

Bristol Composites Institute

Creation of 'Over-moulded' PEEK samples for Interface Bond Strength Predictions

Maria Veyrat Cruz-Guzman

Supervisors: J. P.-H. Belnoue, S. J. Eichhorn, A. Chaplin, J. Grasmeder, D. S. Ivanov

BCI research symposium

April 2025

Engineering and Physical Sciences Research Council

University of BRISTOL

Outline

- Thermoplastics & why
- Crystallisation kinetics of PEEK
- Creation of Kinetics model
 - Testing model with complex cooling tests
- Interface strength
 - Optimisation of sample design
- Future work

Thermoplastics

- Use in new manufacturing techniques (e.g. additive manufacturing and over-moulding)
- Regenerated interfaces of high interest for thermoplastic composites
- Crystallisation is an important phase transition for thermoplastic processing

[1] R. Akkerman, M. Bouwman, and S. Wijskamp, 'Analysis of the Thermoplastic Composite Overmolding Process: Interface Strength', *Front. Mater.*, vol. 7, p. 13, 2020, doi: 10.3389/fmats.2020.00027.

Engineering and Physical Sciences Research Council

Thermoplastic Crystallisation Kinetics

EPSRC Centre for Doctoral Training in Composites Science Engineering and Manufacturing

Engineering and Physical Sciences

Fractional model results

Dynamic tests

• Isothermal tests

- Final crystallinity predictions within 5% error margin
- Limitations :
 - Sensitive to initial conditions
 - Thermal lag at higher temperatures
- Potential tool that can be adapted for other thermoplastics

Engineering and Physical Sciences Research Council

Fractional model results

 Ramp Dwell Cool tests

- Final crystallinity predictions within 5% error margin
- Limitations :
 - Sensitive to initial conditions
 - Thermal lag at higher temperatures
- Potential tool that can be adapted for other thermoplastics

Interface Strength - FEA

- No clearly established tests to examine 'overmoulded' interface
- Adaption of L-Shape curved beam test
- Optimisation of test design via Finite Element Analysis
- 4 possible failure modes can occur:
 - Brittle PEEK, Fibre failure, Composite delamination and Interface delamination
- Failure stresses will be normalised against the relevant strength values

Strength values	[MPa]
Unidirectional Strength of PEEK/CF	
Transverse Strength of PEEK/CF	
Critical Hydrostatic Tension of PEEK	
Interface Strength of PEEK/CF	

[2] N. Yi, Y. Chen, J. Shen, R. Davies, and O. Ghita, 'Correlation between interfacial bond strength and degree of healing in overprinting PAEK on CF/PAEK composites', *Compos. Part Appl. Sci. Manuf.*, vol. 183, p. 108217, Aug. 2024, doi: 10.1016/j.compositesa.2024.108217

Engineering and Physical Sciences Research Council

L-Shape Configurations

Compilation of the failure indices vs the PEEK 'hat' thickness using a UD thickness of 1 mm.

Engineering and Physical Sciences Research Council

Future work

 Manufacturing 'Hat' L-shape samples

Engineering and Physical Sciences Research Council

Bristol Composites Institute

Thank you! mv17384@bristol.ac.uk

The authors would like to acknowledge Victrex plc for their support of this research through the COSEM CDT at the University of Bristol, UK

КĶ

Engineering and Physical Sciences Research Council

