

Bristol Composites Institute

Wind Blade Design for Disassembly

Tom Brereton

Prof. Paul Weaver

Prof. Alberto Pirrera

Dr Terence Macquart

BCI Symposium 2025 8th April 2025

Engineering and Physical Sciences Research Council

EPSRC Centre for Doctoral Training in Composites Science, Engineering and Manufacturing

t.brereton@bristol.ac.uk

Overview

- Motivation
- Background
- Current Work Joint Selection Taxonomy
 - Research Objective
 - Taxonomy Process Overview
 - Classification Hierarchy
 - Breakdown of Classification Parameters
- Future Work

Motivation for Modular Blades

- Lack of cost-effective recycling options at end-of-life
- · Most composite waste is disposed of in land-fill

- In current designs, high value composite components cannot be easily separated for reuse
- Most cost-effective solution = MODULAR BLADES FOR COMPONENT REUSE

EPSRC Centre for Doctoral Training in Composites Science, Engineering and Manufacturing

Background

- Joint selection not scalable for larger blades
- Traditional joining techniques too heavy for blade dynamics
- Non-cost-effective disassembly
 process

[1] Qin et al. (2018); <u>https://doi.org/10.1016/j.compstruct.2018.08.073</u>
[2] Peeters et al. (2017); DOI: 10.3390/en10081112
[3] Xu et al. (2016); DOI: 10.6052/j.issn.1000-4750.2014.06.0548

Current Work: Research Objectives

- 1. Define tolerances for joint mass/stiffness and determine dynamic effect of joint incorporation on blade performance
- 2. Functional characterisation and evaluation of joints for modular wind turbine blades
- 3. Design and test joint concept for use in modular wind turbine blade, evaluating its strength and disassembly potential

EPSRC Centre for Doctoral Training in Composites Science, Engineering and Manufacturing

Current Work: Taxonomy of Joint Features

Current Work: Taxonomy Process Overview

The joint taxonomy methodology consists of two sub-projects:

Current Work: Joint Classification

Joint concepts are classified hierarchically based on relevant joining features:

Engineering and Physical Sciences Research Council

Engineering and Manufacturing

Current Work: Load Transfer Mechanism

9

A *joint* is a structural feature to transfer load across a discontinuity using:

Current Work: Joint Classification

Joint concepts are classified hierarchically based on relevant joining features:

EPSRC Centre for Doctoral Training in Composites Science, Engineering and Manufacturing

Current Work: Balanced v Unbalanced

A joint is **balanced** if there is symmetric distribution of adherends either side of discontinuity

Example of balanced joint

Example of unbalanced joint

Source: www.inchbyinch.de

EPSRC Centre for Doctoral Training in Composites Science, Engineering and Manufacturing

Current Work: Joint Classification

Joint concepts are classified hierarchically based on relevant joining features:

Current Work: Symmetric v Asymmetric

A joint is **symmetric** if there is symmetric distribution of joint features either side of the load vector

Source: www.engineersblog.net

Future Work

Bristol Composites Institute

Thank you for listening.

Any questions?

t.brereton@bristol.ac.uk

Engineering and Physical Sciences Research Council

EPSRC Centre for Doctoral Training in Composites Science, Engineering and Manufacturing

Vestas