.5 by an analogous reasoning behind (1), and the previous analysis for the

case x2 ∈ (1 − σ, 1) applies with the roles of agents 1 and 2 swapped. Specifically,

conditional on agent 1 acting if and only if x1 ∈ [x1, x
∗
1], agent 2’s expected gain from

acting at signal x2 is∫ 2

−∞
F (x1|θ)dF (θ|x2) +

∫ 2

1

[F (x∗
1|θ)− F (x1|θ)]dF (θ|x2) (4)

and the minimum value of (4) across all x2 < x∗
2 exceeds c1.

Note that (4) is a function of c1 because F (x∗
1|θ) = 1 for x2 ∈ (1 − σ, 1 + σ) and

x1 is determined by c1 = 1 − F (1|x1); hence the minimum value of (4) across all

x2 < x∗
2 is also a function of c1, which we denote by c̄2(c1). Therefore, the current

configuration constitutes a BNE if and only if c2 ≤ c̄2(c1). Note that in the limit

case as c1 → 0 so that x1 → 1 − σ, the value of (4) at x2 = 1 − σ converges to 0.5.

This implies that if c2 > 0.5 then the current configuration fails to be a BNE for

sufficiently small c1.

Summarizing the discussion so far, we characterize interval-threshold equilibria as

below.

Proposition 1 (a) There exists an interval-threshold equilibrium in which agent 1

adopts the threshold strategy and agent 2 the interval strategy. This equilibrium is

unique and achieves the efficiency of complete information asymptotically as σ → 0.

(b) It is an equilibrium for agent 2 to adopt the threshold strategy and agent 1 the

interval strategy if and only if c2 ∈ [c1, c̄2(c1)] ̸= ∅ where c̄2(c1) is the minimum value

of (4) across all x2 < x∗
2 and converges to 0.5 from above as c1 → 0.

Recall that the upper boundary levels x∗
1 and x∗

2, determined by the equation

system (2), are the same regardless of which agent adopts the interval strategy.

Therefore, both agents i = 1, 2 act at all signals in their respective range [xi, x
∗
i ]
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in any interval-threshold equilibrium, thus largely coordinate when both need to act

to restore the environment (since [xi, x
∗
i ] ≈ [1, 2]). In the next section, an iterated

dominance argument shows that such coordination in the complementary region must

prevail in every equilibrium if c2 is not too large, as noise vanishes.

5 Iterative Dominance

Carlsson and van Damme (1993) establish the seminal result in 2-player, 2-action

global games where the players’ utilities change continuously in an underlying param-

eter θ and each player observes a noisy signal of θ: if an action, which is risk-dominant

in some open range I of underlying parameter values, is strictly dominant at some

θ ∈ I for at least one player, then it is iteratively dominant at all signals in I for both

players in the global game as the noise vanishes.

Their result does not apply to the model analyzed in the previous section (in

particular, to the complementary region) because no action is strictly dominant at

any parameter values θ < 2. Nevertheless, we show that acting (ai = 1) is strictly

dominant at signals near xi = 1 in the global game, and through an iterative process

its dominance extends to all signals in the complementary region as σ tends to 0.

The key property behind this result is that acting, which is risk-dominant in the

complete information game when θ is above the critical value of 1 (where the utilities

are discontinuous), is also sufficiently attractive even if θ is slightly below 1 and the

other agent switches to not acting (a−i = 0). This may hedge the risk-dominant

action sufficiently for it to be the dominant action at signals near the critical value,

initiating the iterative expansion process.

Continuing with the model analyzed in the previous section, recall that an agent

i is pivotal when either θ ∈ (1, 2) and the other agent −i acts or θ < 1 and agent

−i does not. Given a strategy s−i : R → [0, 1] of agent −i, therefore, the probability

that agent i is pivotal upon observing a signal xi ∈ (1− σ, 1 + σ) is

P (xi|s−i) :=

∫ 1

xi−σ

∫ θ+σ

θ−σ

[1− s−i(x−i)]dF (x−i|θ)dF (θ|xi) +

∫ xi+σ

1

∫ θ+σ

θ−σ

s−i(x−i)dF (x−i|θ)dF (θ|xi)

= F (1|xi) +

∫ ∞

−∞
s−i(x−i)Λ(x−i|xi) dx−i

where Λ(x−i|xi) :=

∫ xi+σ

1

f(x−i|θ)f(θ|xi)dθ −
∫ 1

xi−σ

f(x−i|θ)f(θ|xi)dθ. (5)

If P (xi|s−i) > ci for every s−i, then it is the dominant strategy for agent i to act at the

signal xi. To examine when this is the case, we observe that P (xi|s−i) is minimized

when s−i(x−i) = 0 if Λ(x−i|xi) ≥ 0 and when s−i(x−i) = 1 if Λ(x−i|xi) < 0.
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Since f(x−i|θ) = f(θ|x−i) due to symmetry, Λ(x−i|xi) is positive (negative, resp)

if θ > 1 is more (less, resp) likely than θ < 1 conditional on observing two signals xi

and x−i. Hence, Λ(x−i|xi) = 0 when x−i and xi are equidistant from 1 in opposite

directions, i.e., x−i = 2− xi, because then θ is equally likely to be above or below 1.

Consequently,

Λ(x−i|xi)

{
< 0 if x−i < 2− xi

> 0 if x−i > 2− xi.
(6)

Thus, P (xi|s−i) is minimized when s−i(x−i) = 0 for x−i ≥ 2−xi and s−i(x−i) = 1 for

x−i < 2 − xi, which we denote by s̆−i. Let P (xi) := P (xi|s̆−i) denote the minimum

value of P (xi|s−i) across all s−i.

If xi = 1, in particular, s̆−i assigns 0 for x−i ≥ 1 and 1 for x−i < 1. Therefore,

P (1) is the probability, conditional on xi = 1, that θ is below 1 but x−i is above 1, or

the other way around. The two events are equally likely and the probability of the

latter is
∫ 1+σ

1
F (1|θ)f(θ|1)dθ. Hence,

P (1) = 2

∫ 1+σ

1

F (1|θ)f(θ|1)dθ = 2

∫ 1+σ

1

F (1− θ)f(1− θ)dθ =
1

4

where the last equality follows because
∫ a

−∞ F (x)f(x)dx = F (a)2/2 for any cdf F .11

If xi = 1 − σ so that s̆−i assigns 1 for all x−i < 1 + σ, agent i is never pivotal

because θ < 1 for sure and the other agent were to always act, i.e., P (1 − σ) = 0.

Analogously, P (1+σ) = 0 because if xi = 1+σ then θ > 1 and the other agent never

acts according to s̆−i(x−i).

As such, the function P (xi) is defined continuously on the interval [1 − σ, 1 + σ]

and assumes strictly positive values in the interior and 0 at the boundaries. For each

c ∈ (0, P (1)), therefore, a largest interval (x(1)(c), x̂(1)(c)) exists on which P (xi) > c.12

Consequently,

[A] it is strictly dominant for an agent i to act at every signal xi ∈ (x(1)(ci), x̂
(1)(ci))

if ci < P (1).

Clearly, 1−σ < x(1)(c1) < x(1)(c2) < 1 < x̂(1)(c2) < x̂(1)(c1) < 1+σ if c1 < c2 < P (1).

From this initial range of signals on which acting is dominant, we expand the

dominant range of signals iteratively in the usual manner. Given [A], an agent i with

a signal xi ∈ [1− σ, 1 + σ] is pivotal with a probability at least

P
(1)
i (xi) := min

s−i

P (xi|s−i) subject to s−i(x−i) = 1 ∀x−i ∈ (x(1)(c−i), x̂
(1)(c−i)).

(7)

11Letting F (x) = t so that f(x)dx = dt,
∫ a

−∞ F (x)f(x)dx =
∫ F (a)

−∞ tdt = F (a)2/2.
12Note that 1− x(1)(c) = x̂(1)(c)− 1 by symmetry.
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If 2 − xi < x̂(1)(c−i), the constraint in (7) requires s−i to assign 1 to an interval of

signals x−i to which s̆−i assigns 0, increasing the value of mins−i
P (xi|s−i). Therefore,

P
(1)
i (xi) > P (xi) for all xi ∈ [1, 1 + σ], in particular, and consequently, the range of

signals on which acting is (iteratively) strictly dominant for agent i expands to an

interval (x(2)(ci), x̂
(2)(ci)) that contains (x

(1)(ci), x̂
(1)(ci)) and x̂(1)(ci) < x̂(2)(ci).

Repeating the process iteratively, one generates an increasing sequence of upper

boundaries of dominant ranges {x̂(n)(ci)}n for each agent i. Suppose x̂(n)(ci) ≥ 1 + σ

for both i = 1, 2 for some n, so that both agents are certain that θ > 1 upon

observing the boundary signal x̂(n)(ci). Then, the probability of agent i being pivotal

on observing xi ≥ x̂(n)(ci) is minimized when agent −i acts only in the then-dominant

range of signals (which expands every round). Therefore, from then on, each agent’s

upper boundary of dominant range increases by at least the same amount as the

other agent’s boundary increased in the previous round (i.e., x̂(n+1)(ci) − x̂(n)(ci) ≥
x̂(n)(c−i) − x̂(n−1)(c−i)) until it reaches 2 − σ, when the expansion slows down and

settles at x∗
i for both players, i.e., the upper boundary signals of the interval-threshold

equilibrium in the previous section. We show in Appendix that this is indeed the case

if c1, c2 < P (1) = 1/4.

Next, we determine x(∞)(ci), the lower end of the signal range for which acting

is iteratively dominant for agent i. Given that it is iteratively dominant for both

agents to act at every xi ∈ (x(1)(ci), x
∗
i ) as shown above, upon observing a signal xi ∈

(1−σ, x(1)(ci)), the probability that agent i is pivotal is minimized when s−i(x−i) ≡ 1

by (5). Thus, the minimized value is 1 − F (1|xi) which increases in xi from 0 at

xi = 1−σ and exceeds c2 at all xi ∈ (x(1)(ci), 1) as shown in [A] above. Consequently,

x(∞)(ci) is the signal xi ∈ (1 − σ, x(1)(ci)) that solves 1 − F (1|xi) = ci for i = 1, 2.

Note that this is xi defined in the previous section, namely, the lowest signal at which

the interval-player acts in the interval-threshold equilibrium, which we now denote as

x(ci) to be explicit about its dependence on ci (but not on i).

Proposition 2 It is iteratively strictly dominant for agent i to act at every signal in

the interval [x(ci), x
∗
i ) ⊃ [1, 2− σ] if c1 ≤ c2 < P (1) = 1/4.

We stated the result for c1, c2 < 1/4, but this is not necessary. Note that the

lower c1 is, the larger is the initial signal range where acting is dominant for agent

1, (x(1)(c1), x̂
(1)(c1)). This in turn means that a larger dominant signal range for

agent 2 in the next stage, (x(2)(c2), x̂
(2)(c2)), and so on. As a result, the conclusion of

Proposition 2 holds for higher c2 (that goes above 1/4) if c1 is lower. This negative

relationship is made precise in the next section.

Finally, it is straightforward to show that agent i never acts at any signal xi >

x∗
i in every equilibrium, leading to the following characterization of equilibrium in

conjunction with Proposition 2.
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Corollary 1 If c2 < 1/4, in every equilibrium both agents act for sure at all xi ∈
(xi, x

∗
i ) ⊃ [1, 2− σ] and never acts at any signal xi > x∗

i .

We already established that it constitutes an equilibrium that agent i acts if and

only if xi ∈ (xi, x
∗
i ) and agent −i acts if and only if x−i < x∗

−i. This implies that

the range of signals with dominance-solvable equilibrium actions cannot be expanded

beyond (xi, x
∗
i ).

Remark 1: Although we assumed that the noise ϵ has a bounded support (which

simplified exposition), the arguments and results in Sections 4 and 5 extend straight-

forwardly when ϵ has an unbounded support. Moreover, the interval-threshold equi-

librium in Section 4 extends to more than two agents in the obvious manner. For

the uniqueness result to be extended to more than two agents, however, we need

an unbounded support of ϵ: when there are I > 2 agents, at the borderline signal

s = I − 1, each agent’s participation is pivotal with a probability bounded away

from 0 no matter how the other agents behave, because the critical mass can be any

number between 1 and I, each with a positive probability. Hence, participation is

dominant if participation cost is sufficiently small at signals around I−1, from which

the dominant range of signals expands upward by an iterative process toward I.

Remark 2: In the two agents version of the model, full efficiency is achieved

when only agent 1 acts whenever θ ∈ (0, 1) and both agents act whenever θ ∈ (1, 2),

generating the social welfare

Ŵ = Prob(0 < θ < 1)(2− c1) + Prob(1 < θ < 2)(2− c1 − c2).

Note from (2) and (1) that x∗
i → 2 + σ and xi → 1 − σ for both i = 1, 2 as c2 → 0,

so that the social welfare in the limit is

Ŵ − c2 × Prob(1− 2σ < θ < 1)×
∫ 1

1−2σ

[
1− F (1− σ|θ)

]
dθ

which converges to Ŵ as c2 → 0.

Section 5 demonstrated how low agents’ costs facilitate uniqueness in the comple-

ments region. An important observation is that there is a friction between uniqueness

in the strategic complements and substitutes region. By allowing equilibrium selec-

tion in the strategic complements region, we make it harder for equilibrium selection

in the strategic substitutes region to be achieved. This is a known friction in the liter-

ature as demonstrated at Guesnerie (2004). They argue that conditions that facilitate

equilibrium selection in a game of strategic complements will have the opposite effect

in a game with strategic substitutes. In our game this is incorporated in the players’
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costs. For high enough costs we can achieve uniqueness in the strategic substitutes

region but we will have multiplicity in the complements region. On the contrary, low

costs result in a unique equilibrium in the complements region but multiplicity in the

substitutes region. This is highlighted in the next proposition.

Proposition 3 It is iteratively strictly dominant for agent 1 to act and agent 2 not

to act at every signal xi < 1 if c2 > 3/4.

Notice that equilibrium selection in the strategic substitutes region implies multiplic-

ity whenever the fundamentals exhibit strategic complements and vice versa.

6 Discussion

The analysis so far has abstracted from many interesting strategic interactions that

climate change presents. By choosing to focus on an one shot game, we have ab-

stracted from issues of commitment, communication and negotiations all crucial parts

of the analysis. One could consider a richer two stage game in which agents could

negotiate or commit to some action which they have to take at the end of the second

stage. Notice that any such interaction could only accommodate coordination. This

work focuses on the minimum conditions required for agents to coordinate instead.

Moreover, one could consider a more complete model that allows both the benefits

and the costs to change with the state of the environment. Since all the results pre-

sented here are in level utilities, this implies that they would hold for a range of such

functions.

A crucial assumption that we made is that policies have no informational value. In

a more complete environment, one could model the policy proposed as a very strong

public signal that both agents observe. The global games literature has shown that

such signals can have great effects in equilibrium selection. Whether this remains the

case in this discontinuous environment remains an open question.

Another important abstraction of the paper is focusing on a two agent, binary

action model. A more comprehensive analysis of the topic should include multiple

agents of different “size” who could choose to which extend they are willing to act.

Depending on the impact they can have on the issue, these agents’ actions can feature

strategic substitutes, complements or different combinations of the two depending on

whether they are compared with an agent of larger or smaller size. Nevertheless, this

paper indicates that taking into account the different strategic interactions between

countries and the incomplete information of the environment can have strong implica-

tions about the policies that can guarantee coordination. And proposes a framework

of discontinuous incomplete information games to study the issue. One could imagine
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a more comprehensive model that takes into account all the various such strategic

interactions/sizes of the countries and derive the limit of this finding. The anal-

ysis above in combination with the generalisation of the above result in Park and

Smyrniotis (2022) hint that this analysis could be a fruitful area for future research.

7 Conclusion

This paper studies the strategic interactions between large players that decide whether

to take climate action or not, after observing noisy signals about the state of the

environment. If the state is moderate only one agent needs to adopt climate policies

in order to restore the environment, while both agents’ participation is needed if the

state is critical. Actions can thus exhibit either strategic substitutes or complements

with the possibility of a self-fulfilling coordination failure. The key implication of the

model is that there exist utility levels such that a coordination failure will always

be prevented, in the incomplete information environment of the game. The same

utility levels would not guarantee coordination in the complete information game.

This implies that a proposed policy, targeted towards coordination should take into

account the incomplete information nature of climate change. By doing so one could

propose policies that require less change in agents utility and thus it will be easier to

be adopted by countries and be implemented, but achieve coordination nevertheless.

From a theoretical standpoint, we study a 2-player, 2-action coordination game

in which agents’ actions can feature either strategic complements or substitutes, the

key characteristic of a public good provision problem. The departure from the pre-

vious literature stems from actions changing between substitutes and complements

discontinuously to the underlying fundamental. We observe that around the critical

level of the fundamental value, where such discontinuity occurs, agents can have a

strictly dominant action in the incomplete information game even though no action

is strictly dominant in the complete information version. That is because the risk

dominant action from one side of the discontinuity, depending on agents’ utilities,

can be sufficiently attractive to the agents, in the contingency that their opponent

takes the opposite action, on the other side of the discontinuity. This allows for an

iterative process similar to the one developed in Carlsson, van Damme (1993) to select

that action as the unique prediction, as noise vanishes, for all fundamental values for

which it remains risk dominant. We derive conditions on the utilities of the agents

that allow for such iterative process to take hold.
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Appendix
Proof of Lemma 1. Consider the agent i whose upper threshold is higher, i.e.,

x∗
i ≥ x∗

−i. Upon observing x∗
i > 2 − σ, this agent infers θ > 1 and thus that he is

pivotal if θ < 2 and the other agent observes a signal to act, the likelihood of which

is equal to ci by (4). The probability that the other agent −i observes a signal to act,

however, is less than 0.5 because x−i is equally likely to be above and below x∗
i and

x∗
−i < x∗

i , from which we deduce that ci < 0.5. Since this probability is positive, we

also deduce that x∗
−i > x∗

i − 2σ > 2 − 3σ > 1 + σ. Then, upon observing x∗
−i, agent

−i also infers θ > 1 and thus that he is pivotal if θ < 2 and the other agent observes

a signal to act, the likelihood of which is equal to c−i.

Since x∗
i > x∗

−i > 1 + σ, the posterior probability that θ ∈ (1, 2) is higher at the

signal x∗
−i than at x∗

i , and the probability of the other agent observing a signal to act

conditional on agent i observing x∗
i is no higher than 0.5. Thus, if the agent i observes

a signal to act with a probability exceeding 0.5 conditional agent −i observing x∗
−i,

then ci < c−i ensues, i.e., i = 1. This is clearly the case if agent i is the threshold-

player. If agent i is the interval-player, then xi < 1 + σ because he should act upon

observing a signal xi = 1+σ given that θ > 1 for sure and agent −i acts with prob at

least 0.5, as well as ci < 0.5. Thus, [xi, x
∗
i ] is an interval of length exceeding 2σ and

contains x∗
−i, hence the agent i observes a signal to act with a probability exceeding

0.5 conditional agent −i observing x∗
−i.

Proof of Proposition 1. We provide the deferred proofs.

(1) To show there is a unique solution to (2) and 2− 3σ < x∗
2 < x∗

1 ∈ (2− σ, 2 + σ).

We have shown in the main text that x∗
2 ≤ x∗

1 ∈ (2 − σ, 2 + σ). For agent 1

to be indifferent between acting and not at x∗
1, he should be pivotal with a positive

probability, which implies that x∗
2 > x∗

1 − 2σ > 2− 3σ.

Next, suppose there are two solutions to (2, denoted by (x∗
1, x

∗
2) and (x′

1, x
′
2) where

x′
1 = x∗

1 − r < x∗
1 wlog. Then, (2) dictates that∫ 2

x∗
1−σ

F (x∗
2−θ+σ)f(θ−x∗

1+σ)dθ = c1 =

∫ 2

x∗
1−r−σ

F (x′
2−θ+σ)f(θ−x∗

1+r+σ)dθ.

Note that the RHS evaluated at x′
2 = x∗

2−r, is
∫ 2+r

x∗
1−σ

F (x∗
2− θ̃+σ)f(θ̃−x∗

1+σ)dθ̃ > c1

by change of variable θ̃ = θ + r. This implies that x′
2 < x∗

2 − r. On the other hand,∫ 2

x∗
2−σ

F (x∗
1 − θ+ σ)f(θ− x∗

2 + σ)dθ = c2 =

∫ 2

x′
2−σ

F (x∗
1 − r− θ+ σ)f(θ− x′

2 + σ)dθ

by (2), but the RHS evaluated at x′
2 = x∗

2−r, is
∫ 2+r

x∗
2−σ

F (x∗
1−θ̃+σ)f(θ̃−x∗

2+σ)dθ̃ > c2.

This implies that x′
2 > x∗

2 − r (because the RHS of the previous displayed equation
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decreases in x′
2 due to symmetry and single-peakedness of f), contradicting the earlier

assertion x′
2 < x∗

2 − r. Note that this argument presumes x∗
2 + σ > 2. If x∗

2 + σ < 2

then since θ < 2 is evident to agent 2 upon observing x∗
2 or x′

2, x
∗
1 − x∗

2 = x′
1 − x′

2

must hold, again contradicting x′
2 < x∗

2 − r.

(2) To show (3) decreases in x1 ≤ 1 + σ; for x1 ≥ 1 + σ, it initially increases then

declines.

The derivative of (3) wrt x1 is

−
∫ 1

−∞
F (x2|θ)f ′(θ|x1)dθ −

∫ 2

1

[F (x∗
2|θ)− F (x2|θ)]f ′(θ|x1)dθ. (8)

Note that f is symmetric around and single-peaked at θ = x1, that is, f ′(θ|x1) =

−f ′(2x1 − θ|x1) > 0 for θ ∈ (x1 − σ, x1], which is used repeatedly in the reasoning

below. For x1 ≤ 1−σ, only the first term is relevant (the second term vanishes) which

is negative because F (x2|θ) decreases in θ ∈ [x1−σ, x1+σ]. For x1 ≥ 1+σ, only the

second term is relevant (the first term vanishes). F (x∗
2|θ) = 1 for θ ≤ x∗

2−σ, decreases

for θ ∈ (x∗
2 − σ, x∗

2 + σ) and is 0 for θ ≥ x∗
2 + σ. F (x2|θ) = 1 for θ ≤ x2 − σ, decreases

for θ ∈ (x2−σ, x2+σ) and is 0 for θ ≥ x2+σ. Since x∗
2−x2 > 2σ, F (x∗

2|θ)−F (x2|θ)
increases for θ ∈ (1, x2) if nonempty, then stay constant at 1 until θ = x∗

2 − σ (hence,

for an interval of θ of length at least 2σ), from which point it declines down to 0 at

θ = x∗
2 + σ. Due to symmetric and single-peaked f , therefore, as x1 increases from

1+σ the second term of (8) is positive, then 0 for a while before turning to negative.

This means that for x1 ≥ 1 + σ, (3) initially increases then declines down to c2 at

x1 = x∗
1 and further afterwards.

(3) To show that (3) exceeds c1 at every x1 ∈ [1− σ, 1 + σ].

Focus on the highest possible θ’s with a posterior probability 2(1−F (1|x2)) upon

observing x1 = x2, that is, the interval [θ̂, x2+σ] where 1−F (θ̂|x2) = 2(1−F (1|x2)).

Agent 1’s action is pivotal with a probability greater than 0.5 conditional on θ ∈
[θ̂, x2 +σ], because then θ is equally likely to be above and below 1 (by construction)

and

F (x2|θ) > F (x2|θ′) ⇐⇒ F (x2|θ) + 1− F (x2|θ′) > 1 if θ < 1 < θ′, (9)

that is, the average probability that agent 1’s action is pivotal between any two

θ, θ′ ∈ [θ̂, x2 + σ], one below 1 and the other above 1, exceeds 0.5. This implies that

(3) exceeds 1− F (1|x2) = c2 at x1 = x2.

The same conclusion obtains when agent 1 observes x1 > x2 as well, because then

θ is more likely to be above than below 1 subject to θ being in the top interval of

possible θ’s of measure 2(1−F (1|x2)) and, in addition to (9), we have 1−F (x2|θ) > 0.5
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for all θ > 1. The same also holds at x1 < x2, because then it is straightforward to

verify that agent 1’s action is pivotal with a probability exceeding 0.5 both conditional

on θ < 1 and conditional on θ ∈ (1, 2).

Therefore, if x2 ∈ (1 − σ, 1), i.e., c2 ≤ 0.5, then the minimum value of (3) across

all x1 < x∗
1 exceeds c2, hence exceeds c1 as well, establishing it to be an equilibrium

for agent 1 to adopt the threshold strategy below x∗
1 and agent 2 the interval strategy

on [x2, x
∗
2].

Next, consider the case that x2 ∈ (1, 1 + σ) so that c2 > 0.5 by (1). Note the

symmetry between this and the previous case: agent 1’s action is pivotal if both θ

and x−i are one the same side (below or above) of 1 and x2, respectively, except that

x2 is on the opposites of 1 in the two cases. From this symmetry it follows that the

value of (3) at x1 ∈ (1 − σ, 1 + σ) in one case coincides with the value of (3) in the

other case when x1 is equidistant from 1 in the other direction and consequently, that

the minimum value of (3) among all x1 < x∗
1 is also the same in the two cases. Since

this minimum value has been shown to exceed c1 when c2 < 0.5 above, so it must

when c2 > 0.5 as well, establishing it to be an equilibrium for agent 1 to adopt the

threshold strategy below x∗
1 and agent 2 the interval strategy on [x2, x

∗
2].

Proof of Proposition 2. Recall the iterative process that generates an increasing

sequence of upper boundaries of dominant ranges {x̂(n)(ci)}n for each agent i. It

remains to verify that limn→∞ x̂(n)(ci) = x∗
i for i = 1, 2 if c1, c2 < P (1) = 1/4.

Note that this will indeed be the case if the upper boundary x̂(1)(ci) is already

above 1 + σ after the first round, i.e., ci ≤ minxi∈[1−σ,1+σ] P
(1)
i (xi) for i = 1, 2. For

ci > 0 small enough, this is the case because x̂(1)(ci) → 1 + σ as ci → 0 and thus,

P
(1)
i (xi) is bounded away from 0 on [1− σ, 1 + σ].

From construction of the sequence of dominant intervals {(x(n)(ci), x̂
(n)(ci))}n, it

is clear that (x(n)(ci), x̂
(n)(ci)) ⊂ (x(n)(c′i), x̂

(n)(c′i)) for each n and i = 1, 2, if ci ≥ c′i
for i = 1, 2. Therefore, if x̂(∞)(c′i) < 1+σ for some i and some (c′1, c

′
2), then x̂(∞)(c1) =

x̂(∞)(c2) < 1 + σ for c1 = c2 = min{c′1, c′2}. Moreover, since x̂(n)(ci) is continuous

in ci when c1 = c2, there is some c > 0 such that x̂(∞)(c1) = x̂(∞)(c2) = 1 + σ for

(c1, c2) = (c, c). This means that for (c1, c2) = (c, c), we have c being equal to

P
(∞)
i (1 + σ) = min

s−i

P (1 + σ|s−i) subject to s−i(x−i) = 1 ∀x−i ∈ (x(∞)(c−i), x̂
(∞)(c−i))

≥ P (1 + σ|s−i) where s−i(x−i) = 1 ⇔ x−i ∈ (−∞, 1− σ] ∪ [1, 1 + σ]

> 1/4

where the weak equality is due to (5) and the strict inequality ensues because the

regime is strong for sure on xi = 1 + σ, given which Prob(x−i ∈ [1, 1 + σ]) > 1/4,

contradicting c < P (1) = 1/4.

24



References

George-Marios Angeletos, Christian Hellwig, and Alessandro Pavan. Signaling in a

global game: Coordination and policy traps. Journal of Political economy, 114(3):

452–484, 2006.

George-Marios Angeletos, Christian Hellwig, and Alessandro Pavan. Dynamic

global games of regime change: Learning, multiplicity, and the timing of attacks.

Econometrica, 75(3):711–756, 2007.

Francis M Bator. The anatomy of market failure. The quarterly journal of economics,

72(3):351–379, 1958.

Sarita Bunsupha and Saran Ahuja. Competing to coordinate: Crowding out in coor-

dination games. 2018.

Stefano Carattini, Simon Levin, and Alessandro Tavoni. Cooperation in the climate

commons. Review of Environmental Economics and Policy, 2019.

Hans Carlsson and Eric van Damme. Global games and equilibrium selection.

Econometrica, 61(5):989–1018, 1993.

R. H. Coase. The problem of social cost. The Journal of Law Economics, 3:1–44,

1960. ISSN 00222186, 15375285. URL http://www.jstor.org/stable/724810.

Stephen J. DeCanio and Anders Fremstad. Game theory and cli-

mate diplomacy. Ecological Economics, 85:177–187, 2013. ISSN

0921-8009. doi: https://doi.org/10.1016/j.ecolecon.2011.04.016. URL

https://www.sciencedirect.com/science/article/pii/S0921800911001698.

New Climate Economics.

Chris Edmond. Information manipulation, coordination, and regime change. The

Review of Economic Studies, 80(4 (285)):1422–1458, 2013.

R Guesnerie. When strategic substitutabilities dominate strategic complementari-

ties: towards a standard theory for expectational coordination? Technical report,

Working Paper, PSE, 2005-07, 2004.

Garrett Hardin. The tragedy of the commons. Science, 162(3859):1243–1248, 1968.

ISSN 00368075, 10959203. URL http://www.jstor.org/stable/1724745.

Rodrigo Harrison and Pedro Jara-Moroni. Global Games With Strategic Sub-

stitutes. International Economic Review, 62(1):141–173, February 2021. doi:

10.1111/iere.12481.

25



John C Harsanyi, Reinhard Selten, et al. A general theory of equilibrium selection in

games. MIT Press Books, 1, 1988.

Eric J. Hoffmann and Tarun Sabarwal. A global game with strategic substitutes and

complements: Comment. Games and Economic Behavior, 94(C):188–190, 2015.

doi: 10.1016/j.geb.2015.06.002.

Eric J Hoffmann and Tarun Sabarwal. Equilibrium existence in global games with

general payoff structures. Economic Theory Bulletin, 7(1):105–115, 2019a.

Eric J Hoffmann and Tarun Sabarwal. Global games with strategic complements and

substitutes. Games and Economic Behavior, 118:72–93, 2019b.

Larry Karp, In Ho Lee, and Robin Mason. A global game with strategic substitutes

and complements. Games and Economic Behavior, 60(1):155–175, 2007.

Manfred Milinski, Ralf D. Sommerfeld, Hans-Jürgen Krambeck, Floyd A. Reed,

and Jochem Marotzke. The collective-risk social dilemma and the prevention

of simulated dangerous climate change. Proceedings of the National Academy

of Sciences, 105(7):2291–2294, 2008. doi: 10.1073/pnas.0709546105. URL

https://www.pnas.org/doi/abs/10.1073/pnas.0709546105.

Stephen Morris and Mehdi Shadmehr. Inspiring regime change. APSA Preprints,

2020.

Stephen Morris and Hyun Song Shin. Global games: Theory and applications. 2001.

Stephen Morris and Hyun Song Shin. Social value of public information. American

Economic Review, 92(5):1521–1534, December 2002.

Stephen Morris, Hyun Song Shin, and Muhamet Yildiz. Common belief foundations

of global games. Journal of Economic Theory, 163:826 – 848, 2016.

William Nordhaus. Climate change: The ultimate challenge for economics. American

Economic Review, 109(6):1991–2014, 2019.

Mancur Olson. Logic of collective action: Public goods and the theory of groups

(Harvard economic studies. v. 124). Harvard University Press, 1965.

Elinor Ostrom. Governing the Commons: The Evolution of Institutions for Collective

Action. Political Economy of Institutions and Decisions. Cambridge University

Press, 1990. doi: 10.1017/CBO9780511807763.

26



In-Uck Park and Efthymios Smyrniotis. Global games without dominance solvable

games. mimeo, 2022.

AC Pigou. A study in public finance, mac millan and co. 1928.

Paul A. Samuelson. The pure theory of public expenditure. The Review of

Economics and Statistics, 36(4):387–389, 1954. ISSN 00346535, 15309142. URL

http://www.jstor.org/stable/1925895.

Mehdi Shadmehr. Protest puzzles: Tullock’s paradox, hong kong experiment, and

the strength of weak states. Games Political Behavior eJournal, 2018.

Mehdi Shadmehr and Dan Bernhardt. Collective action with uncertain payoffs: Coor-

dination, public signals, and punishment dilemmas. The American Political Science

Review, 105(4):829–851, 2011.

Gordon Tullock. The paradox of revolution. Public Choice, 11(1):89–99, 1971.

Jonathan Weinstein and Muhamet Yildiz. A structure theorem for rationalizability

with application to robust predictions of refinements. Econometrica, 75(2):365–400,

2007.

27


