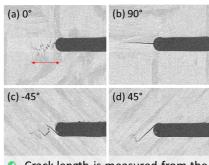
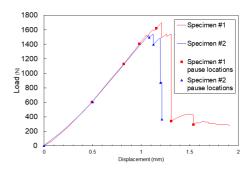

Predicting Trans-laminar Fracture Using VCCT and In-situ CT Scans

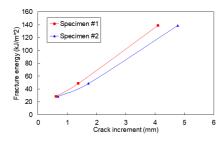
X. Sun, S. Takeda*, M.R. Wisnom, X. Xu


In Situ-CT scans were carried out to predict the failure propagation load of a large stiffened panel. The test focused on translaminar fracture toughness characterisation and a partial resistance curve (R-Curve) was constructed. With the aid of Virtual Crack Closure Technique (VCCT), the predicted failure propagation load was 7% higher than the measured load [1].

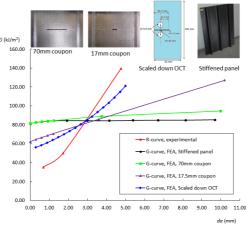
- **Objectives** To measure the effective crack length of small coupons using in-situ CT scan
 - To predict the fracture propagation and max load of the stiffened panel using small coupons and VCCT


Specimen configuration & test set-up

Test results

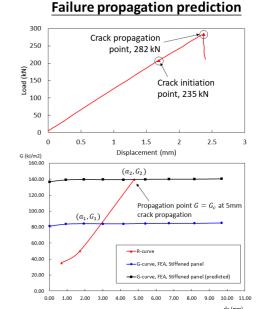


Crack length is measured from the average of the four 0 degree plies.


Fracture energy calculation

- Calculation based on ASTM E1922
- G_c increases with Δa
- No plateau yet due to small specimen size
- Max value at approx. 140 kJ/m²
- How can these results be implemented for prediction?

- G curves Strain energy release rate curves from FEA of other specimens with same material
- All curves intersect at approx. 3mm notch length, which is independent of geometry
- 3 mm corresponds to the damagezone size
- Consistent G at initiation of fracture


R-curve compared against G-curves

- R-curve from In-situ CT scan
- New measure R-curve consistent with previous G calculations for initiation
- Increasing G_c explains stable fracture
- after initiation VCCT analyses of stiffened panel for fracture initiation and propagation
- At G_1 = 84 kJ/m2, the load is 235 kN, thus F_2 can be worked out from G_c =140 kJ/m2.
- Predicted F_2 = 303 kN only 7% from max load of 282 kN.

Conclusions

- Successful In-situ CT scan for trans-laminar fracture toughness characterisation
- Partial R-curve obtained from a single specimen
- R-curve validated against previous FEA results
- Satisfactory prediction of fracture propagation load of the large panel based on the small specimen results

bristol.ac.uk/composites