10º off-axis test for in-plane shear strength measurement

Prof. Fabrice PIERRON
Engineering and Physical Sciences, University of Southampton, UK
R&D Director, MatchID NV, Ghent, Belgium
M.-J. Pindera, C. Herakovich, Shear characterization of unidirectional composites with the off-axis tensile test, Experimental Mechanics, 26 (1986) 103-112

Prof. F. Pierron, 10° off-axis test, March 2022
Mechanical analysis

- Real boundary conditions (T300/914 C/E UD)

F/A Normalized longitudinal stress σ_{xx}
Oblique tabs

Prof. F. Pierron, 10° off-axis test, March 2022
Experimental validation – grid method

Prof. F. Pierron, 10° off-axis test, March 2022
Experimental validation - displacements

10° OFF-AXIS TENSILE TEST ON CARBON/EPOXY

- No tabs
- Straight glass/epoxy tabs
- Oblique tabs

Longitudinal displacement in microns

- < à 0,00
- 0,00 à 4,28
- 4,28 à 8,56
- 8,56 à 12,84
- 12,84 à 17,12
- 17,12 à 21,40
- 21,40 à 25,68
- 25,68 à 29,96
- 29,96 à 34,24
- 34,24 à 38,52
- 38,52 à 42,80
- 42,80 à 47,08
- 47,08 à 51,36
- 51,36 à 55,64
- 55,64 à 59,92
- > à 59,92
Experimental validation - displacements

Comparison of strain fields:
Off-axis tensile test, unidirectional glass/epoxy
Different end conditions

Fibre direction

Microstrains

No end-tabs

[±45]_s glass/epoxy end-tabs

Oblique end-tabs
Failure

Mean fracture shear stress: 66 MPa

Mean fracture shear stress: 78 MPa

Prof. F. Pierron, 10º off-axis test, March 2022
Shear failure stress (MPa)
Not pure shear

- In the materials axes (normalized by F/A)
 \[\sigma_{11} = 0.96; \sigma_{22} = 0.04; \sigma_{12} = -0.17 \]
 23% of the shear stress

- Need for a failure model
 - In [1], Tsai-Wu was used

\[\sigma_{22} = -0.3; \sigma_{12} = -1.02 \]
 29%

- Io sipescu 0º shear test

\[\sigma_{11} = 0.96; \sigma_{22} = 0.04; \sigma_{12} = -0.17 \]

78 MPa shear fracture stress \[\rightarrow\] 95 MPa shear strength

122 MPa shear fracture stress \[\rightarrow\] 98 MPa shear strength

Prof. F. Pierron, 10° off-axis test, March 2022