

EPSRC Centre for Doctoral Training in Advanced Composites for Innovation and Science

Imperfection-Insensitive Continuous Tow-Sheared Cylinders

Reece L. Lincoln, Paul M. Weaver, Alberto Pirrera, Rainer M.J. Groh

Problem

$$KDF = \left(\frac{P_{\rm ex}^*}{P_{\rm cr}^*}\right)$$

$$P_{\rm cr}^* = \frac{2\pi E t^2}{\sqrt{3(1-\nu^2)}}$$

- Discrepancy between theory and experimental results due to imperfection sensitivity
- Conservative design philosophy leading to inefficient, heavy structures

Nomenclature

- ϕ : angle from X-axis to define cross-head direction
- T_0 : angle from ϕ that defines initial shearing angle
- T_1 : angle from T_0 that defines final shearing angle
- \blacksquare n: periodicity, i.e. how many the cycle $T_0 \to T_1 \to T_0$ happens

Results

$$\mathsf{KDF} = \left(\frac{P_{\lambda}}{P_{\mathrm{cr}}}\right)$$

$$P = P_{\lambda}$$
 $P = P_{cr}$
 $u = u_{\lambda}$ $u = u_{cr}$

$$P = P_{\lambda}/2$$
 $P = P_{\rm cr}/2$
 $u = u_{\lambda}/2$ $u = u_{\rm cr}/2$

Cylinder	P^{μ} [kN]	σ [kN]	Var [N]
$[0\pm(20 25)^2, 90\pm(35 25)^9]_s$	193.4	4.16	84.7
[±45, 0, 90] _s	170.6	5.72	178
Δ%	+13%	- 32%	- 71%

- Optimisation to maximise imperfect buckling load across a range of imperfections
- Increased average imperfect buckling load
- **Decreased** standard deviation and variance