New sustainable materials and manufacturing processes reduce steering defects during automated layup

Phil Druiff, Advanced Research Engineer, Automated Layup, NCC
Automated Deposition of REcycled Prepreg tapes

- Next-generation aircraft will require more efficient, lighter components, combined with a transition to Net Zero
- This will require intricate tow steering to carry complex load paths, while maintaining quality and rate
- Critical Steering Radius (CSR) is a key manufacturability parameter for layup program definition
- ATL, although high rate, has a significantly reduced steering capability in comparison with AFP
 - RTS has shown the capability to significantly improve CSR for wide tapes
 - Reclaimed short fibre tapes may also improve CSR, with added sustainability benefit

```
r = 425.4 mm  
r = 400.0 mm  
r = 374.6 mm
```

Example of tape path length discrepancy [1]
Automated Deposition of REcycled Prepreg tapes

- Next-generation aircraft will require more efficient, lighter components, combined with a transition to Net Zero
- This will require intricate tow steering to carry complex load paths, while maintaining quality and rate
- Critical Steering Radius (CSR) is a key manufacturability parameter for layup program definition
- ATL, although high rate, has a significantly reduced steering capability in comparison with AFP
 - iCOMAT’s Rapid Tow Shearing (RTS) process has shown the capability to improve CSR for wide tapes
 - Reclaimed short fibre tapes may also improve CSR, with added sustainability benefit

Project Objectives:
- Demonstrate that aligned short fibre materials can be deposited using automated layup techniques
- Assess the CSR and material quality against a baseline, using two automated layup processes:
 - ATL
 - RTS
Recycled prepreg material production (AFFT)

- End-of-life reclaimed fibres used
 - Reclaimed from post-industrial bobbins
- Semi-preg material: resin applied on one side of fibres
 - Fibre AW: 49.67 ±1.3gsm
- Manufacturing challenge: ATL lays dry side down, limiting tack
 - Mitigation: use continuous prepreg as a tacky substrate

LINEAT Capability

Engineering team automating and upscaling fibre alignment technology, AFFT1 pilot line in NCC Filton for 100mm wide pre-preg tape production

<table>
<thead>
<tr>
<th>Material parameters</th>
<th>Lineat AFFT (short fibre)</th>
<th>Baseline Continuous (UD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tape width</td>
<td>75mm</td>
<td>75mm</td>
</tr>
<tr>
<td>Fibre length</td>
<td>4mm</td>
<td>up to 50,000mm</td>
</tr>
<tr>
<td>Resin</td>
<td>SHD MTC400-1</td>
<td>Hexcel 8552</td>
</tr>
<tr>
<td>Tape density estimate</td>
<td>100gsm</td>
<td>134gsm</td>
</tr>
<tr>
<td>V_f estimate</td>
<td>40%</td>
<td>67%</td>
</tr>
</tbody>
</table>

Post industrial recovered rCF

AFFT tape
Recycled prepreg material development

- Initial tape samples displayed significant tearing and poor-quality edges
- Possible cause: resin film narrower than dry tape
 - This may cause fibres to stray beyond film edge
- Mitigations:
 - Edge cleaning was implemented on AFFT1 machine to smooth edge
 - Tape was slit from the centre (100mm to 75mm) to produce a sharp edge on each side
- Second sample was much higher quality!

Lineat process improvement: ‘Manual Tape Laying’
Automated lay-up steering radii selection

- Steering radii selected based on literature and past projects for each material type
 - 75mm ATL steered to 10m previously
 - AFP values selected from literature
 - RTS values and dimensions selected to align with AFP and past experience
- Overlap of all 3 materials at 0.8m steering radius

Minimum steering radii extrapolated from literature (ADFP)

<table>
<thead>
<tr>
<th>Steering radius (m)</th>
<th>8.00</th>
<th>6.00</th>
<th>4.00</th>
<th>2.00</th>
<th>1.50</th>
<th>1.25</th>
<th>1.00</th>
<th>0.80</th>
<th>0.60</th>
<th>0.50</th>
<th>0.40</th>
<th>0.20</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATL</td>
<td>✅</td>
<td></td>
</tr>
<tr>
<td>AFP</td>
<td></td>
</tr>
<tr>
<td>RTS</td>
<td></td>
</tr>
</tbody>
</table>

Deposited steering radii reference chart
Quality was good for both materials for all radii laid (down to 200mm)

- Defects are minor when they occur

- Material was shiny and difficult to scan or see in pictures

- Critical steering radius: <200mm

Continuous material with RTS process (200mm)

Minimal noted defects
Quality was very good for both materials for all radii laid (down to 200mm)

Loose fibres (poor alignment) observed on recycled material top (dry) surface

- **ATL lays dry side down, RTS lays dry side up**

Small sheering wrinkles also observed in tight radii

Low tensions required for processing

Observations:
- Extra PPE required due to airborne short fibres
Critical steering radius

- Assessed visually, and quantitatively using peak & valley volume [1]
- No reportable defects, volume not significantly increased from infinite to 0.2m radius
- **Baseline**: critical steering radius ≤ 0.2m
- **AFFT**: critical steering radius ≤ 0.2m

RTS steering results

<table>
<thead>
<tr>
<th>Steering radius (m)</th>
<th>Peak and valley volume (mm3/mm2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inf.</td>
<td>0.00</td>
</tr>
<tr>
<td>0.0</td>
<td>0.05</td>
</tr>
<tr>
<td>0.1</td>
<td>0.10</td>
</tr>
<tr>
<td>0.2</td>
<td>0.15</td>
</tr>
<tr>
<td>0.3</td>
<td>0.20</td>
</tr>
<tr>
<td>0.4</td>
<td>0.25</td>
</tr>
</tbody>
</table>

Lineat material with RTS process (200mm)

Continuous material with RTS process (200mm)

Baseline steering performance

- Steering of ATL tapes is not typically performed
 - Ability to program steered tapes was not included in CAM package until recently
- Previous trials indicated that steering down to 10m is achievable
- 8m course shows minor defects at tape end
- 6m course shows more significant wrinkling and tape shearing during the last @30% of tape
- 4m tapes and below show significant wrinkling, tape shearing and folding during the last ~50% of tape

| Critical steering radius | 7m ±1 |

ATL baseline steering map
Baseline steering performance

Wrinkling and tape shearing

Fold
AFFT ATL manufacturing challenges

Roller deposition tape breakage

- Lay-up trials carried out on flat, straight courses, with same baseline material
- Roller tape breakage due to inability to carry applied tension
- Additional lay-up program created to use shoe only
 - ATL shoe utilises support of backing paper
- Suggested future mitigations:
 - Increase gsm to improve stiffness
 - Reduce ATL system tension (not recommended due to additional system dependencies)
AFFT steering performance

- Final 2 layups performed on a separate day, with second material roll. Possible variation causes:
 - Material batch variation
 - Machine / operator variation
 - Base layer intra-batch variation
- **Steering performance exceeds ATL and is similar to AFP**
 - Likely due to lower in-plane shear stiffness: fibres can move without deforming
- Suggested fold mitigations: Apply resin to both sides of material (likely requires fibre density increase)

| Critical steering radius | 0.8m ±1.2/-0 |

ATL AFFT steering map
AFFT steering performance

* inf. (i) damaged during KPV trials
Critical steering radius

- Volumetric method: identify point at which the curve starts to increase rapidly
- Baseline begins increasing at 6m
 - Visual results indicate critical steering radius between 6 and 8m
- AFFT shows no clear trend
 - Visual results indicate critical steering radius < 0.8m
 - Initial preform (CSR= 2m) not scanned
- Error bars overlapping
 - Defects generally appear at tape end first, causing sample variation
Conclusions

- RTS is much more capable than AFP or ATL
 - For both materials, critical steering radius ≤ 0.2m
- RTS enables more complex load paths for highly tailored structures
- AFFT outperforms traditional prepreg in the ATL trials, critical steering radius approx. 0.8m + 1.2/-0
 - Less material resistance to shear
- If manufacturability is improved, AFFT material could be used in highly-tailored load applications, with high-rate deposition capabilities of ATL
ATL AFFT steering map

ATL baseline steering map